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Abstract

We present a dataset for Browinian dynamic (BD) sim-
ulation of calcium Ca and sodium Na current J and
occupancy P in dependence on the selectivity filter net
fixed charge @ and bulk ionic concentrations [Ca] and
[Na].

1 Introduction

Biological ion channels are natural nanopores providing
for the fast and highly selective permeation of phys-
iologically important ions (e.g. Nat, KT and Ca?")
through cellular membranes [1-3]. Despite its fun-
damental importance, and notwithstanding enormous
efforts by numerous scientists, the physical origins of
their selectivity still remain unclear. It is known, how-
ever, that the conduction and selectivity properties of
cation channels are defined by the ions’ movements and
interactions inside a short, narrow selectivity filter (SF)
lined by negatively charged amino acid residues that
provide a net fixed charge Qy [1,2].

Conduction and selectivity in calcium/sodium ion
channels have recently been described [4-6] in terms
of ionic Coulomb blockade (ICB) [7,8], a fundamen-
tal electrostatic phenomenon based on charge discrete-
ness, an electrostatic exclusion principle, and single-file
stochastic ion motion through the channel. Earlier,
Von Kitzing had revealed the staircase-like shape of
the occupancy vs site affinity for the charged ion chan-
nel [9] (following discussions and suggestions in [10]),
and comparable low-barrier ion-exchange transitions
had been discovered analytically [11].

Here we present a results of Brownian dynamics
(BD) simulations simulations related to figures in [12]

In what follows g is the permittivity of free space,
e is the proton charge, z is the ionic valence, T the
temperature and kp is Boltzmann’s constant.
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Figure 1: Generic electrostatic model of calcium/sodium ion
channel [5]. The model describes the channel’s selectivity fil-
ter as an axisymmetric, water-filled pore of radius R = 0.3nm
and length L = 1.6 nm through a protein hub embedded in the
cellular membrane. A centrally-placed, uniform, rigid ring of
negative charge Qy is embedded in the wall to represent the
charged residues of real Ca?t /Na¥t channels. We take both the
water and the protein to be homogeneous continua describable
by relative permittivities €, = 80 and &, = 2, respectively, to-
gether with an implicit model of ion hydration whose validity is
discussed elsewhere. The moving monovalent Nat and divalent
Ca2t jons are assumed to obey self-consistently both Poisson’s
electrostatic equation and the Langevin equation of motion.

2 Generic electrostatic model of
Calcium/Sodium ion channel

Figure 1 summarises the generic, self-consistent, elec-
trostatic model of the selectivity filter of a cal-
cium/sodium channel introduced earlier [5]. It con-
sists of a negatively-charged, axisymmetric, water-
filled, cylindrical pore through the protein hub in the
cellular membrane; and, we suppose it to be of radius
R = 0.3nm and length L = 1.6 nm [13], to match the
dimensions of the selectivity filters of Nat /Ca2?* chan-
nels.
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Figure 2: Multi-ion Ca?t conduction/occupancy bands in the
model calcium/sodium channel, showing occupancy shifts with
ionic concentration. [A: ”J_Ca.dat”] Strong multi-ion calcium
conduction bands M,, as established by Brownian dynamics sim-
ulations. The neutralized states Z, providing blockade are in-
terleaved with resonant states M,. [B: ”P_Ca.dat”] The corre-
sponding Coulomb staircase of occupancy P, for different values
of the extracellular calcium concentration [Ca], as marked, con-
sists of steps in occupancy that shift slightly as [Ca] changes.

There is a centrally-placed, uniformly-charged, rigid
ring of negative charge 0 < |Qf/e|] < 10 embedded
in the wall at Rg = R to represent the charged pro-
tein residues of real Ca®* /Na™ channels. The left-hand
bath, modeling the extracellular space, contains non-
zero concentrations of Ca?T and/or Na* ions.

For the Brownian dynamics simulations, we used a
computational domain length of Ly = 10 nm and radius
Ry = 10nm, a grid size of h = 0.05nm. A potential
difference in the range 0 — 25 mV (corresponding to the
depolarized membrane state) was applied between the
left and right domain boundaries. We take both the
water and the protein to be homogeneous continua de-
scribable by relative permittivities €,, = 80 and ¢, = 2,
respectively, together with an implicit model of ion hy-
dration whose validity is discussed elsewhere [5]. These
model parameters are assumed to be appropriate for
the NaChBac channel, both for the wild type and for
its mutants [14].

3 Self-consistent electrostatics-

driven Brownian dynamics

simulations

Electrostatc calculations have been performed with the
use of Finite Volume Poisson Solver [15]. The BD sim-
ulations [5] were based on numerical solution of the
1D over-damped time-discretized Langevin equation
for the i-th ion:

*_ _p. (gg) + V2DE(t)

o (1)

where D is the ionic diffusion coefficient, £(t) is nor-
malized white noise, z is the valence of the ion, and the
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Figure 3: Multi-ion Na® conduction/occupancy bands in the
model calcium/sodium channel, showing occupancy shifts with
ionic concentration. [A:”J_Na.dat”] Weak multi-ion sodium con-
duction bands M, as established by Brownian dynamics simu-
lations. [B: ”P_Na.dat”] The corresponding occupancy P. is an
almost-washed-out Coulomb staircase whose steps shift slightly
as the extracellular sodium concentration [Na] changes.

potential U(x) is given in (kgT'/e) units. Numerical so-
lution of (1) was implemented with the Euler forward
scheme. Poisson’s equation is solved self-consistently
at each simulation step.

We use an ion injection scheme that allows us
to avoid wasteful and heavy-duty simulation of ionic
movements in the bulk liquid. The model includes a
hemisphere of radius R, = R at each entrance rep-
resenting the boundaries between the channel vicinity
and the baths. The arrival rate j,., is connected to
the bulk concentration C' through the Smoluchowski
diffusion rate: ju., = 2nDR,C [16-18].

The motion of each injected ion is simulated in ac-
cordance with (1) until it reaches a domain bound-
ary, where it is assumed to be absorbed. The simula-
tion continues until a chosen simulation time has been
reached. The ionic current J is calculated as the av-
eraged difference between the numbers of similar ions
passing the central cross-section of the channel per sec-
ond in the forward and reverse directions [19].

Quantities measured during the simulations include
the sodium Jy, and calcium Jo, ion currents, the par-
tial ionic occupancy profiles p(z) along x for different
concentrations, and the partial Py, and Pg, occupan-
cies, in each case as functions of the respective concen-
trations of calcium [Ca] or sodium [Na].

The BD simulations of ion current J and occupancy
P were performed separately for CaCly and NaCl so-
lutions, with concentrations [Na,Ca] from 10mM to
160m. The value of Q; was varied within the range
0-10e¢ in order to cover the known mutants of sodium
and calcium channels ( [20]).

4 Model limitations

Of course, our reduced model represents a significant
simplification of the actual electrostatics and dynam-



ics of ions and water molecules within the narrow se-
lectivity filter due to, for example: the application of
continuum electrostatics; the use of the implicit solvent
model; and the assumption of 1D (i.e. single-file) move-
ment of ions inside the selectivity filter. The validity
and range of applicability of this kind of model have
been discussed in detail elsewhere [5,6, 21].

5 BD simulations results

Figure 2 presents the results of Brownian dynamics
simulation of Ca?* conduction and occupancy over an
extended range of Q¢ (0 — 10e). Plot A shows strong
oscillations of the conductance (conduction bands [4]);
Plot B shows the corresponding occupancy P, which
forms a Coulomb staircase, as predicted by the ICB
model [6]. Plot B also reveals concentration-related
shifts of the staircase.

Figure 3 presents a comparable set of Brownian dy-
namics results for the Na™ conduction and occupancy.
Plot A shows weaker conductance oscillations (conduc-
tion bands [4]); Plot B shows the corresponding occu-
pancy P, which forms a partly washed-out Coulomb
staircase, as predicted by the ICB model [6]. Plot B
also shows concentration-related shifts of the staircase.

6 Data files

Data is peresented in simple space-separated ASCII
files for Value-vs-Qy, where Value={J,P}, J is ionic
current and P is the selectivity filter occupancy. First
row defines Q¢ grid in e-units, first column defines con-
centrations [X] grid in mM, where X={Ca, Na}. Values
for current are in ions/s.

”J_Ca.dat” Ca current J vs Qy
"P_Ca.dat” Ca occupancy P vs Q
”J_Na.dat” Na current J vs Q¢

"P_Na.dat” Na occupancy P vs Qy

Conclusions

We presents two datasets with BD simulations for Ca
and Na ions. BD simulations show multi-ion conduc-
tion bands, Coulomb staircase an concentration-related
shifts.
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