Home > Research > Publications & Outputs > Using a chemical genetics approach to dissect t...

Electronic data

  • 2018gentphd

    Final published version, 3.17 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Text available via DOI:

View graph of relations

Using a chemical genetics approach to dissect the nitrogen signalling pathway in Arabidopsis

Research output: ThesisDoctoral Thesis

Published

Standard

Using a chemical genetics approach to dissect the nitrogen signalling pathway in Arabidopsis. / Gent, Lucas.
Lancaster University, 2018. 160 p.

Research output: ThesisDoctoral Thesis

Harvard

APA

Vancouver

Gent L. Using a chemical genetics approach to dissect the nitrogen signalling pathway in Arabidopsis. Lancaster University, 2018. 160 p. doi: 10.17635/lancaster/thesis/268

Author

Bibtex

@phdthesis{3de084735cc3444c81cbeb6b07663958,
title = "Using a chemical genetics approach to dissect the nitrogen signalling pathway in Arabidopsis",
abstract = "Nitrate is an important nutrient and signalling molecule to plants. As it is taken up and assimilated, reduced forms of N accumulate and the expression of many genes associated with nitrate assimilation are repressed. Little is known about the mechanisms involved in this N repression. This project, for the first time, adopts a chemical genetics approach to investigate the feedback regulatory pathway that links the plant{\textquoteright}s N status to expression of the NRT2.1 nitrate transporter gene. A novel chemical screening platform was developed that was designed to be used in conjunction with Arabidopsis lines expressing luciferase reporter genes in roots. This semi-hydroponic platform allows roots to be exposed to a variety of nutrient treatments in a 96-well plate format suitable for chemical genetic screens. This was combined with a newly developed {\textquoteleft}ice capture{\textquoteright} method that provided a rapid and efficient way to harvest root material for the luciferase assay. Using this screening platform in conjunction with a nitrate-inducible luciferase reporter line, pNRT2.1::LUC, three chemical libraries, containing 7420 bioactive molecules were screened in duplicate for compounds that antagonise N repression of luminescence. The screen identified a plant-derived alkaloid, camptothecin, that enhanced pNRT2.1::LUC expression under N-repressive conditions. The positive effect of camptothecin on expression of the endogenous NRT2.1 gene was confirmed using real-time PCR and shown to extend to other N-repressed genes of the nitrate assimilatory pathway. Camptothecin is known to target topoisomerase I, an enzyme that is increasingly being linked to a role in chromatin re-modelling, in addition to its more familiar roles in DNA replication and repair. The possible epigenetic role of topoisomerase I in repression of NRT2.1 and other genes of the nitrate assimilatory pathway is discussed. It was also observed that an arginine treatment strongly stimulated pNRT2.1::LUC in the luciferase assay, in a nitrate-dependent manner. Since this effect was not observed at the mRNA level, it is hypothesised that arginine was acting on pNRT2.1 expression at a post-transcriptional level.",
keywords = "chemical genetic, Arabidopsis, nitrogen signalling, nrt2.1, nitrogen",
author = "Lucas Gent",
year = "2018",
doi = "10.17635/lancaster/thesis/268",
language = "English",
publisher = "Lancaster University",
school = "Lancaster University",

}

RIS

TY - BOOK

T1 - Using a chemical genetics approach to dissect the nitrogen signalling pathway in Arabidopsis

AU - Gent, Lucas

PY - 2018

Y1 - 2018

N2 - Nitrate is an important nutrient and signalling molecule to plants. As it is taken up and assimilated, reduced forms of N accumulate and the expression of many genes associated with nitrate assimilation are repressed. Little is known about the mechanisms involved in this N repression. This project, for the first time, adopts a chemical genetics approach to investigate the feedback regulatory pathway that links the plant’s N status to expression of the NRT2.1 nitrate transporter gene. A novel chemical screening platform was developed that was designed to be used in conjunction with Arabidopsis lines expressing luciferase reporter genes in roots. This semi-hydroponic platform allows roots to be exposed to a variety of nutrient treatments in a 96-well plate format suitable for chemical genetic screens. This was combined with a newly developed ‘ice capture’ method that provided a rapid and efficient way to harvest root material for the luciferase assay. Using this screening platform in conjunction with a nitrate-inducible luciferase reporter line, pNRT2.1::LUC, three chemical libraries, containing 7420 bioactive molecules were screened in duplicate for compounds that antagonise N repression of luminescence. The screen identified a plant-derived alkaloid, camptothecin, that enhanced pNRT2.1::LUC expression under N-repressive conditions. The positive effect of camptothecin on expression of the endogenous NRT2.1 gene was confirmed using real-time PCR and shown to extend to other N-repressed genes of the nitrate assimilatory pathway. Camptothecin is known to target topoisomerase I, an enzyme that is increasingly being linked to a role in chromatin re-modelling, in addition to its more familiar roles in DNA replication and repair. The possible epigenetic role of topoisomerase I in repression of NRT2.1 and other genes of the nitrate assimilatory pathway is discussed. It was also observed that an arginine treatment strongly stimulated pNRT2.1::LUC in the luciferase assay, in a nitrate-dependent manner. Since this effect was not observed at the mRNA level, it is hypothesised that arginine was acting on pNRT2.1 expression at a post-transcriptional level.

AB - Nitrate is an important nutrient and signalling molecule to plants. As it is taken up and assimilated, reduced forms of N accumulate and the expression of many genes associated with nitrate assimilation are repressed. Little is known about the mechanisms involved in this N repression. This project, for the first time, adopts a chemical genetics approach to investigate the feedback regulatory pathway that links the plant’s N status to expression of the NRT2.1 nitrate transporter gene. A novel chemical screening platform was developed that was designed to be used in conjunction with Arabidopsis lines expressing luciferase reporter genes in roots. This semi-hydroponic platform allows roots to be exposed to a variety of nutrient treatments in a 96-well plate format suitable for chemical genetic screens. This was combined with a newly developed ‘ice capture’ method that provided a rapid and efficient way to harvest root material for the luciferase assay. Using this screening platform in conjunction with a nitrate-inducible luciferase reporter line, pNRT2.1::LUC, three chemical libraries, containing 7420 bioactive molecules were screened in duplicate for compounds that antagonise N repression of luminescence. The screen identified a plant-derived alkaloid, camptothecin, that enhanced pNRT2.1::LUC expression under N-repressive conditions. The positive effect of camptothecin on expression of the endogenous NRT2.1 gene was confirmed using real-time PCR and shown to extend to other N-repressed genes of the nitrate assimilatory pathway. Camptothecin is known to target topoisomerase I, an enzyme that is increasingly being linked to a role in chromatin re-modelling, in addition to its more familiar roles in DNA replication and repair. The possible epigenetic role of topoisomerase I in repression of NRT2.1 and other genes of the nitrate assimilatory pathway is discussed. It was also observed that an arginine treatment strongly stimulated pNRT2.1::LUC in the luciferase assay, in a nitrate-dependent manner. Since this effect was not observed at the mRNA level, it is hypothesised that arginine was acting on pNRT2.1 expression at a post-transcriptional level.

KW - chemical genetic

KW - Arabidopsis

KW - nitrogen signalling

KW - nrt2.1

KW - nitrogen

U2 - 10.17635/lancaster/thesis/268

DO - 10.17635/lancaster/thesis/268

M3 - Doctoral Thesis

PB - Lancaster University

ER -