12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Turbulence and stratification in Priest Pot, a ...
View graph of relations

« Back

Turbulence and stratification in Priest Pot, a productive pond in a sheltered environment.

Research output: Contribution to journalJournal article

Published

Journal publication date7/07/2007
JournalLimnology
Journal number2
Volume8
Number of pages8
Pages113-120
Original languageEnglish

Abstract

Priest Pot is an example of the abundant ponds which, collectively, contribute crucially to species diversity. Despite extensive biological study, little has been reported about the physical framework which supports its ecological richness. This paper elucidates the physical character of Priest Pot�s water column and thus that of similar waterbodies. Vertical thermal microstructure profiles were recorded during summer 2003, and analysed alongside concurrent meteorological data. During summer stratification, the thermal structure appeared to be dominated by surface heat fluxes. Surface wind stress, limited by sheltering vegetation, caused turbulent overturns once a surface mixed layer was present, but appeared to contribute little to setting up the thermal structure. Variations in full-depth mean stratification occurred pre-dominantly over seasonal and ~5-day time scales, the passage of atmospheric pressure systems being posited as the cause of the latter. In the uppermost ~0.5 m, where the stratification varied at sub-daily time scales, turbulence was active (sensu Ivey and Imberger, 1991) when this layer was mixed, with dissipation values � ~ 10-8 m2s-3 and vertical diffusivity KZ = 10-4-10-6 m2s-1. Where the water column was stratified, turbulence was strongly damped by both buoyancy and viscosity and KZ was an order of magnitude smaller. Vertical transport in the mixed layer occurred via many small overturns (Thorpe scale rms and maximum values typically 0.02m and 0.10m respectively) and seston were fully mixed through the water column.

Bibliographic note

The original publication is available at www.springerlink.com