12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Stabilizing global mean surface temperature: a ...
View graph of relations

« Back

Stabilizing global mean surface temperature: a feedback control perspective

Research output: Contribution to journalJournal article

Published

Journal publication date05/2009
JournalEnvironmental Modelling and Software
Journal number5
Volume24
Number of pages10
Pages665-674
Original languageEnglish

Abstract

In this paper, we develop a discrete time, state variable feedback control regime to analyze the closed-loop properties associated with stabilizing the global mean surface temperature anomaly at 2C within a sequential decision making framework made up of 20 year review periods beginning in 2020. The design of the feedback control uses an optimal control approach that minimizes the peak deceleration of anthropogenic CO2 emissions whilst avoiding overshooting the 2C target. The peak value for emissions deceleration that satisfies the closed-loop optimization was found to be linearly related to climate sensitivity and a climate sensitivity of 3.5C gave a deceleration of -1.9 GtC/a/20 years2. In addition to accounting for the predicted climate dynamics, the control system design includes a facility to emulate a robust corrective action in the face of uncertainty. The behavior of the overall control action is evaluated using an uncertainty scenario for climate model equilibrium sensitivity.