Home > Research > Publications & Outputs > The structural evolution of InN nanorods to mic...

Associated organisational unit

Electronic data

  • Structural evolution of InN nanorods

    Rights statement: Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI

    Final published version, 1 MB, PDF-document

    Available under license: CC BY

Links

Text available via DOI:

View graph of relations

The structural evolution of InN nanorods to microstructures on Si (111) by molecular beam epitaxy

Research output: Contribution to journalJournal article

Published
Article number085010
<mark>Journal publication date</mark>08/2014
<mark>Journal</mark>Semiconductor Science and Technology
Issue number8
Volume29
Number of pages7
Publication statusPublished
Early online date24/06/14
Original languageEnglish

Abstract

We report the catalyst free growth of wurtzite InN nanorods (NRs) and microislands on bare Si(111) by plasma-assisted molecular beam epitaxy at various temperatures. The morphological evolution from NRs to three dimensional (3D) islands as a function of growth temperature is investigated. A combination of tapered, non-tapered, and pyramidal InN NRs are observed at 490 °C, whereas the InN evolves to faceted microislands with an increase in growth temperature
to 540 °C and further developed to indented and smooth hemispherical structures at extremely high temperatures (630 °C). The evolution from NRs to microislands with increase in growth temperature is attributed to the lowering of the surface free energy of the growing crystals with disproportionate growth velocities along different growth fronts. The preferential adsorption of In atoms on the (0001) c-plane and (10-10) m-plane promotes the growth of NRs at relatively low growth temperature and 3D microislands at higher temperatures. The growth rate imbalance along different planes facilitates the development of facets on 3D microislands. A strong correlation between the morphological and structural properties of the 3D films is established. XRD studies reveal that the NRs and the faceted microislands are crystalline, whereas the hemispherical microislands grown at extremely high growth temperature contain In adlayers.
Finally, photoluminescent emissions were observed at ∼0.75 eV from the InN NRs.

Bibliographic note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI