Home > Research > Publications & Outputs > The slice method for G-torsors

Links

Text available via DOI:

View graph of relations

The slice method for G-torsors

Research output: Contribution to journalJournal article

E-pub ahead of print
<mark>Journal publication date</mark>7/11/2017
<mark>Journal</mark>Advances in Mathematics
Volume320
Number of pages32
Pages (from-to)329-360
<mark>State</mark>E-pub ahead of print
Early online date11/09/17
<mark>Original language</mark>English

Abstract

The notion of a (G,N)(G,N)-slice of a G-variety was introduced by P.I. Katsylo in the early 80's for an algebraically closed base field of characteristic 0. Slices (also known under the name of relative sections) have ever since provided a fundamental tool in invariant theory, allowing reduction of rational or regular invariants of an algebraic group G to invariants of a “simpler” group. We refine this notion for a G-scheme over an arbitrary field, and use it to get reduction of structure group results for G -torsors. Namely we show that any (G,N)(G,N)-slice of a versal G -scheme gives surjective maps H1(L,N)→H1(L,G)H1(L,N)→H1(L,G) in fppf-cohomology for infinite fields L containing F. We show that every stabilizer in general position H for a geometrically irreducible G-variety V gives rise to a (G,NG(H))(G,NG(H))-slice in our sense. The combination of these two results is applied in particular to obtain a striking new upper bound on the essential dimension of the simply connected split algebraic group of type E7E7.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Advances in Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Advances in Mathematics, 320, 2017 DOI: 10.1016/j.aim.2017.08.042