Intermittent state-space model for demand
forecasting

Ivan Svetunkov and John Boylan
19th IIF Workshop

29th June 2016

ﬁ Lancaster University Lancaster Centre for

& Forecasting
o
LCF

Ivan Svetunkov and John Boylan

Intermittent state-space model for demand forecasting



Introduction

Motivation

Croston (1972) proposes a method for intermittent demand
forecasting, mentioning the model: y, = x¢ - 2

He estimates probability using intervals between demands (q%)
He also assumes that probability is constant between occurrences.

Syntetos and Boylan (2001, 2005) show that the conditional
expectation of Croston’'s method is biased.

They propose an approximation, that corrects the error.
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Introduction

Motivation

Snyder (2002) looks at Croston’s method in details, claiming that
the underlying model is: y, = x; - 2; + €.

This model produces both positive and negative data.

This is a drawback, so Snyder (2002) proposes a modification,
taking exp of non-zero demands.
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Introduction

Motivation

Shenstone and Hyndman (2005) study several additive models,
possibly underlying Croston's method.
They argue that any model underlying Croston’s method must be:

e non-stationary,

e defined on continuous space.

They conclude that the implied model has non-realistic properties.

They support Snyder (2002) approach with exp.
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Introduction

Motivation

Teunter et al. (2011) propose a model taking inventory
obsolescence into account.

The probability of having a demand is decreasing when demand
does not occur.

Simulation is done, but estimation of parameters is skipped.

In the following paper Zied Babai et al. (2014) optimise several
methods, including TSB.

They use MSE calculated as a difference between the estimate and SF2

the actual demand. f’ﬁp
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Introduction

Motivation

Kourentzes (2014) investigates the estimation of Croston, SBA,
TSB.

He discusses several cost functions.

And proposes two new ones, which improves estimation of
methods.

He finds that optimisation of initial states increases forecasting
accuracy.
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Introduction

Motivation, overall

There is no concise model, underlying all the methods.

Because of Shenstone and Hyndman (2005) we believe that it
doesn’t exist.

Intermittent demand methods are disconnected from slow-moving
data methods.

And we still need to make good decisions about replenishment
levels.
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Universal model

Universal model

Very general model:
Yt = OtYt, (1)

where o, ~ Bernoulli(p;) and y; is a statistical model of our choice.
This corresponds to Croston's original idea.

If o, =1, for any t, then this is slow-moving data model.
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Universal model

Additive state-space model (Snyder, 1985)

State-space model:
yr = or(W'vi—1 + €) (2)
vp=Fvg_ 1 +ge

v¢_1 vector of states, w is measurement vector,

F'is transition matrix, g is persistence vector,
€t ~ N(O, 0'2).

Example. iETS(A,N,N) with constant probability:

Yt = Ot(lt—1 + €)
lt = lt—l + ey ’ (3)

where o, ~ Bernoulli(p). &
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Universal model

General state-space (based on Hyndman et al. (2008))

State-space model for any ETS:

yr = op (w(ve—1) + r(ve—1, €))
vy = F(vi—1) + g(vi—1, &) ' (4)

Example. iETS(M,Ad,N) with constant probability:

Yr = or(li—1 + Pbi—1)(1 + &)
Iy = (lt—l + ¢bt_1)(1 + C%Et) , (5)
by = ¢pbi—1(1 + Beyr)

where o; ~ Bernoulli(p), (1 + ¢) ~ log N(0, 0?).
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Universal model

Advantages

What are the advantages of such a model?

e Statistical rationale for intermittent demand;

e Connection between conventional and intermittent models;

e Correct estimation of mean;

e Simpler variance estimation;

e Prediction intervals; =
&.
LCF

Ivan Svetunkov and John Boylan

Intermittent state-space model for demand forecasting



Universal model

Advantages

What else?

e Both additive and multiplicative ETS models;

Any statistical model;

Likelihood function;

Solution to initialisation and optimisation problems;

Model selection. Fd
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Universal model

Disadvantages

What are the disadvantages of such a model?

e May need more observations...
e ...Especially for trend and seasonal models;

e Derivations in some cases may be messy.
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Constant p

iIETS(M,N,N), constant probability

iETS(M,N,N) model has the form:

yr = ogly—1(1 + €) (6)
lt = lt,1(1 + Oé€t) ’

where o, ~ Bernoulli(p).
iETS(M,N,N) underlies SES (Hyndman et al., 2008).
Conditional expectation:

E(yernlt) = pE(eynlt) = pw' F' 1o, = ply.
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Constant p

iIETS(M,N,N), constant probability

Conditional variance:

h—1
V(yernlt) = p(1 = p)If + plio® | 1+ a®(1+0%) ) _(1+a’0?)
j=1

Messy because of the multiplicative error.
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Constant p

iIETS(M,N,N), constant probability

Likelihood can be derived taking probabilities:
2 L1 -
P(ytlot = 1a070 ) =D

202

E\/27r026 !
P(yilor =0,0,0%) =1 —p.

Product of all the zero and non-zero cases is then:

1 1 (1tep)?
L6, o? = — e 202 1—1p). 7
0.0 = [ = 5 [Ja=p). @

ot=1 0+=0
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Constant p

iIETS(M,N,N), constant probability
The concentrated log-likelihood is simple:

0(0,62|y) = —Z (log (2e) + log (& Z log(y:) )
o= 1 8
+Tp log(1l — p) + T1 logp,

where T is number of all observations, Ty is number of zeroes, T}
number of non-zero demands.

The variance of the error estimated using likelihood (8) is:

. 1
0'2 = Tl Z(l+€t>

ot=1
The probability can also be derived from (8): p = % : oLS’ECF
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Constant p

Example. Intermittent demand
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Constant p

Example. Probabilities

Constant probability
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Constant p

Simple iETS. Sub-conclusion

e Pretty easy statistical model,

e Multiplicative ETS is possible and makes more sense than
additive;

e But probability is currently constant;
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IETS(M,N,N),

time varying probability,
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Croston's iETS(M,N,N)

ETS(M,N,N) + compound Bernoulli distribution:
ot ~ Bernoulli(p;), where p, = ﬁqt,
g are intervals between demands. If ¢; = 0, then p; = 1.

Assumption: Probability changes only when demand occurs.

State-space model for probabilities:

g =lgi—1(1+ &) 9)
lq,t = lq,tfl(l + 58,5)’

where (1 +&;) ~ logN(0,07)
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Croston’s iETS(M,N,N)

Overall iETS(M,N,N) Croston style is:

yi = ogli—1(1 + €)
lt = lt,1(1 + aet)

g = lgi—1(1+¢)
lqﬂg = lq,t—l(l + 52’:}) (10)

(1+ €) ~ logN(0, 0%)
ot ~ Bernoulli( Jiq )
(1+¢¢) ~1logN(0,07).
Now it becomes a bit more complicated... f”cp
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Croston

Croston’s iETS(M,N,N)

Conditional expectation:

1
E t)y=ULF( ——|1t).
(Yt+nlt) t (1+Qt+h >
Not yet simplified:
1

t>.

E(yinlt) = LE ( _
L+ lgs H?=11(1 + 0et45) (1 + €t4n)

We feel that this should be close to SBA.
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Croston

Croston's iETS(M,N,N)

Variance is currently mind blowing...

But it should be based on the variance of o;:
=pe(1 —py)

Meaning that the conditional variance of y;1, is:

Viwanlt) = E(ﬁ O (1= B (b ]0) 2
+E (i t)l 2(1+a (1+a)z§—f(1+a202)).

os!
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Croston

Croston's iETS(M,N,N)

Likelihood however can be done in two stages
(assuming demand sizes and intervals are independent):

1. Likelihood for intervals;
2. Likelihood for demands.

Both of them are based on lognormal distributions.
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Croston's iETS(M,N,N)

Concentrated log-likelihoods.
For intervals (first stage):

N T
(0,62 q1) = (log (2me) + log (6 Z log(q), (11)

For demands (second stage):

00,6%y,) = (log (2me) + log (& Z log(yt)
o=l (12)
+> log(1—pi) + Z log pr,
0:=0 or=1
o
LCF
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ton

Croston’s iETS(M,N,N). Example

ETS(MNN)
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Croston

Croston’s iETS(M,N,N). Example. Probabilities

Croston probability
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Croston

Croston’s iIETS. Sub-conclusion

There is a statistical model underlying Croston’s method;

Conditional expectation should be closer to SBA,;

Conditional variance can be found analytically;

Probabilities are updated only when demand occurs;

e There are still some problems with derivations.

Ivan Svetunkov and John Boylan

Intermittent state-space model for demand forecasting



IETS(M,N,N),

time varying probability,

TSB



TSB

TSB iETS(M,N,N)

ETS(M,N,N) + compound Bernoulli distribution:
ot ~ Bernoulli(p;), where:

pe=lpi—1(1+&)
’ . 13
lp7t = lp,t—1<1 + 6515) ( )

p¢ can be estimated as naive probability: p; = o;.
We want to have conditional Beta(a, b) distribution.
But this means that p; € (0, 1).

We need boundary values!
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TSB

TSB iETS(M,N,N)

Temporary fix — simple transfer function:

Py = (1—=2Kr)p + K,

where  is some small number. e.g. kK = 1072,
This means that p, € (k,1 — k).

So p} ~ Beta(a,b).
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TSB

TSB iETS(M,N,N)

The fixed TSB iETS(M,N,N) is then:

yr = otli—1(1 + &)
lt = lt_1<1 + O[Et)

P =T,
p;t = lp,tfl(1 + gt) ) (14)
lpt = lpi—1(1 4 6&)

(1+¢) ~ logN(0, 0%)
oy ~ Bernoulli(p;)
p} ~ Beta(a,b)
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TSB

TSB iETS(M,N,N)

Conditional expectation is simpler than in Croston:

lpt-1— K

E t)=1
(Yr+nlt) =1t 11— 9k

Conditional variance is based on Bernoulli py4)¢(1 — pigppe):

lpt—1— Ipt—1—
Vgalt) = et (1= =) 8

h—1
v 262 [ 14 a2(1 4 02)Y (14 a?0?)
j=1
LCF
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TSB

TSB iETS(M,N,N)

Concentrated log-likelihood in two stages.
For the probability (stage 1):

T
By, a,blpr) = (a— 1) log(lpr1(1+&))
. (15)
+(b— 1)2 log(1 — lp—1(1 +&))
~Tlog B(a,b),
For the demand sizes (stage 2):
00,6%y) = —L (log (2me) + log (62)) — ) log(y:)
+Z log(1—=pi) + ) logp:t 1 “‘”g
or=1 LCF
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TSB

TSB iETS(M,N,N). Example
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TSB

TSB iETS(M,N,N). Example. Probabilities

TSB probability
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TSB

TSB iETS. Sub-conclusion

There is a statistical model underlying TSB;

Estimation problem solved;

Works fine even with the proposed approximation;

p¢ is unknown, problem with estimation;

Problem with distribution of py;

Multiplicative damped trend could be more appropriate. g;
LCF

Ivan Svetunkov and John Boylan

Intermittent state-space model for demand forecasting



Real time series example



Example on the real data

58 intermittent time series,
One product, different branches, daily data,
248 observations each, 10 — 103 demand occurrences,

Holdout sample of 20 obs,

iETS using "es” from "smooth” package in R
(https://github.com/config-il/smooth):

» Stable probability,
» Croston's probability,
» TSB probability,

6. Croston’s method and TSB, "tsintermittent” package in R.

AR IR NS
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https://github.com/config-i1/smooth

Example on the real data

Method ‘ sPIS sAPIS ARMSE Complex bias
iETS, stable -609.2 2219.6 1.00 -46.3%
iETS, Croston -442.0 2299.4 0.99 -48.4%
iETS, TSB -538.2  2082.3 0.92 -46.1%
Croston's method | -256.0 2158.9 1.03 -53.2%
TSB method -279.6  2116.2 1.03 -52.8%
Zero forecast -2363.6 2363.6 0.82 99.5%

Table: Intermittent demand data performance.

Ivan Svetunkov and John Boylan

Intermittent state-space model for demand forecasting



Conclusions



Finale

Conclusions

e We proposed a very simple modification, that can be applied
to any model;

e iETS is one of such models;
e Multiplicative models are available now;
e Model selection is also available;

e It can even be done between Stable / Croston / TSB;
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Finale

Conclusions

Conditional expectation can be correctly estimated,;

The same holds for the conditional variance;

Prediction intervals for intermittent data;

Croston and TSB have underlying iETS model;

Estimation problem is now solved for them.
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Finale

Thank you for your attention!

Ivan Svetunkov, John Boylan
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