12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Who will follow whom?
View graph of relations

« Back

Who will follow whom?: Exploiting semantics for link prediction in attention-information networks

Research output: Contribution to conferenceConference paper

Published

Publication date11/11/2012
Number of pages16
Pagesn/a
Original languageEnglish

Conference

ConferenceInternational Semantic Web Conference 2012
CountryUnited States
Period11/11/1215/11/12

Abstract

Existing approaches for link prediction, in the domain of network science, exploit a network's topology to predict future connections by assessing existing edges and connections, and inducing links given the presence of mutual nodes. Despite the rise in popularity of Attention-Information Networks (i.e. microblogging platforms) and the production of content within such platforms, no existing work has attempted to exploit the semantics of published content when predicting network links. In this paper we present an approach that fills this gap by a) predicting follower edges within a directed social network by exploiting concept graphs and thereby significantly outperforming a random baseline and models that rely solely on network topology information, and b) assessing the different behaviour that users exhibit when making follower-addition decisions. This latter contribution exposes latent factors within social networks and the existence of a clear need for topical affinity between users for a follow link to be created.