Home > Research > Publications & Outputs > Two-dimensional 1H and 1H-detected NMR study of...

Associated organisational unit

Electronic data

  • 1-s2.0-S0926204018300134-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Solid State Nuclear Magnetic Resonance. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Solid State Nuclear Magnetic Resonance, 92, 2018 DOI: 10.1016/j.ssnmr.2018.03.003

    Accepted author manuscript, 5.21 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Two-dimensional 1H and 1H-detected NMR study of a heterogeneous biocatalyst using fast MAS at high magnetic fields

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>08/2018
<mark>Journal</mark>Solid State Nuclear Magnetic Resonance
Volume92
Number of pages5
Pages (from-to)7-11
Publication statusPublished
Early online date14/03/18
Original languageEnglish

Abstract

Abstract Nuclear magnetic resonance (NMR) is a powerful tool for investigating atomic-scale structure in heterogeneous or composite materials where long-range order is absent. In this work solid-state 1H and 1H-detected NMR experiments were performed with fast magic angle spinning (νR = 75 kHz) and at high magnetic fields (B0 = 20 T) and used to gain structural insight into a heterogeneous biocatalyst consisting of an enzyme, human carbonic anhydrase II (hCA II), covalently immobilized on epoxy-functionalized silica. Two-dimensional 1H-1H NOESY-type correlation experiments were able to provide information on 1H environments in silica, epoxy-silica and the immobilized enzyme. Two distinct signals originating from water protons were observed: water associated with the surface of the silica and the water associated with the immobilized enzyme. Additional two-dimensional 1H-1H double–single quantum (DQ-SQ) correlation experiments suggested that the immobilized enzyme is not in close contact with the silica surface. Most significantly, comparison of two-dimensional 1H-15N spectra of the immobilized enzyme and the solution-state enzyme confirmed that the structural integrity of the protein is well preserved upon covalent immobilization.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Solid State Nuclear Magnetic Resonance. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Solid State Nuclear Magnetic Resonance, 92, 2018 DOI: 10.1016/j.ssnmr.2018.03.003