We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The time to extinction for an SIS-household-epi...
View graph of relations

« Back

The time to extinction for an SIS-household-epidemic model

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>12/2010
<mark>Journal</mark>Journal of Mathematical Biology
Number of pages17
<mark>Original language</mark>English


We analyse a Markovian SIS epidemic amongst a finite population partitioned into households. Since the population is finite, the epidemic will eventually go extinct, i.e., have no more infectives in the population. We study the effects of population size and within household transmission upon the time to extinction. This is done through two approximations. The first approximation is suitable for all levels of within household transmission and is based upon an Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an endemic level relying on a large population. The second approximation is suitable for high levels of within household transmission and approximates the number of infectious households by a simple homogeneously mixing SIS model with the households replaced by individuals. The analysis, supported by a simulation study, shows that the mean time to extinction is minimized by moderate levels of within household transmission.