Home > Research > Publications & Outputs > Use of acoustic emission to identify novel cand...

Links

Text available via DOI:

View graph of relations

Use of acoustic emission to identify novel candidate biomarkers for knee osteoarthritis (OA)

Research output: Contribution to journalJournal article

Published
Article numbere0223711
<mark>Journal publication date</mark>16/10/2019
<mark>Journal</mark>PLoS ONE
Issue number10
Volume14
Number of pages15
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Our objective was to determine the efficacy and feasibility of a new approach for identifying candidate biomarkers for knee osteoarthritis (OA), based on selecting promising candidates from a range of high-frequency acoustic emission (AE) measurements generated during weight-bearing knee movement. Candidate AE biomarkers identified by this approach could then be validated in larger studies for use in future clinical trials and stratified medicine applications for this common health condition. A population cohort of participants with knee pain and a Kellgren-Lawrence (KL) score between 1-4 were recruited from local NHS primary and secondary care sites. Focusing on participants’ self-identified worse knee, and using our established movement protocol, sources of variation in AE measurement and associations of AE markers with other markers were explored. Using this approach we identified 4 initial candidate AE biomarkers, of which “number of hits” showed the best reproducibility, in terms of within-session, day to day, week to week, between-practitioner, and between-machine variation, at 2 different machine upper frequency settings. “Number of hits” was higher in knees with KL scores of 2 than in KL1, and also showed significant associations with pain in the contralateral knee, and with body weight. “Hits” occurred predominantly in 2 of 4 defined movement quadrants. The protocol was feasible and acceptable to all participants and professionals involved. This study demonstrates how AE measurement during simple sit-stand-sit movements can be used to generate novel candidate knee OA biomarkers. AE measurements probably reflect a composite of structural changes and joint loading factors. Refinement of the method and increasing understanding of factors contributing to AE will enable this approach to be used to generate further candidate biomarkers for validation and potential use in clinical trials.