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ABSTRACT

Different than the conventional queueing systems, in spatial queues, servers travel to the customers

and provide service on the scene. This property makes them applicable to emergency response (e.g.

ambulances, police, fire brigades) and on-demand transportation systems (e.g. shuttle bus services,

paratransit, taxis). The difference between the spatial queues and conventional queueing systems

is various types of customers and servers and different service rates for different customer-server

pairs. For the Markovian arrival and service characteristics, one of the methods to find system

performance measures is to model and calculate steady state probability of the Markov chain for

the hypercube queueing model (1).

One of the obstacles on the way to apply hypercube queueing models to real life problems

is the size of the problem; it grows exponentially with the number of servers and a linear system

with exponential number of variables should be solved for each instance. In this research, in order

to increase scalability of the problem, we propose two new models. In addition to that, we modeled

the problem by using Monte Carlo simulation and tested the convergence and stability properties

of the simulation results and compare them with stationary distributions. In the final part, a mixed

integer linear programming formulation is given for optimal server configuration with different

objectives improving different performance measures. As a future work, we are planning to use

the optimal solutions of this formulation to evaluate different dispatching policies.
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INTRODUCTION

Emergency response systems are important for modern societies. They protect public health, pro-

vide assistance and ensure safety. Response areas of ambulances, design of police-beats or loca-

tions of fire brigades are important decisions for these systems. Although the demand rate is low

on average for emergency response systems, the service availability is important when they are

needed. In other words, in addition to adequate coverage, rapid and reliable response times are

also important for emergency response systems.

One of the main issues that emergency response systems should cope with is the level of

congestion in the service requests. Although on average the system utilization is not close to one,

the probabilistic nature of the demand and service times can build congestion. The amount of

congestion is directly related to the number of servers and the budget that is dedicated to these

systems. But the smart strategic decisions have great effect on them as well. This is the reason

we need scientific approaches, which are consistent but also applicable. Clever allocation of the

resources can improve the level of service without increasing the dedicated budgets.

On-demand transportation (also known as demand responsive transport, dial-a-ride tran-

sit) is an advanced, user-oriented form of public transport with flexible routing and scheduling of

vehicles operating in shared-ride mode between pick-up and drop-off locations according to pas-

sengers’ needs. These systems provide service in areas with low passenger demand where regular

bus service is not applicable. Shuttle bus services, paratransit, shared taxis and taxicabs are some

types of on-demand transportation systems.

Although intelligent transportation systems technologies (e.g. signal priority, exclusive

lanes, route guidance information) help on-demand transportation systems to work better, there is

still a need for efficient scheduling and dispatching strategies for these highly variant and congested

systems. For instance, deciding the borders of sub-regions and number of paratransit vehicles

needed in each region, to maximize service rate with limited number of vehicles is an interesting

and important question for these systems.

In this research, we are aiming to find methods that will improve the performance of sys-

tems of servers dealing with stochastic demand (e.g. emergency response systems, on-demand

transportation systems). Specifically in the problems that we are interested in the stochasticity

existing in the time and location of the demand. Although there are several different approaches

to these problems, we are more interested in the spatial queueing models. Because they take the

association between servers into consideration and with this property more close to reality.

Structure of the paper is constructed as follows. The following section gives a brief lit-

erature about the emergency response systems. Next section continues with the definition of one

of the first solution procedures of spatial queues, hypercube queueing model. This is followed

by “Extended Hypercube Queueing Models” section in which we deal with the two new hyper-

cube queueing models that are altered versions of the conventional ones. Next section, namely

“Monte Carlo Sampling”, describes the solution procedure of extended hypercube queueing mod-

els through simulation. In this part both the convergence and stability properties of the simulation

are checked by comparing it with the results estimated from (extended) hypercube queueing mod-

els. In the next part, mixed integer linear programming formulations for different performance

measures are given. The results of these models can be seen as ideal dispatching policies because

of two reasons. The model knows all the future from the beginning and the policy that improves

given performance measure is calculated optimally. Our aim with these models is to find locations

of the servers’ that will improve the system and to evaluate different dispatching policies in the
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future. In the final part of this section, the results for different measures are compared with the re-

sults of the most basic dispatching policy: “assign closest available”. Finally, we present outcomes

of current models and potential future dimensions of the research.

LITERATURE SURVEY

The early models dealing with the location of emergency response systems assume deterministic

demand. They ignored stochastic nature of the problem and dealt on coverage and median models.

Median problems locate the facilities on discrete candidate locations that minimize average

response time or distance. Hakimi (2) proposed p-median problem in which the main aim is to

locate p facilities on a finite set of candidate locations in such a way that minimizes total trans-

portation cost of n customers. Although it is a combinatorial optimization problem, there are some

exact algorithms (3, 4, 5) and heuristic methods (6, 7) as well. Recently Mladenović et al. (8) write

a survey which covers most of the literature on meta-heuristics about this subject.

Coverage models are used to locate limited number of facilities (i.e. emergency response

systems) which maximize total coverage. Toregas et al. (9) proposed the location set covering

problem in which the objective is to cover the entire area within a desired distance by minimum

number of facilities . The maximal covering location problem (MCLP) which is proposed by

Church and ReVelle (10), maximizes coverage within a desired distance S by locating a fixed

number of facilities. In the probabilistic version of this problem, namely maximum availability

location problem (MALP), the maximized value is the regions which are covered with α-reliability

(11). Daskin and Stern (12) altered the MCLP and proposed a model named backup coverage

model that maximizes the number of regions that are covered more than once. Gendreau et al. (13)

modified the backup coverage model with two time limits.

Although the literature mainly covers static and deterministic location models, in recent

models uncertainty is also taken into account. This uncertainty can be either related to planning

future periods (dynamic models) or input model parameters (probabilistic models). Dynamic mod-

els are suitable for models which, are considering the relocation of vehicles. The first article on this

subject is written by Ballou (14) in which the main aim is to relocate a warehouse in such a way

that maximizes the profit in a finite horizon. Scott (15) works with the extension of this problem

with more than one facilities. Schilling (16) extends MCLP with additional time constraint.

For urban problems, it is obvious that probabilistic models are the most suitable ones. For

location and allocation of the emergency response systems and other service on-demand vehicles

(e.g. taxis), it is more convenient to model both the demands and the duration of the time the fa-

cility serving these demands with probabilistic models. In these models, with some probability, it

is always possible to have demand which cannot be intervened by any facility, because of stochas-

ticity in both demand and service times. Manne (17), Daskin (18), ReVelle and Hogan (19) and,

Marianov and ReVelle (11) are some of the important articles written in this literature.

Larson (1) proposed a hypercube queueing model (HQM) which is the first model that

embeds the queueing theory in facility location allocation problems. This model analyzes systems

such as emergency services (e.g. police, fire, ambulance, emergency repair), door-to-door pickup

and delivery services (e.g. mail delivery, solid waste collection), neighborhood service centers (e.g.

outpatient clinics, libraries, social work agencies) and transportation services (e.g. bus and subway

services, taxicab services, dial-a-ride systems) which has response district design and service-to-

customer mode (20). The solution of this model provides state probabilities and associated system

performance measures (e.g. workload, average service rate, loss rate) for given server locations.
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“The HQM is not an optimization model; it is only a descriptive model that permits the analysis of

scenarios” (21). HQM models the current state as a continuous-time Markov process but does not

determine the optimal configuration. Police patrolling (22) and ambulance location (23) are two

applications modeled by HQM. Marianov and ReVelle (11) extended the MALP and developed

queueing maximum availability location problem.

The first model proposed by Larson (1) assumes that the service time is independent of

the locations of the calls for service and the dispatched unit. This argument was supported by the

idea that time spend on the road is negligible compared to service time. This can be a fact for

fire brigades but not for the ambulances and on-demand vehicles. However even with this sim-

plification, as number of servers (n) increases, number of states (2n) grows exponentially. As an

extension, Atkinson et al. (24) assume different service rates for each server in the system with

equal interdistrict or intradistrict responses which increases number of states (3n) significantly.

Recently, Iannoni and Morabito (25) and Iannoni et al. (26) embedded hypercube in a genetic al-

gorithm framework to locate emergency vehicles along a highway. They extend the problem to

enable multiple dispatch (e.g. more than one server can intervene for the same incident). Geroli-

minis et al. integrate the location and distracting decisions in the same optimization and solve the

problem by using steepest descent (27) and genetic algorithms (28).

HYPERCUBE QUEUEING MODELS

The conventional HQM models (1) include hypercube in the name since the transition graph of

the continuous time Markov chain used to model this structure has a hypercube structure when

the number of servers is more than three. State variables contain n binary variables which shows

if server i is available (0) or busy (1). In other words, each state is a number in base 2 and each

digit shows the state of the corresponding server. For each region which is called atom (j) there

exists a priority list of servers. Incidents in each region are served by the available server with the

highest priority for this atom. If there does not exist any available server, either the call is lost (i.e.

call for ambulance is dispatched by a backup) or joins a queue to be served (i.e. taxi customers

are asked to wait until there is one available), depending on the problem assumptions. Service

requests arrive from each atom according to an independent Poisson process with parameter λj .

Larson (1) assumes each server has exponentially distributed equal service rates µi for any region.

The transition graph of HQM with three states for this model can be seen in Figure 1a. Note that, as

the system gets full, in other words more servers get busy, the burden on the free servers increases.

For instance in state “110” all the servers but the first are busy. That is why the next incident in

any region will be served by the first server. This is also the reason of having high transition rate

(λ1 + λ2 + λ3) from state “110” to “111”.

For different rates of inter and intradistrict responses, the size of the model will increase.

In this model we have three different possibilities for each server: available (0), busy with intradis-

trict response (1) and busy with interdistrict response (2) (24). Figure 1b is a transition graph of

an example with two servers. As an example “20”, represents the state where the first server is

available and the second server intervenes an incident outside its own region.

It is good to note here that, the intradistrict server has always priority for the incidents

inside its own region. We can see this in the transition diagram. When the system is empty, if there

is an incident in a region, we cannot assign server from another region. This is also the case for

Larson’s model. However, we should also note here that, this does not prevent having states such

as “22”. Although, practically it is rare for lightly congested systems, it has a positive probability
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in theory.

EXTENDED HYPERCUBE QUEUEING MODELS

In the models proposed by Larson (1) and its counterpart (24) with different inter and intradistrict

service rates, there are 2n and 3n states respectively which makes each limiting probability difficult

to calculate, for even very small cases. For instance, if there are 20 servers, number of states for

2n model is around one million whereas for the 3n case this is more than three billions. In other

words, we need to solve a system of equations with over million unknowns. One of the ways to

get rid of this problem can be looking at the problem in an aggregate level.

In extended HQMs, we alter the conventional model in such a way that more than one

servers can be assigned to each region. We model the problem as a discrete location problem with

queueing characteristics. In this new model, there are I types of servers which we call them bins.

Each server in these bins serves his own customers and the rest with different service rates (µi and

µ′

i). There is only one queue and this queue works in first in first out (FIFO) manner. Each customer

who enters the system or leaves the queue to have service chooses the server which serves him with

the maximum rate (which is given as priority list). We have n servers and our aim is to decide how

many servers should we assign for each bin (ni for ∀i) to optimize the average performance of the

system (e.g. minimize interdistrict response, loss rate and/or maximize average service rate). If the

interarrival time of each customer and service time of each server had deterministic distributions,

this model would be modeled as a simple discrete location allocation problem and could be solved

by a linear programming formulation. However, we are interested in stochastic systems and this

model is more appropriate for the problems with probabilistic demand and service times.

At first glance the proposed model can be seen suboptimal for emergency response sys-

tems because, making responsible regions smaller and assigning one emergency response sys-

tem for each region would give better results. However in the conventional HQM, number of

states increases extremely fast and with this extension, the model can be used to solve real life

instances with good accuracy. Furthermore, for deciding the location and allocation of on-demand

transportation systems, this approach is more convenient. Cities can be partitioned into regions

and number of on-demand vehicles which will optimize the overall system performance can be

assigned to these regions accordingly. Although this model has exponential number of states

((n1 + 1) (n2 + 1) ... (nI + 1)) it is far less than the conventional hypercube models. As an ex-

ample, a system of 3 bins with 9, 6 and 5 servers in each for different inter and intradistrict service

rate case (µi 6= µ′

i for ∀i) number of states is 32340 whereas this number is 420 if we assume equal

service rates for inter and intradistrict responses (µi = µ′

i for ∀i). Please note that for the same

total number of servers, the conventional two models need over million states.

The first extended hypercube queueing model (EHQM) that we are proposing assumes

equal intra and interdistrict service rates. Each number in the state name presents number of busy

servers in this bin. For instance “132” stands for 2, 3 and 1 busy servers in the first, second and

third bins respectively. An EHQM model contains ((n1 + 1) (n2 + 1) ... (nI + 1)) states in which

ni is assigned number of servers in bin i and I is the total number of bins. The transition graph of

an example with three bins which has 3,2 and 1 servers respectively in each bin is shown in Figure

2. Note that this model has 24 states, which is 64 for Larson’s traditional hypercube model. By

using the following transition graph we can write the transition equations for each state and can

calculate steady state probabilities. For instance for the state “012” in which there are 2, 1 and 0



Boyacı, Geroliminis 6

(a)

010

000

011

001

110

100

111

101

λ 2
+
λ 3

λ 3 λ 3

λ 1
+
λ 2

+
λ 3

λ
2

λ
1
+
λ

2

λ
1
+
λ

2
+
λ

3

λ
2

λ1

λ1+λ3

λ1+λ2+λ3

λ1

μ
2

μ
2

μ
2

μ
2

μ1

μ1

μ1

μ1

μ 3 μ 3

μ 3μ 3

Preference List

R1: S1 S2 S3

R2: S2 S3 S1

R3: S3 S1 S2

(b)

11

00 20

02

01

10

21

2212

λ1λ1

μ1' μ1'

λ1

μ1'

μ1 μ1

λ2

μ1

λ2

μ2 λ1

μ2

λ1μ2

μ2'λ2

μ2'λ2

μ2'λ2

Figure 1: (a) Larson (1)’s HQM for three servers with equal inter (µi) and intradistrict (µ′

i) service

rates and, (b) HQM for two servers with different inter (µi) and intradistrict (µ′

i) service rates



Boyacı, Geroliminis 7

busy servers in the first, second and third bins we can write the following transition equation:

P012 (λ1 + λ2 + λ3 + 2µ1 + µ2) = λ1P011 + λ2P002 + 3µ1P013 + 2µ2P022 + µ3P112 (1)
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Figure 2: EHQM for three bins with equal inter and intradistrict service rates (µi)

For different intra and inter-arrival service rates EHQM is not descriptive enough. For this

reason, we are proposing another model (EHQM′) which has more states but differentiates the

intra and interdistrict responses from each other. Note that it is also possible to construct a model

which is more detailed with different service rates for each customer-server pair but this will create

excessive amount of states. That’s why we have only two different service rates for each server,

µi (intradistrict) or µ′

i (interdistrict). In addition to that, in the states, there are two variables for

each server. A variable pair for each server shows the number of intra and interdistrict responses

dispatched by corresponding server separately. Thus, the new model has
∏

i

(

ni + 2

2

)

states where

ni is number of servers assigned to bin i.
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In Figure 3 one can see a transition matrix of an (EHQM′) model which has 2 bins with 2

servers in each. Each row of the state name gives information about one of the bins. For instance

in the state “1110”, both servers in bin one are busy where the left side shows the number of servers

in intradistrict response and the right side shows the number of servers in an interdistrict response.

In bin two (second row), there is one server in intradistrict response and no server in interdistrict

response. This state can also be seen separately with the states connected to it in Figure 4. The

transition equation can be written as:

P11
10
(λ1 + λ2 + µ1 + µ′

1 + µ2) = λ1P01
10
+ λ2P11

00
+ µ′

2P11
11
+ 2µ2P11

20
(2)

MONTE CARLO SAMPLING

Monte Carlo sampling is a class of computational algorithm that utilizes repeated random sampling

to compute the results. In our problem, we plan to apply the algorithm to generate random arrival

samples. Our main aim is to model spatial queueing systems as a mixed integer linear programming

(MILP) formulation. We plan to use the generated arrival samples with deterministic service time

estimation to find where to locate the servers.

Before modeling the spatial queueing systems by using a MILP formulation, we need to be

sure that the properties of the HQM can be represented by Monte Carlo sampling. Note also that the

analytical solution of HQMs (with Markovian equations) represent steady-state conditions, which

might not be the case when demand is time-varying (as in reality). For this purpose, a discrete

time event simulation is created and the results acquired from the simulator are compared with the

results of the HQMs. We compare both convergence and stability properties of the simulation. For

the convergence check, we compared the convergence rate of the simulation to the probabilities

calculated by solving Markov model of the HQM. Similar to that, for the stability performance of

the method, we investigated the probabilities of the simulation after sharp and tense changes. The

experiments give promising results and show that this method is applicable for any HQM. Before

going into details of these experiments, let us start with describing the simulation environment.

In these experiments we tested the 3n and 3n aggregate HQM without queue. The main

difficulty of 3n aggregate models with queue is the computational complexity as (different than 2n

aggregate model) this model with queue has more than one tails. In other words, if we want to

implement a 3n aggregate HQM with queue, our problem size is hardly limited. We plan to deal

with this problem in our future work. In a system without queue, each customer is either served

right after arrival occurs if there is an available server eligible to serve that customer or lost and

left the system without service. The interarrival distribution of each customer type and the service

time distribution of each server for given customer type are predetermined.

We have two events in the system: arrival and departure of a customer. At the beginning of

the simulation we create arrivals for each type of customer. When simulation clock hits an arrival a

new arrival event is created by using the given arrival distribution for the customer type and added

to the event list. If it is served by a server, service time of the customer is also calculated and a

departure event is added to the event list. The pseudocode of the simulation can be seen in Figure

5. ∗̃ is a value generated from the distribution ∗.

The convergence rate of the system is investigated by comparing the simulation results

with the calculated steady state probabilities from the Markov chain of the same HQM model. We

have done the comparisons with plenty of different scenarios and random number seeds. Here we
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input: T (arrival end time), Aj (random variable for interarrival of customer type j),

Sij (random variable for service time of server type i to customer type j),

Pj (priority list of server types for customer j), nj (number of servers of type j)

1. Initialize the event list E = {}, available server list Cj = 0 for ∀j

2. For each j

(a) Generate arrival event e of type j with occurrence time Ãj

(b) Add event e to the event list

3. Repeat while there is an event in the list

(a) Take the earliest event e from the event list with time stamp t and type j

(b) If e is an arrival event

i. Generate arrival event enew of type j with occurrence time t+ Ãj

ii. Add enew to the event list if its occurrence time is less than T

iii. Let i be the server who has the highest priority for customer type j

iv. If i is a number

A. Generate a departure event enew of server type i serving customer type j

with occurrence time t+ S̃ij

B. Decrease nj by 1

v. Else

A. Increase loss customers count by 1

(c) Else (if e is a departure event of server type i serving customer type j )

i. Increase nj by 1

Figure 5: Pseudocode for the discrete event simulation for HQM model without queue
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present the results from three scenarios with different demand intensity. In the first scenario, we

checked the convergence rate on conventional 3n HQM with 8 servers. In the second and third

examples, 3n aggregate models with 4 bins are taken into consideration. The demand is almost

equally distributed in the second scenario. Opposite to that, in the third scenario we simulated an

instance with different demand rates. In order to create heavily (lightly) congested systems, the

demand rates are multiplied (divided) by two.

The convergence graphs for the generated scenarios can be seen in Figure 6a. In these

graphs, the x-axes show number of incidents (arrival or departure) whereas y-axes are the average

absolute difference between steady state probabilities and the probabilities calculated from the

beginning of the simulation. In each scenario we used two different service time distributions:

Markovian and deterministic.

From the convergence graph given in Figure 6a, it is seen that, the convergence rate of

the scenario to the exact solution is quite fast. After 1000 incidents (arrivals and departures are

separate incidents) the difference between exact solution and the simulation solution becomes less

than 2%. One of the other observations from these graphs is the effect of service time distribution

to the system. It can be seen clearly that, the simulations with Markovian and deterministic service

times have almost the same convergence curves to the exact solution. These two findings tell us

that these spatial queueing problems can be modeled as a MILP problems with an incident list of

2000 arrivals and deterministic arrivals (for errors less than 1%). Note that, this behavior is not

specific to the scenarios represented; we observed the same results in almost all of the scenarios

that we have tested.

Besides convergence, stability in rapid changes is also investigated. In all three scenarios,

demand rate of each region is multiplied by 5 between time interval 400 and 410. Different than the

convergence graphs, in stability graphs, x-axes represent the time and the y-axes are the probability

differences between the exact value and the value calculated from the scenario. The stability graphs

for the three cases can be seen in Figure 6b.

Note that the duration of the three peaks in Figure 6b is different. The explanation for

this phenomenon is the following: In order to show all three scenarios in the same graph, we use

simulation clock in x-axes. However convergence rate depends on number of incidents but not the

simulation clock. If we check the peak durations in each graph, we will realize that, half demand

intensity peak is twice as long as the normal demand intensity. This relationship is similar for

normal and double demand intensity comparisons as well. In other words, if we convert the x-axes

into number of iterations all three peaks have equal lengths. An interesting finding is that a large

fluctuation (demand 5 times higher) of the system for a duration of t, is observed approximately

after 3t, which means that these systems return to their steady-state fast.

We can also see from Figure 6b that the convergence of the system to the steady state

probabilities after rapid changes is fast. In other words, simulation reacts the changes in the de-

mand as soon as they occurs but recovers with the same pace; fluctuation in the demand effects the

simulation but compensates this dramatic increase in the demand quite fast as well. This is a ben-

eficiary property of the spatial queueing systems. Because of this property, HQM can be applied

to demands with fluctuations. When a time-dependent smooth demand is applied, an HQM can be

solved at each time step to identify the steady state performance measures, which will be close to

reality as fast convergence shows. Last but not least, in these graphs, it can also be seen that the

deterministic service time assumption gives very close results to the Markovian one, which will

make the solution procedure of the next section much simpler.
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Figure 6: (a) Stability and (b) convergence graphs of the three scenarios (one event is an arrival or departure)
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MIXED INTEGER LINEAR PROGRAMMING FORMULATION

Although, the EHQMs significantly decrease the sizes of the solvable instances once compared

with existing HQMs and make them applicable to larger real life problems, in order to model

fluctuating demand with different distributions than exponential, we propose a MILP formulation.

Advantages of the proposed MILP formulation are (i) it can give faster results for even larger

instances and (ii) dispatching policies can be an endogenous variable of the problem (not the case

in HQM or EHQM). Besides, with the model we propose, we can differentiate the locations of the

incidents inside the regions as well. In other words, we can divide the city into regions with similar

demand profiles and then generate the locations of the incidents inside the regions for any given

distributions. This will help us to model more realistic and applicable results. In other words, we

can use this model to find better server locations that will improve overall system performance.

In addition, the proposed MILP formulation gives an ideal dispatching policy for given

demand profile. It optimizes the dispatching policy for given sequence of demand as it can see the

future knows every incidents in advance. We can either set facility locations or number of facilities

and can compare the results of the model with any dispatching policy results. In other words, we

give all the incidents with their locations and times and the model finds the optimal dispatching

and number of servers in each candidate location. Of course in reality, knowing the exact time

and location of a stochastic incident is impossible but this model can be a good tool to evaluate

different dispatching policies.

We can now define the mathematical model. For given indices, sets and parameters:

i, j : incident indices,

k : candidate location index (k = 0 stands for the dummy server),

s : scenario index,

A : total number of servers,

I : number of incidents in each scenario,

K : number of candidate locations,

S : number of scenarios,

nk : capacity of candidate location k,
S independent demand profiles (scenarios) with K incidents in each are created with their coor-

dinates, xs
j =

(

x
s(1)
j , x

s(2)
j

)

, and time, tsj . Please note that in order to have satisfactory results,

both the number of scenarios and incidents should be adequate. Previous section has created some

intuition towards this direction.

As a second step, the binary parameters, esik and rsijk are calculated for all i, j ∈ I, k ∈ K

and s ∈ S. We can define esik and rsijk as follows:

esik =







1, if any server located in candidate location k is eligible for incident i

in scenario s

0, o/w

rsijk =







1, if any server located in candidate location k becomes available in time

interval
(

tsj−1, t
s
j

)

after serving incident i in scenario s

0, o/w
Note that, rsijk may depend on several different parameters such as speed of the servers, duration

of the service etc. Besides rsijk can be set to 0 if server k is not eligible for incident i (esik = 0) for

example if distance between incident and the candidate location is large. In Figure 7, you can see

how rsijk are calculated on a small example.



Boyacı, Geroliminis 14

1

2

3

4

5

6

7

8

1

2

k

i

server k

incident i

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

9

speed : 1km/min

service duration: 5 min

travel time limit : 10 min

Incident
Time Distance Service Duration Service End Time

(minute) server 1 server 2 server 1 server 2 server 1 server 2

1 17.3 10 4 25 13 42.3 30.3

2 41.2 2 10 9 25 50.2 66.2

3 60.7 5 13 15 31 75.7 91.7

4 84.0 8 8 21 21 105.0 105.0

5 101.7 8 4 21 13 122.7 114.7

6 130.9 2 6 9 17 139.9 147.9

7 146.5 3 11 11 27 157.5 173.5

8 187.9 7 7 19 19 206.9 206.9

9 203.6 4 6 13 17 216.6 220.6

t = 17.3

x = (2,10)

t = 41.2

x = (10,4)

t = 60.7

x = (11,2)

t = 84.0

x = (10,10)

t = 101.7

x = (2,6)

t = 130.9

x = (7,5)

t = 146.5

x = (8,1)

t = 187.9

x = (3,2)
t = ∞

d11

d12

d21

d22

d31 d41

d42

d51

d52

d61

d62

d71 d81

d82

t = 203.6

x = (9,7)

d92

d91

The rsijk that are 1 are (s is omitted since there is only one scenario):

r121, r132, r231, r242, r341, r461, r462, r561, r562, r681, r672, r781, r8∞1, r8∞2, r9∞1, r9∞2.

Figure 7: Example showing the calculation of rsijk
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After the calculation of the parameters rsijk, for decision variables:

nk : (initial) number of assigned servers to candidate location k

asik : number of available servers in candidate location k at time tsi in scenario s

dsik =

{

1, if incident i is served by a server in candidate location k in scenario s

0, o/w

dsi0 =

{

1, if incident i in scenario s is not served

0, o/w
the mathematical model that minimizes number of unserved incidents can be formulated as:

min

S
∑

s=1

I
∑

i=1

dsi0 (3)

s.t.

K
∑

k=1

dsik + dsi0 = 1 ∀ (i, s) (4)

A

K
∑

k=1

dsik ≥
K
∑

k=1

asike
s
ik ∀ (i, s) (5)

asik ≥ dsik ∀ (i, k, s) (6)

asik = as(i−1)k − ds(i−1)k +
i

∑

j=1

(

rsijkd
s
jk

)

∀ (i, k, s) (7)

K
∑

k=1

nk = A (8)

nk ≤ nk ∀k (9)

nk = as1k ∀s (10)

nk ∈ N ∀k (11)

asik ∈ N ∀ (i, k, s) (12)

dsik ∈ {0, 1} ∀ (i, k, s) (13)

dsi0 ∈ {0, 1} ∀ (i, s) . (14)

In the model given above, Objective 3 minimizes the summation of the unserved incidents.

Constraints 4 forces each incident to be served by a real (k = 1, ..., K) or dummy (k = 0) server.

This will help us to penalize lost incidents. With Constraints 5 the model is obliged to assign a

server if there exists at least one eligible server in the system. Constraints 6 check if there is an

available server to be assigned for every incident i in scenario s. Constraints 7 are the general

balance equations for the number of available servers for given incident times. Constraints 8 and 9

limit the number of servers in the whole system and each candidate locations. Constraints 10 are

used to assign the same number of servers at the beginning in different scenarios. The rest of the

constraints (11 - 14) are nonnegativity, integer and/or binary constraints for the decision variables.

For,
αs
ik : service duration if server k serves incident i in scenario s

αs
i0 : : penalty if incident i is not served by any server in scenario s



Boyacı, Geroliminis 16

a mathematical model that minimizes total service time can be formulated as:

min

S
∑

s=1

I
∑

i=1

K
∑

k=0

αs
ikd

s
ik +

S
∑

s=1

I
∑

i=1

αs
0kd

s
0k (15)

s.t. Constraints 4− 14. (16)

We can also model a problem that minimizes number of servers that will serve all the

incidents (zero loss rate). This problem can be formulated as follows:

min

K
∑

k=1

nk (17)

s.t.

K
∑

k=1

dsik = 1 ∀ (i, s) (18)

Constraints 6− 7, 9− 13. (19)

EXPERIMENTAL RESULTS

In this section we evaluate the performance of simulation with the “assign nearest available” policy

by using the MILP formulation. We demonstrate the model for locating repair and tow-away vehi-

cles for public transport in Athens (Greece) surface transportation network. This network contains

around 3000 buses of different size. This system is used by 1.7 million passengers. Although the

whole area is about 650 km2 we deal with the 150 km2 area of the highly populated part which

contains more than 85% of the demand.

In Athens, the buses are handled by city’s bus company (ETHEL) whereas the Athens

Public Transportation Organization (OASA) is responsible for planning and managing the bus

system. In Figure 8a you can see incident percentages that are derived from 10-year historical

data and normalized to 10000 per cells that are squares with 0.5 km in each side. In this example,

10 candidate locations for transit mobile repair units (TMRUs) are selected (pointed out with red

circles) and number of TMRUs needed in each candidate location is calculated for given demand

intensity. The reader can refer to Karlaftis et al. (29) for more information about the data.

In the experiments we used four different arrival rates: 0.2, 0.4, 0.8 and 1.6 arrivals per

minute for the whole region. In other words, an arrival is generated with given rates and assigned

one of the regions with the probability proportional to the demands given in Figure 8a. Travel pace

is selected as 0.5 km/minute, maximum travel time limit is 8 minutes and service time on-scene is

set to 10 minutes. In each run, 10 different scenarios are used with 4000 incidents in each as given

in Figure 8a.

Firstly, for each demand rate we find minimum number of servers needed to serve all inci-

dents (17-19). These values can be seen in the first row of Figure 8b. Then, we set total number of

servers to these values and run two models that minimize (i) penalized average service time (15-16)

or (ii) number of unserved incidents (3-14) and find number of servers in each candidate locations.

It is worth to note here that, in both models, we put the other objective as secondary objective to

have inferior results if there is a multiple optima. When average service time is minimized, the
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: 0 0 0 0 0 8 5 5 4 11 11 19 20 20 0 0 8 3 1 0 0 0

: 0 0 0 4 12 13 9 0 0 0 23 19 1 1 0 0 0 3 17 0 0 0

: 0 8 8 2 16 21 11 0 0 0 11 19 0 1 0 0 0 2 9 15 0 0

: 0 11 45 37 24 29 18 15 14 0 2 24 0 1 1 0 2 2 0 15 0 0

0 0 49 142 57 51 34 35 18 17 34 30 0 0 1 0 2 0 15 15 0 0

0 0 4 57 46 40 26 28 28 28 34 7 0 0 0 0 2 0 15 0 0 0

0 0 0 0 0 0 0 0 0 0 0 40 15 20 25 27 27 39 18 9 8 9 0 0 2 0 15 0 8 0

0 0 0 0 0 0 0 0 4 4 4 53 24 14 17 30 51 57 22 17 13 13 21 0 2 14 16 1 8 8

0 0 0 0 0 0 0 0 22 40 72 50 24 9 8 13 50 45 21 31 16 22 13 17 0 16 9 11 10 0

0 0 0 0 0 0 0 0 36 22 71 47 20 20 12 35 54 72 43 24 22 26 9 12 5 24 27 18 0 0

0 0 0 0 0 0 0 39 50 18 35 80 72 13 14 70 47 65 38 11 26 43 18 14 20 33 19 11 0 0

0 0 0 0 22 26 22 38 15 34 25 34 75 72 13 111 114 69 88 89 93 53 14 6 6 17 15 11 8 5

0 0 0 22 22 0 4 32 8 7 18 73 57 106 187 179 92 49 45 58 59 44 45 21 15 46 57 24 41 29

0 5 52 21 24 24 26 50 51 52 67 65 28 20 98 79 47 19 9 22 14 22 40 37 54 19 13 21 12 8

22 26 34 25 30 18 12 14 5 5 17 4 24 25 40 75 79 9 7 20 22 16 20 67 64 15 4 13 8 4

21 13 15 11 14 20 8 0 0 0 4 8 8 11 21 29 87 76 3 2 9 23 9 55 17 8 5 13 0 15

1 1 0 0 0 8 0 0 0 0 0 0 0 11 21 24 40 112 71 59 8 30 43 59 15 15 8 9 16 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 46 50 75 63 50 38 7 5 8 12 17 18 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 37 38 36 59 33 14 5 9 7 10 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 30 24 21 19 11 22 12 37 31 29 3 2

30 km/h

10 min

:

speed

service time on scene

travel time limit

number of scenarios

number of incidents 

in each scenario
4000

8 min

10

50

142

187

72

112

34

57

15

8

52

b

A = 24 A = 31 A = 38 A = 54

λ
minimize minimize minimize minimize minimize minimize minimize minimize

lost incidents service time lost incidents service time lost incidents service time lost incidents service time

M
IL

P

0.2 0% 15.752 0% 15.708 0% 15.702 0% 15.701

0.4 0.05% 15.976 0% 15.750 0% 15.713 0% 15.706

0.8 5.62% 16.840 0.23% 16.196 0% 15.801 0% 15.737

1.2 21.82% 16.582 5.76% 16.821 0.62% 16.098 0% 15.872

S
IM

0.2 0.22% 15.790 0.02% 15.716 0.03% 15.703 0% 15.702

0.4 1.58% 16.105 0.17% 15.807 0.15% 15.723 0.02% 15.706

0.8 12.57% 17.180 3.18% 16.363 1.39% 15.910 0.21% 15.787

1.2 27.93% 18.111 12.84% 17.281 5.92% 16.457 1.25% 16.097

c

A = 24 minimize lost incidents minimize service time

λ
lost customer average penalized average lost customer average penalized average

percentage service time service time percentage service time service time

M
IL

P 0.8 5.62% 17.189 22.066 2.60% 16.840 19.101

1.2 21.82% 16.665 35.724 16.90% 16.582 31.351

S
IM

0.8 12.57% 17.731 28.571 8.38% 17.180 24.452

1.2 27.93% 18.439 42.334 23.15% 18.111 37.996

Figure 8: Demand and potential locations (a) and experimental results (b,c) for central Athens network
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unserved incidents are penalized with four times maximum service time (which is a value very

close to 26 minutes because of travel time limit and service time on-scene). In the second model

total service time is added to the objective function by multiplying it with very small value ǫ.

After finding the number of servers in each candidate location, we fix the number of servers

in each location and run the models with different incident lists to check the performance of optimal

dispatching and “assign nearest available” policies for different demand rates. Here is an example.

For arrival rate λ = 0.2, number of servers needed to serve all customers is 24. We set this as

the total number of servers to the model and find the locations that will minimize (i) penalized

average service time and (ii) number of unserved incidents. Then we fix the number of servers in

each candidate locations (by adding equality constraints to the related model) and find optimal and

“assign nearest available” strategies performance with all arrival rates. In the table given in Figure

8b the average service time and lost customer percent can be seen for both optimal dispatching

(MILP) and “assign nearest available” (simulation) strategies. In Figure 8c the detailed information

for four runs can be seen as well.

As we expect, lost incident percentage increases as demand increases. However, this is not

the case at all in the service time. In the case where number of servers is minimum (A = 24) and

arrival rate is maximum (λ = 1.2), average service time decreases. In fact these two changes are

the reason of the lost incidents. Because, in these cases which can be seen more detailed in Figure

8c, lost customer percentages are more than 16%. As a result, the optimal dispatching algorithm

selects the incidents which are closer. This fact is also supported by the simulation results. In

simulation we do not see such a decrease when arrival rate is increased from 0.8 to 1.2.

One of the other important findings from these experiments is the robustness of two strate-

gies. Obviously, the server configuration that minimizes service time is more robust to demand

changes than the configuration that minimizes number of lost incidents. In other words, as demand

increases, the server locations that minimizes service time for normal demand performs better than

the server locations which minimize lost incidents. This is an important finding because, if we

look for efficient configurations performing well for different demand rates, the latter formulation

should be applied.

CONCLUSIONS

In this paper, we have investigated the location-allocation models with stochastic demand which

are quite applicable to emergency response and on-demand transportation systems. We have started

with two extensions to conventional hypercube queueing models. Extended models are appropriate

to larger real life problems because of the limitations of conventional hypercube queueing models

to deal with larger number of servers. In the section after, we have checked the convergence and

stability properties of Monte Carlo simulation approach. It is seen that discrete time simulation

converges sufficiently fast to the values calculated by hypercube models. Furthermore, we have

also realized that, distribution of the service time has minimal effect on the system. Using deter-

ministic service time does not change much the results. In the mixed integer linear programming

part, we proposed three different models to find number of servers to locate on predefined candi-

date locations. In the experimental results section, we compared the dispatching policy which is

optimal and “assign nearest available”. Experiments showed that, although it is one of the best

strategies, there is a significant gap between optimal dispatching and “assign nearest available”.

But, optimal dispatching strategy is a limit for the other dispatching policies and considers the

events exactly happening in the future, which can not be predicted in real life. However, investi-
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gating this dispatching policy in detailed can help us to find better dispatching policy. This is a

future direction for our work. Besides, it can be used to evaluate performance of other dispatching

policies objectively.

As a future research, we plan to continue in several different dimensions. First of all, one

of the limitations of working with larger problems is the number of variables in the linear program-

ming formulation. In the experiments each instance has 800000 variables in total. However, the

structure of the problem makes it most of the time solvable in reasonable durations. In order to

work with larger problems we plan to implement a column generation procedure. The difficulty

emerging from this implementation is that column generation solves linear relaxation of the prob-

lem. We should find some methods to apply branch and price to our problem. One of the other

dimensions is having a model which has queue capacity different than zero. In this model, we plan

to give some waiting time options to the incidents and penalize the waiting time in the problem.

Although this is not very common in emergency response systems, it is convenient in on-demand

transportation. Using other methods such as robust optimization or stochastic programming is one

of the other plans to realize. Although they will make problems more difficult to solve, these

methods are appropriate for problems with stochastic nature. We can tackle the solution proce-

dure difficulties by implementing a heuristic method instead of solving the implemented models

optimally as well.
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