12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The development of a Wireless Sensor Network se...
View graph of relations

« Back

The development of a Wireless Sensor Network sensing node utilising adaptive self-diagnostics.

Research output: Contribution to conferenceConference paper

Published

Publication date2007
Original languageEnglish

Conference

ConferenceProc. IWSOS 2007
Period1/01/00 → …

Abstract

In Wireless Sensor Network (WSN) applications, sensor nodes are often deployed in harsh environments. Routine maintenance, fault detection and correction is dicult, infrequent and expensive. Further-more, for long-term deployments in excess of a year, a node's limited power supply tightly constrains the amount of processing power and long-range communication available. In order to support the long-term autonomous behaviour of a WSN system, a self-diagnostic algorithm implemented on the sensor nodes is needed for sensor fault detection. This algorithm has to be robust, so that sensors are not misdiagnosed as faulty to ensure that data loss is kept to a minimum, and it has to be light-weight, so that it can run continuously on a low power microprocessor for the full deployment period. Addition-ally, it has to be self-adapative so that any long-term degradation ofsensors is monitored and the self-diagnostic algorithm can continuously revise its own rules to accomodate for this degradation. This paper de-scribes the development, testing and implementation of a heuristically determined, robust, self-diagnostic algorithm that achieves these goals.