We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Theory of electron trapping by micropores in ti...
View graph of relations

« Back

Theory of electron trapping by micropores in tight-binding solids

Research output: Contribution to journalLetter


<mark>Journal publication date</mark>10/10/1986
<mark>Journal</mark>Journal of Physics C: Solid State Physics
Number of pages7
<mark>Original language</mark>English


The authors develop a theoretical description of the trapping of electrons by voids in a tight-binding solid. A new microscopic model is introduced in which the internal pore surfaces are parametrised by dimensionless ratios R and eta . Critical values Rc and eta c of these ratios exist at which the fraction f of bound states at the pores vanishes. For a small pore embedded in a finite solid, numerical results for the bound state energies and their degree of localisation are presented. For larger pores in an infinite solid analytic results are obtained. On the basis of these results, the authors examine the possibility that field-dependent losses found experimentally in RF sputtered semiconductors are due to the trapping of electrons by voids and suggest that the field effect arises through transitions between bound pore states and nearby localised states.