Home > Research > Publications & Outputs > Using DSML for Handling Multi-tenant Evolution ...

Electronic data

  • main

    Rights statement: ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 706 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Using DSML for Handling Multi-tenant Evolution in Cloud Applications

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paper

Published
NullPointerException

Abstract

Multi-tenancy is sharing a single application's resources to serve more than a single group of users (i.e. tenant). Cloud application providers are encouraged to adopt multi-tenancy as it facilitates increased resource utilization and ease of maintenance, translating into lower operational and energy costs. However, introducing multi-tenancy to a single-tenant application requires significant changes in its structure to ensure tenant isolation, configurability and extensibility. In this paper, we analyse and address the different challenges associated with evolving an application's architecture to a multi-tenant cloud deployment. We focus specifically on multi-tenant data architectures, commonly the prime candidate for consolidation and multi-tenancy. We present a Domain-Specific Modeling language (DSML) to model a multi-tenant data architecture, and automatically generate source code that handles the evolution of the application's data layer. We apply the DSML on a representative case study of a single-tenant application evolving to become a multi-tenant cloud application under two resource sharing scenarios. We evaluate the costs associated with using this DSML against the state of the art and against manual evolution, reporting specifically on the gained benefits in terms of development effort and reliability.

Bibliographic note

©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.