12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Spin and molecular electronics in atomically-ge...
View graph of relations

« Back

Spin and molecular electronics in atomically-generated orbital landscapes.

Research output: Contribution to journalJournal article

Published

Article number085414
Journal publication date16/02/2006
JournalPhysical Review B
Journal number8
Volume73
Number of pages22
Original languageEnglish

Abstract

Ab initio computational methods for electronic transport in nanoscaled systems are an invaluable tool for the design of quantum devices. We have developed a flexible and efficient algorithm for evaluating I-V characteristics of atomic junctions, which integrates the nonequilibrium Green's function method with density functional theory. This is currently implemented in the package SMEAGOL. The heart of SMEAGOL is our scheme for constructing the surface Green's functions describing the current-voltage probes. It consists of a direct summation of both open and closed scattering channels together with a regularization procedure of the Hamiltonian and provides great improvements over standard recursive methods. In particular it allows us to tackle material systems with complicated electronic structures, such as magnetic transition metals. Here we present a detailed description of SMEAGOL together with an extensive range of applications relevant for the two burgeoning fields of spin and molecular electronics.

Bibliographic note

Copyright 2006 American Physical Society.