We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The extractability and mineralisation of cyperm...
View graph of relations

Text available via DOI:

« Back

The extractability and mineralisation of cypermethrin aged in four UK soils

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>1/01/2011
Number of pages6
<mark>Original language</mark>English


Cypermethrin is a widely used insecticide that has caused concern due to its toxicity in the aquatic environment. As with all land applied pesticides, the most significant source of water pollution is from the soil, either due to leaching or washoff. The behaviour of cypermethrin in the soil controls the likelihood of future pollution incidents, with two of the most significant processes being the formation of bound residues and microbial degradation. The formation of bound residues and mineralisation was measured in four organically managed soils from the UK. The formation of bound residues was measured using three different extraction solutions, 0.01 M CaCl(2). 0.05 M HPCD and acetonitrile. Biodegradation was assessed by measurement of mineralisation of cypermethrin to CO(2). The formation of bound residues varied according to extraction method, soil type and length of ageing. In two of the four soils studied, acetonitrile extractability decreased from 100% initially to 12-14% following 100 d ageing. The extent of mineralisation increased after 10-21 d ageing, reaching 33% of remaining activity in one soil, however following 100 d ageing the extent of mineralisation was significantly reduced in three out of the four soils. As with the formation of bound residues, mineralisation was impacted by soil type and length of ageing. (C) 2010 Elsevier Ltd. All rights reserved.