12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The aqueous photodegradation of fenitrothion un...
View graph of relations

« Back

The aqueous photodegradation of fenitrothion under various agricultural plastics : implications for pesticide longevity in agricultural 'micro-environments'.

Research output: Contribution to journalJournal article

Published

Journal publication date06/2009
JournalChemosphere
Journal number1
Volume76
Number of pages4
Pages147-150
Original languageEnglish

Abstract

Plastic cladding is increasingly used in agriculture to create micro-environments to improve crop yield/growth. Many of these plastics can alter the solar light spectrum by inhibiting or reducing the transmittance of certain parts of the solar spectrum. In this study, we investigated the aqueous photolysis of fenitrothion, under a selection of different plastic films commonly used in agriculture. Three different grades of polyethylene film were used: ‘standard’, ‘transparent’ and ‘opaque’. The transmittance of light wavelengths in the UV region (290–400 nm), measured with a spectroradiometer, was found to decrease in the order of transparent > standard > opaque. Fenitrothion, an organophosphorothioate insecticide possesses molar absorptivity in the solar wavelength range of 290–400 nm. Aqueous first order degradation rate constants for fenitrothion determined over a 12 h period were found to be considerably less for those experiments conducted under the standard and opaque plastic films, compared to the transparent film and no-film control. The experiments were conducted in an Atlas Suntest solar simulator using a UV-filtered Xenon arc lamp to simulate sunlight. The first order half-life for fenitrothion was 100 and 250 h under the standard and opaque films, respectively, compared to 10 h for the transparent film and no-film experiments. Our results suggest that pesticide longevity could be greatly extended within these plastic micro-environments, especially for those chemicals which may degrade/transform via photolytic or photochemical pathways.

Related activities