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ABSTRACT
The exploitation of Industrial Control Systems (ICSs) has been
described as both easy and impossible, where is the truth? Post-
Stuxnet works have included a plethora of ICS focused cyber secu-
rity research activities, with topics covering device maturity, net-
work protocols, and overall cyber security culture. We often hear
the notion of ICSs being highly vulnerable due to a lack of inbuilt
security mechanisms, considered a low hanging fruit to a variety
of low skilled threat actors. While there is substantial evidence to
support such a notion, when considering targeted attacks on ICS, it
is hard to believe an attacker with limited resources, such as a script
kiddie or hacktivist, using publicly accessible tools and exploits
alone, would have adequate knowledge and resources to achieve
targeted operational process manipulation, while simultaneously
evade detection. Through use of a testbed environment, this paper
provides two practical examples based on a Man-In-The-Middle
scenario, demonstrating the types of information an attacker would
need obtain, collate, and comprehend, in order to begin targeted
process manipulation and detection avoidance. This allows for a
clearer view of associated challenges, and illustrate why targeted
ICS exploitation might not be possible for every malicious actor.
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1 INTRODUCTION
Industrial Control Systems (ICSs) play a crucial role in the moni-
toring, control, and automation of operational processes, some of
which form part of a nations critical infrastructure [7]. Example
industries include water, oil, gas, electricity, and manufacturing.

A variety of works have sought to identify security challenges in
devices [4], network protocols [24], and the overall cyber security
culture [14] of ICSs. Although these works provide a solid founda-
tion for the identification of social and technical challenges within
the context of ICSs, they have also unintentionally contributed to
the notion that ICSs are an easy target for a variety of malicious
actors. While there is truth to this notion, when seeking to develop
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-SPC’17, November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5394-6/17/11. . . $15.00
https://doi.org/10.1145/3140241.3140254

a targeted attack in which one achieves unauthorised, undetected,
physical process manipulation (as opposed to more opportunistic
disruption caused through the use of denial of service (DoS) tools,
for example), the assumed ease of attack can be challenged.

There exists little knowledge with regards to the collection of
required information about a target ICS, its comprehension, and
inclusion within a targeted attack. In this paper we demonstrate
how and where an attacker might obtain the required informa-
tion to achieve a desired level of "process comprehension", a term
we coined to describe the understanding of system characteristics
and components responsible for the safe delivery of service (e.g.
treatment of water). This includes all relevant physical and compu-
tational attributes. In addition, we discuss how inability in obtaining
essential information can become a significant hurdle for attackers.
Through the use of two practical examples, we demonstrate how a
targeted attack on operational processes can be achieved at the net-
work layer, and host layer, further highlighting the aforementioned
complexities.

The practical examples selected for inclusion here, are based on
Man-In-The-Middle (MITM) attack scenario, due to their prevalence
in existing works e.g. [6, 21, 25, 33, 35, 37], with execution typically
achieved on unauthenticated and unencrypted protocols, widely
considered to be an easy task. While engagement with readily avail-
able MITM tools [34] can quickly achieve some results, targeted
manipulation would require broader contextual knowledge. What
system/application is being attacked? How does the system fail?
What components, functions, or variables need to be manipulated
in order to achieve the desired effect? etc. all of which feed into
a requirement for high levels of process comprehension. The dis-
covery of information aiding this process is often referred to as
reconnaissance, and presents the most essential step for successful
attack execution.

Reconnaissance of operational processes and control infrastruc-
ture configuration/design, requires specialised knowledge. More-
over, due to a large number of vendors and the proprietary nature
of individual components, open source tools for data gathering are
not readily available. This knowledge is not easily obtainable from
public sources, and is therefore often accumulated through hands-
on work in real-world facilities. Therefore, this paper provides a
step-by-step example of ICS reconnaissance, required for the suc-
cessful establishment of process comprehension, and execution of
network-based and host-based MITM attacks.

As we can not demonstrate reconnaissance and subsequent at-
tacks on a real-world ICS, we have opted to derive our discussion
and examples from a testbed environment. Therefore, the following
section provides high-level details of the testbed in question.
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1.1 Experimental testbed
ICSs are typically large complex environments. When analysing
a full-scale ICS, it is easy to become overwhelmed with complex
interdependencies and details. In order to provide a meaningful,
yet easy-to-follow discussion around process comprehension, we
have sought the use of a small scale, but realistic testbed environ-
ment [11, 13, 29]. Our testbed is designed to mirror typical archi-
tectures for local and remote monitoring of a physical process. Fur-
thermore, all equipment and applications are selected to represent
typical hardware and software found in real-world utilities. Fig-
ure 1 illustrates the architecture or our testbed. A Siemens TP1500
Human Machine Interface (HMI) is responsible for local process
monitoring and control via a Siemens ET200S programmable Logic
Controller (PLC), whereas a Schneider ClearSCADA Master Termi-
nal/Telemetry Unit (MTU) is responsible for remote process moni-
toring via a Schneider SCADAPack32 Remote Terminal/Telemetry
Unit (RTU). It addition, the MTU communicates with a KepWare
Historian for collection of historical operational data (non-alarm
based). All of which will play a crucial role in the attack design and
execution.

Figure 1: Network diagram of the testbed

Through use of the described testbed, we explore the process of
information gathering required to conduct a targeted attack, includ-
ing associated sources. In defining a selected damage scenario, we
highlight the gaps and challenges of individual data sources, their
unique context specific nuances, and propose alternate sources
where possible. In this way we emulate the task of process compre-
hension, and illustrate how obtained knowledge is used during the
attack phase.

Key differences existing in the targeting of ICSs vs. traditional
IT infrastructures. Therefore, the following section is included to
cover salient points, providing a baseline for further discussion
throughout the remainder of this paper.

2 PRELIMINARIES
The work of Assante and Lee [3] provides a description of the pro-
cess a malicious actor may step through when targeting an opera-
tional facility, referred to as "The Industrial Control System Cyber
Kill Chain". This work discusses the difference between targeting
conventional IT systems vs. ICSs, and acknowledges variations in
attack difficulty dependent upon adversary goals.

While the ICS cyber kill chain offers a high level view, with case
study examples, the large task of "Attack Development and Tuning"
is presented as a single stage, with few details provided on how an
attacker passes from reconnaissance to attack execution. Further-
more, details about specific information an attacker is required to
obtain for attack development, and means of its collection, are also
limited. The methods by which an attacker obtains information
may influence his ability to proceed through the kill chain. As we
demonstrate in subsequent sections, PLC control logic, for exam-
ple, if retrieved directly from the PLC, may not contain sufficient
details to allow for a complete understanding of its function, there-
fore additional information gathering and offline work would be
required.

In traditional IT exploitation, a common goal is to remain unde-
tected. In most ICS scenarios this is not possible. Attacks on ICSs,
often referred to as cyber-physical attacks, alter process physics
in the real-world, which cannot be hidden by simply erasing log
files. If equipment is damaged, or a plant is misbehaving, it will be
noticed and addressed. Unless the attackers intention is to create
instantaneous impact, any targeted attack must induce a "hiding"
element, directed at preventing immediate response (See Figure 2).
Response prevention is achieved by "blinding" an operator and/or
a control system responsible for operational process monitoring
and response, this includes data historians responsible for long-
term storage of process data. Launch of a hiding element must to
be initiated prior to process manipulation. In the context of our
testbed, to hide the effects of a targeted attack, the adversary would
be required to blind the local HMI and remote MTU. With that,
the scope for process comprehension and weaponisation sees a
significant increase.

Figure 2: Constituents of cyber-physical attack

In differentiating attacker requirements between conventional
IT systems and ICSs, questions on how sufficient process com-
prehension can be achieved as an unauthorised person are raised.
At its core, when targeting ICSs, an attacker will ideally have a
fundamental understanding of engineering concepts and practices



applied within the target domain. This will act as a starting point,
with baseline knowledge of the information required to execute a
successful targeted attack.

2.1 Points and Tags
One unique characteristic seen across ICSs is their use of points. A
concept not applied in conventional IT systems, points provide a
key differentiator between these two distinct domains. Points are
responsible for all aspects of an ICS, essentially denoting a data
source or controllable function. Each point is assigned a unique ID
(e.g. I1.1, DB1.DBX1.1, etc.), these can be input channels, memory
locations, etc. on top of which more logical "friendly" names can
be assigned (e.g. "Valve 1"), these are referred to as tags. Points can
be soft or hard. A hard point denotes a physical input or output
to/from sensors and actuators. A soft point denotes results derived
from mathematical calculations and logic actions. From a software
perspective, a tag is considered much the same as a variable name,
typically allocated as per industrial site naming conventions. In
essence, points and their associated tags, link external devices and
process parameters with ICS applications, and can have either Read,
Write, or Read/Write permissions.

Discovering relationships between physical processes, points,
tags, network protocols, monitoring and control functions, etc. is
one of the most time consuming task in achieving adequate levels
of process comprehension. The following section provides example
data sources from our testbed, demonstrating the availability of
information across multiple devices, with no single device providing
a complete picture.

3 DATA SOURCES
In this section we take a selection of operational resources and
discuss the information they can provide towards process compre-
hension. Not all ICS environments will contain certain devices, or
device functionality will be integrated (e.g. RTUs may have the
required computational resource and functionality to act in a dual
capacity, i.e. as an RTU and data historian), this all adds to the chal-
lenge of achieving adequate process comprehension. The included
examples provide a base for further discussion, and a reference
point to Sections 4 and 5.

3.1 PLC Configuration
PLCs provide the computational resource by which physical op-
erational processes can be automated, controlled, and monitored.
Therefore, in the eyes of an attacker, PLCs are an attractive target
for achieving targeted operational process manipulation. While an
attackers end goal will be to understand which points/tags must be
manipulated to achieve the desired outcome, a PLCs configuration
can provide a wealth of additional information, all of which can
be applied during various stages of process comprehension. To aid
further discussion, information which can be obtained through PLC
configuration includes:

• Core design of the operational process
• Operator ability to control (manual vs. automated process
control)

• Use of sensors and actuators
• Addressing schemes and data point structures

• Controller-integrated safety and alert functions
• Network-related information (protocols, interfaces, addresses/IDs
of neighbouring devices, etc.)

Depending upon the source from which an attacker obtains
PLC configuration, and how the PLC has been configured, greatly
impacts the detail of information provided. Taking two examples
from one Siemens ET200S PLC, these differences can be observed.

Figure 3 depicts an example of PLC logic taken from a control
engineer workstation/laptop or backup server. Acquisition of the
control logic file (or project file) can be achieved through the use of
conventional, non-ICS specific, attack tools and techniques. Once
obtained, the use of official vendor software would be the easiest
and most convenient way for an attacker to review such a resource.
As can be seen in Figure 3, the example rung of logic has a title
and accompanying descriptive text, which, among other things,
provides an initial mapping between points and operational pro-
cess components (Valve 2). With this metadata, an attacker can
quickly begin to understand the rung’s purpose. In addition, should
the attacker view the contents of Data Block (DB) 1 (the area of
memory in which the points shown here reside), accompanying
properties of each point could also be provided. These include the
point address (e.g. DB1.DBX10.1), its format (e.g. Boolean, REAL,
etc.), and descriptive text (e.g. "Valve number 2"). In this example,
logical friendly tag names have not been applied to replace point
addressing, if applied, further descriptive text would be available
here.

Figure 3: Commented PLC logic

Figure 4 provides an example of control logic taken directly
from the PLC. Its acquisition could be achieved through the use
of official vendor software, existing public exploits [5], or the de-
velopment of custom tools, possibly making use of ICS specific
programming modules/resources [31]. This example presents the
worst case scenario, when data point addressing is applied directly
within the logic. When no title, descriptive text, friendly tag names,
etc. are provided, it becomes extremely difficult to analyse control
logic without additional information. It is worth noting, that should
friendly tag names have been applied, they can be extract directly
from a Siemens PLC [4].



Figure 4: Un-commented PLC logic

In the analysis of PLC configuration, obtaining a greater level of
process comprehension is made possible, further allowing for the
identification of target points for successful process manipulation.
Where information may be absent, point descriptions for exam-
ple, access to alternate operational resources could prove highly
valuable when examined in collaboration. Collation of data from
historians, HMI/workstations, or wiring/P&ID Diagrams, would
offer some if not all information required to fill gaps.

3.2 HMI/Workstation Configuration
Compact HMIs (HMI panels) and larger scale operator workstations,
offer an interface by which users can monitor and control physical
operational processes. Dependent upon the scale of processes op-
erations, these can range from a single touch screen unit, used a
handful of times a week, to multiple large-scale desktop worksta-
tions, manned 24/7. In the examples provided here, we are explicitly
considering local HMIs/workstations, not those used within remote
management centres as part of RTU/MTU systems.

In the eyes of an attacker, HMIs can be considered both a valuable
target and added complication. Valuable in that their functionality
can be harnessed by an attacker tomanipulate operational processes
as an authorised user would. Typically containing a graphical rep-
resentation of the process architecture, serving as an additional
source of information. However, HMIs also offer a window into at-
tacker efforts (process state), an added complication for the attacker
to address in the form of a hiding element within the attack process.
Information which can be obtained through HMI configuration
includes:

• Operator view into the core operational process
• Operator ability to control (manual vs. automated process
control)

• Operator view of sensors and actuators (including added
scaling)

• Addressing schemes and data point structures
• HMI/controller-integrated safety and alert functions
• Network-related information (including protocols, interfaces,
neighbouring devices, etc.)

As with the PLC control logic, depending upon the source from
which the attacker obtains HMI configuration, and how the HMI has
been configured, greatly impacts the detail of information provided.

Figure 5: HMI GUI

Taking two examples from one Siemens HMI, these differences can
be observed.

Figures 5 and 6 provide examples of HMI configuration taken
from an engineer workstation/laptop or backup server. Acquisition
of which can be achieved through the use of conventional, non-ICS
specific, attack tools and techniques. Once obtained, the use of
official vendor software would be the easiest and most convenient
way for an attacker to review such a resource. This view offers a
very quick and easy way for the attacker to understand not only
how the interface looks like to the operator, but what functionality
it offers. Additional nuances related to information that can be
obtained from HMI configuration is rarely discussed (e.g. scaling of
PLC data), yet can all be seen off-line through this resource. While
the attacker can model process behaviours through a HMIs runtime
or associated network traffic, having the ability to view additional
factors off-line (tag names, applied scaling, etc.) provides a valuable
secondary resource.

Figure 6: View of the control logic tags on the HMI



HMI configuration taken directly from the HMI/workstation, is
likely to be a compiled runtime file, and therefore not an easily
readable/editable configuration file as previously discussed (how-
ever, we acknowledge that some organisations may choose to store
backup configuration files directly on the HMI station). Therefore,
while the information presented in Figure 5 would still be accessi-
ble (via execution of the compiled runtime files in official vendor
software), extraction of additional information would require a
more creative approach. For example, should the attacker load this
runtime file while connected to the operational network, a view
of live operational processes, and associated network traffic could
all be captured and modelled. Alternatively, given adequate time,
an attacker may choose to view the runtime file in a HEX editor,
thus allowing for extraction of the same information found in the
full configuration file. Figure 7 provides an example of this, with
a PLCs IP address details highlighted (one of the PLCs this HMI
communicates with). However decoding all relevant information
would not be a simple task, consuming significant time and effort.

Figure 7: View of HMI configuration file in HEX editor

The application of information discussed here towards achiev-
ing a high level of process comprehension is significant, especially
where an attacker is required to hide his actions from 24/7 moni-
tored operational environments. Furthermore, the use of data as
seen in Figure 6 can be collated with that discussed in Section 3.1 to
close gaps opened through access to control logic acquired directly
from the PLC (i.e. missing friendly tag names, descriptions, and
engineer comments). Should an attacker only have access to run-
time files, the techniques described here can be applied to obtain
more comprehensive configuration details. However, collation of
information from alternate sources, such as the PLC, could also
be used if in a fully documented format (i.e. containing logical tag
names, descriptions, and engineer comments).

3.3 Historian Configuration
Data historians are responsible for the collection of operational data
across an industrial facility, usually via PLCs or RTUs, providing
a centralised point, from which the data can be forwarded to top
end systems (sometimes cloud-based) for data analytic purposes.
While the use of this data is not related to raising operational
alarms, users of the data could challenge data quality should they
feel it exceeds normal limits, therefore acting as an indication of
operational issues.

Information which can be obtained through historian configura-
tion includes:

• Addressing scheme and data point structure
• Data points of importance to decision makers

Figure 8: Historian GUI

Figure 9: Historian configuration file open in text editor

• Network-related information (including protocols, interfaces,
neighbouring devices, etc.)

As with the aforementioned PLC and HMI, historian configura-
tion can be obtained from multiple locations. However unlike these
devices, in the example provided here, there is little difference in
the information available across each location. Our two examples
are based on the Kepware v5 historian software package. As this is
a Windows based application, the use of conventional attack tools
and techniques can be applied in its retrieval. Figure 8 depicts a con-
figuration example taken directly from the historian, and viewed
using the vendors official software. As can be seen in this figure, the
use of official vendor software provides a clean and easy way for
attackers to begin reviewing this resource. Should official software
be unavailable to an attacker, alternate approaches can be adopted.
Figure 9 provides an example of configuration opened in a standard
text editor (Notepad). Although this viewing option is less informa-
tive than that achieved through official vendor software, significant
details on points are still presented. This includes friendly naming
conventions mapped directly to point addressing.

Although less prevalent and detailed in configuration compared
to a HMI, historians can also offer a valuable resource for process
comprehension. While alarm generation is not a common function,
any alarm states will be recorded, ultimately providing a window
into an attackers actions, so must be considered as part of any attack
strategy. Furthermore, the use of information as seen in Figures 8
and 9 can be collated with those discussed in previous sections to
close gaps opened through data accessed directly from a PLC and
HMI (i.e. missing friendly tag names, descriptions, and engineer
comments).

3.4 Network Traffic
Network traffic offers insight into the relationships between compo-
nents across an industrial facility. When seeking to achieve targeted
process manipulation, understanding traffic flows around the net-
work is of significant value, allowing for a better understanding of



Figure 10: Traffic between HMI and PLC

what/how devices are interacting with operational data, beyond
the review of individual device configuration.

Information which can be obtained from the network traffic
includes:

• High-level data flows (e.g. networked systems interactions)
• Granular system-system data requirements (e.g. functional-
ity, protocols, data read/write parameters, etc.)

• Operational process behaviour (e.g. which process data passed
between devices, at which frequency, and under which con-
ditions)

• Numerical process data, status of equipment, alarms, etc.
Figure 10 provides an example of traffic captured between a HMI

and PLC, viewed in the open source packet analyser Wireshark [36].
There are many ways in which data such as this can be captured.
Approaches include compromising network equipment allowing
for direct capture, ARP poisoning, wireless sniffing, etc. Most ap-
proaches can be considered non-ICS specific. However, where we
see an increase in the use of wireless sensor technologies (operating
over less conventional radio frequencies), for example, attackers
may be required to adopt more tailored approaches. Depending on
the protocol in use, viewing traffic captures with packet analysers
as shown here can provide an easy method by which information
extraction can be achieved. In the case of proprietary protocols, an
attacker would be required to develop customised parsers.

Although breaking down a protocol from network traffic can
be achieved through the use of readily-available tools, challenges
arise in the interpretation of extracted information. Collating net-
work traffic and information from any of the previously discussed
sources, would yield a greater depth of detail on operational process
behaviour, significantly contributing to an attackers level of pro-
cess comprehension. In short, reviewing network traffic presents
a detailed map of information flows and data parameters. Should
an attacker be able to establish what each data point within the
network traffic represents (e.g. a specific sensor/actuator), traffic
capture becomes a useful source for comprehensive operational
process behaviour modelling.

3.5 Piping and Instrumentation Diagram
Piping and Instrumentation Diagrams (P&ID) are a valuable source
of information on process design. P&ID presents a schematic illus-
tration of the functional relationship of piping, instrumentation,
and system components used in the operational process. P&ID in-
cludes unique identifiers for core components. In collaboration with

Figure 11: P&ID of the testbed

wiring diagrams, P&ID provide a base-line view of the controllers
(PLC/RTU) monitor and control capability within the operational
processes (i.e. what aspects of the operation process controllers
have visibility and control over through associated sensor and ac-
tuators). Therefore, as an attacker resource the value of accurate
and comprehensive P&IDs is significant.

Information which can be obtained from the P&ID includes:
• Complete design of the operational process
• Detailed list of the operational equipment, its type and sizes
• Mechanical equipment (which is often not included in con-
trol logic)

Figure 11 shows an example P&ID depicting our testbed environ-
ment. The style and notation of P&ID may differ between facilities,
this is due to adherence against differing standards, as well as indi-
vidual facility regulations and engineers personal preferences. As
this data would be stored on a conventional IT based resource (en-
gineer workstation/laptop or backup server), non-ICS specific tools
and techniques would be used in its acquisition. Once obtained,
basic graphics packages can be used to perform a review.

The other related documentation on operational process design
may include One-Line Diagrams (often contain pertinent informa-
tion on safety interlocks), Cause & Effect Diagrams, Cable Schedule
Diagrams, Project Interconnection Diagrams, and Instrument I/O
(input/output) Lists. While the use of this information in attack
planning is clear, two points are of particular importance. Firstly,
when collated with information derived from a PLC’s configuration,
gaps resulting from un-commented configuration can be closed,
allowing an attacker to achieve significant process comprehension,
including the PLC’s role and function. Secondly, any non-controlled
based (mechanical) safeguards can be observed and considered in
the attacks design. Taking an example from Figure 11, we can see
this process employs check valves, physically preventing the flow
of water in certain directions. Therefore, attacker objectives may
need to be adapted accounting for incurred limitations.

3.6 Other (Policies, Procedures, Reporting
Functions, System/Component Constraints,
etc.)

There exist many other sources of useful information. Examples
include operational process policies, procedures, reporting, de-
vice/system constraints, social/organisational structures, etc. some



of which will be available and applicable to members of the public.
Prominently written by technical authors, these documents include
details on how physical processes should be operated and main-
tained. Other examples include reporting procedure (e.g. periodic
physical (non-controller based) checks), guidelines for members of
the public who observe suspicious/dangerous situations in service
delivery (e.g. taste of water) or within operational facilities (e.g.
visibility of smoke/fire inside an operational resource), and tech-
nical specifications of individual components (e.g. for how long a
centrifugal pump can run dry before damage is incurred). Some of
this data is available within the public domain, e.g. manufacture
websites. Other (proprietary) data will be stored on conventional
IT based resources (e.g. engineer workstations/laptops and backup
servers), meaning non-ICS specific techniques can be applied to
their acquisition.

Recent attacks in the Ukraine offer a useful example of how this
type of information can be applied by an attacker. Once success-
ful manipulation of operational processes had been achieved, the
attacker identified reporting services offered to members of the
public. These reporting services were provided in the form of a call
centre able to act on any issues in service delivery. The attacker
caused a DoS to phone lines use by this service, effectively prevent-
ing the public from providing any information which could have
been used to collate control system data with actual impact across
the estate [23].

3.7 Attacker Goal
Through the use of data presented across previous sections, subse-
quent sections will discuss how a targeted process manipulation
attack can be achieved, while simultaneously addressing the chal-
lenge of detection avoidance. The attacker goal is to take water
from Tank 1 (T-1), and move it into Tank 2 (T-2), causing Tank 2
(T-2) to flood (See Figure 11). Although simple in nature, the level
of process comprehension required is still significant. Two exam-
ple attacks are provided to aid this discussion, both with the same
objective, however one will be executed on the network level, the
other on the hardware level.

4 NETWORK BASED MITM ATTACK
This section describes the processes an attacker needs to go through
in order to achieve targeted process manipulation and detection
avoidance in our testbed environment at the network level. Dis-
cussions related to obtaining network access, and evading security
controls (network segregation, firewalls, IDS/IPS, etc.) are out of
scope.

4.1 Network/Device Enumeration
Network and device enumeration presents one of the initial chal-
lenges faced by an attacker. For this task, off the shelf tools such
as NMap[28] offer both ICS and non-ICS specific enumeration ca-
pabilities. In addition, more focused tools can be applied at this
stage, e.g. PLCScan [30]. In addition to the use of tools to actively
perform device enumeration, the use of P&ID, network diagrams,
wiring diagram, PLC configuration, HMI configuration, historian
configuration, etc. could all offer insight into devices operating on
the IP network, including their associated addresses.

Figure 12: Example of the static EtterCap filter

4.2 MITM Attack on the HMI
Prior to the execution of process manipulation, it is critical to en-
sure any means by which attacker actions can be observed are
considered and addressed. The first and most prevalent device in
this testbed use-case is a local HMI. While the use of existing tools
and attack techniques is somewhat trivial, applying them to spe-
cific operational processes is not. To execute an effective MITM
attack on the HMI, there exist a set of prerequisites. Establishing
the level of operational process visibility (process measurements,
equipment status, alarms, etc.) in parallel to control functions (e.g.
start/stop pumps) available to operators is critical. Detailed knowl-
edge of process visibility on the HMI is key, as it provides a starting
point on which one can design a MITM attack. Specifically, which
monitoring data points offer a window into attacker actions, and
therefore must be substituted with the spoofed values, depicting
"normal" operational behaviour. This information can be captured
through access to the HMI configuration. Once understood, obtain-
ing access to live operational data feeding the HMI is required to
build a picture of normal process values, and in the case of our
testbed, understand the sequence by which data is requested by the
HMI from the PLC (see Figure 10).

Access to the operational network will allow an attacker to adopt
several approaches to this task. While we acknowledge there are
examples of capturing network traffic over a period of time and
simply replaying it to the HMI, such an approach lacks intelligence
and if poorly applied could indicate an ongoing attack (e.g. by
replaying responses to operator requests which have not occurred).

Through the use of an Ettercap [9] and an associated filter we
are able to prevent all legitimate traffic from the PLC reaching the
HMI, in its place static values will be sent. This filter will make the
operational process appear static, with the water level in Tank 2
remaining unchanged at what can be considered a normal value
(based on a review of previously acquired network traffic).

Figure 12 provides an example Ettercap filter constructed specif-
ically for our testbed attack scenario. The highlighted code depicts
identification of network traffic parameters specific to the target,
prior to the manipulation of values.

The example provided here is relatively simple. A more sophis-
ticated MITM attack should seek to offer interactive functionality
(i.e. acknowledge user interactions and respond accordingly with
spoofed data). However, as described here, even when creating the
simplest of MITM attacks, significant effort is required to under-
stand what values need be falsified, how they appear within the
protocol, and ensure they do not exceed normal limits.

This same approach can be applied towards the prevention of
historian visibility into attacker actions.



4.3 Replay Attack on the RTU
Through a review of Figure 11 we can see an additional sensor has
been placed on Tank 1, feeding directly into the RTU. It is common
practice to see a single sensor used to feed more than one device, or
to apply duplicate sensors across operational processes. While this
adds a level of resilience, we have seen actions such as these taken
for more practical reasons (i.e. the RTU being unable to extract
data from PLC, thus requiring additional hard wired signals). RTU
configuration can be acquired and analysed in a similar way to that
of the PLC. Hence its exclusion from Section 3. As can be inferred
through a review of our P&ID, the sensor value associated with
Tank 1 provides a direct indication of what is happening in Tank 2.
It is for this reason the RTU must be considered within the attack
scenario. Furthermore, as its core function is to generate alarms
for remote operational process monitoring, data from this sensor
could be used to immediately notify remote operators.

In the context of our testbed, we opted to build a replay attack
script through experimentation with the RTU and official vendor
software. A similar approach was adopted by [4]. This script (see
Figure 13) changes the IP address parameters of the RTU, taking
it offline. However, out of ethical considerations, the payload has
been excluded from our figure, preventing re-use against similar
RTUs.

This attack impacts the RTU’s ability to communicate with the
MTU, and therefore remote operators. This is not as risky as it may
seem at first glance. RTUs may only communicate with central
systems a handful of times a day (unless an alarm is generated re-
quiring immediate attention). In addition to this, it is common to see
communication failures. These could be due to low quality remote
communication mediums, power outages, ageing equipment, etc.
Reviewing resources as described in Section 3.6 can offer further
details on service level agreements, communication windows, etc.
An additional analysis of network traffic would allow the attacker
to map these details to operational data, all aiding the selection
of an optimal attack window for maximum disruption of process
observability.

4.4 Control Request Injection
Once effective blinding of local and remote operators has been
achieved, the attacker can proceedwith execution of our pre-defined
damage scenario (overfilling Tank 2). A comprehensive understand-
ing of not only PLC configuration, but also electrical/mechanical
safeguards, component limitations, etc. are all required at this stage.
Access to the P&ID or HMI configuration would provide a good
start point, offering a baseline understanding of how the process
could be manipulated (i.e. which pumps and valves need to be
run/opened). The P&ID can also provide insight into relevant safe-
guards. A review of PLC configuration is then required to identify
controller based safeguards, and confirm appropriate data points
to modify in order to achieve the desired impact.

The use of programming aids [31] provide a simple way in which
attackers can send requests to the PLC. However, the construction
of those requests must be carefully thought out. Figure 14 provides
an example attack script, creating specially crafted requests using
Snap7 [31]. From a review of the PLC configuration, the attacker
would be able to identify one safety mechanism. Automatic mode

Figure 13: Example of the replay script in Python

must remain disabled, with manual mode enabled, to be able to start
Pump 1 and open Valve 3, resulting in Tank 2 becoming overfilled.
As can be seen in Figure 14, there are three payloads within this
script, each writing values to the different areas of PLC memory,
accounting for these requirements. The highlighted code denotes
information specific to the testbed environment i.e. PLC IP address,
hardware profile, and target data block. Should an operator attempt
to interfere with this attack via the HMI, their requests would be
immediate overwritten by the attack script, as it continues writing
to the PLC until interrupted by the attacker.

Figure 14: Example of the command injection script in
Python



Although the example attack presented here is simple, it shows
the level of information required in order to achieve successful pro-
cess manipulation. It would be advisable for an attacker to extract
data from the PLC where possible, to identify any issues arising
from the attack. For example, where a centrifugal pump run dry
time has been identified, ensuring the pump does not reach defined
limits may be required as to not raise the attention of operators or
members of the public who may hear or see signs of pump damage,
resulting in further investigation/reporting.

5 HOST BASED MITM ATTACK
This section describes the processes an attacker would go through
in order to achieve targeted process manipulation and detection
avoidance at the host level. Compared to the network based at-
tack, exploitation at the host level has some advantages. The first
being that PLCs are usually responsible for controlling the under-
lying operational process. Therefore, attacking the most essential
component becomes an obvious choice. However, additional moti-
vations in relation to the lack of protection mechanism developed
for such devices can also be a contributing factor [1]. Furthermore,
we have seen a recent increase in code-reuse vulnerabilities within
PLC Operating Systems [18–20], adding to the relevance of host
based attacks. Here we present a Pin Control Attack, as a method
to execute a targeted MITM on the PLC I/O, a technique we first
presented in 2016 [1].

5.1 Pin Control Attack
Pin Multiplexing. System on Chips (SoCs) usually employ hun-
dreds of pins connected to the electrical circuit. Some of these
have a single defined purpose. Since different equipment vendors
with diverse I/O requirements will use SoCs, the SoC manufacturer
produces its SoCs to employ a defined physical pin for multiple
mutually exclusive functionality, depending on the application [22].
The concept of redefining the functionality of a pin is called Pin
Multiplexing, and is one of the necessary specifications of the SoCs
design [10]. Figure 15 illustrates the concept of pin multiplexing.
Part 1 shows a general view of the SoC. Part 2 depicts pins with
different I/O peripheral options. As can be seen, the SoC has multi-
plex pins for JTAG/SPI, SPI/GPIO, MMC/GPIO and I2C/GPIO. Each
multiplex pin gives a vendor options to choose between those two
functions. Part 3 shows how SoCs peripherals are located inside a
SoC, and how one multiplex pin is connected to two peripherals.

Pin Configuration. Embedded SoC I/Os (e.g. ARM, MIPS, or
PowerPC) are controlled with a pin based approach, and must be
configured accordingly, otherwise they can not function correctly.
Once the system starts, I/O can be configured by applications or
drivers, by first mapping them into virtual memory. PLCs must
configure pins that are to be used for reading values into input
mode, and pins that are to be used for controlling/writing values to
output mode. The PLC usually configures its pins by first mapping
the physical I/Omemories to a virtually mapped I/O, as illustrated in
Figure 16. Through a dynamic analysis of the Codesys PLC runtime,
we can observe how it maps physical I/O memory at 0x2020, to
virtually mapped I/O. This virtually mapped I/O can be detected by
attackers for use in a Pin Control Attack.
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Figure 15: Pin multiplexing on SoC

Figure 16: Mapping of a physical I/O memory to a virtually
mapped I/O

5.2 MITM using Pin Control
Through use of a Pin Control Attack, one can target the interaction
between PLC firmware and PLC I/O. This attack causes the firmware
to assume that it is interacting effectively with the I/O, while in
reality connections between the I/O and PLC process are being
manipulated. The greatest advantage of Pin Control attacks, is
that they eliminate the necessity for hiding process manipulation
effects across neighbouring devices (e.g. HMI and Historian). This
is because the PLC will already "read" modified (good but spoofed)
process values. However, there are three requirements an attacker
must first satisfy.

PLC runtime privilege. In recent years multiple works have
shown that PLCs from a variety of vendors including Siemens [4,
32], ABB [15], Schneider Electric [16, 17], Rockwell Automation [20],
and WAGO [8], are vulnerable to system-level code execution via
memory corruption or back-door password vulnerabilities.

Knowledge of the physical process. Based on our previously
described reconnaissance/process comprehension phase, and de-
fined attack objectives, we are required to hold the readings from
our ultrasonic sensor (causing it to remain in a healthy but static
state), while opening Valve 3 and starting Pump 1.

Knowledge of the PLC andmapping between I/O pins and
the logic. The PLC type will allow an attacker to understand where
hard-coded memory regions, such as multiplexing registers or pin
configuration registers, reside. These hard-coded memory regions
can be different across PLC models. Therefore, an attacker must
be aware of the specific PLC in use. Additionally, an attacker must
have adequate knowledge on the mapping between I/O pins and
control logic. The attacker must knowwhich inputs/outputs require



Figure 17: Request to provide virtual addresses of all digital
I/O interfaces

Figure 18: List of all virtually mapped I/O interfaces and
their ranges

modification, to impact operational processes in the desired way.
This information can be extracted from the HMI, PLC, Historian,
etc., as described in previous sections. Furthermore, we note that
the work presented by McLaughlin et al., [26, 27] can also be used
to discover mapping between I/O variables and the physical world.

In some cases, the mapping between I/O pins and control logic
is already available in the PLC OS. For example, should the attacker
look to find I/O memory ranges for digital outputs (e.g. Pump 1
and Valve 3), it can simply be requested from the OS, providing the
base address of the digital I/O memory (e.g. using /proc/$pid/maps
or /proc/modules) and then effectively writing any desired value
to it. Figure 17 illustrates legitimate request to the OS in order to
find virtually mapped I/O address of the GPIO (digital input/output)
interfaces. From this we now knows that all digital I/O interfaces
of the PLC runtime are located at 0xbf0c9000. 0xbf0c9000 is a four-
byte address, meaning that 32 digital I/O are being controlled by a
four-byte memory address in the PLC SoC. Similarly, an attacker
can find all analogue interfaces virtually mapped I/O addresses.
Figure 18 illustrates how an attacker can find all analogue I/O
interfaces virtually mapped I/O, stored in the maps file of a PLCs
operating system.

In some cases, even the knowledge of mapping is not required.
For example, in our testbed, since we only have one analogue inter-
face actively available on the PLC for receiving ultrasonic readings,
we can simply ask the PLC OS to provide the range of I/O memory
that is being used for analogue inputs, then read the values stored
in these pins. If a specific memory region changes (becomes active)
it means that pin is currently reading a process value. With that, we
are always able to immediately determine the I/O memory range
of the ultrasonic sensor.

5.3 Process Manipulation using Pin Control
Attack

One approach available to execute the attack, is through use of the
multiplexing approach (since it is much simpler).

Multiplexing the ultrasonic pin.We first start by multiplex-
ing the ultrasonic analogue pin to an alternative function by simply
writing a zero value to the analogue pin multiplex pin (system wide
available) which is connected to the ultrasonic sensor. By multiplex-
ing the sensor pin, we prevent values being written to the analogue
input pin connected to the PLC. As a result the PLC runtime can
then only read previously written value from memory.

Sending command to open Valve 3 and Start Pump 1.After
successfully executing the attacks hiding stage, we write value one
(ON command) to the virtually mapped digital I/O memory (in
our case 0xbf0c9000) for Pump One and Valve Three. This can be
achieve via a single instruction. As a result, Pump 1 will start, and
Valve 3 will open, overfilling Tank 2. However, the tank level value
remains the same since we are in control of the analogue input pin,
blocking all write operations from the ultrasonic sensor.

The RTU has its own dedicated ultrasonic sensor, so while both
HMI and Historian will be blinded by this attack, the RTU will not.
Therefore, one would look to apply this same approach to the RTU,
made possible by similarities between the hardware used in PLCs
and RTUs.

6 SUMMARY AND CONCLUSIONS
Due to the lack of basic in-built security mechanisms across the
majority of ICS protocols and devices, they are often considered to
be an easy target, even for a low skilled threat actors. While there
is substantial evidence to support such a notion, when considering
targeted attacks on operational processes, exploiting cyber vulner-
abilities with conventional IT focused skills becomes insufficient.
On the example of widely applied Man-in-the-Middle attack sce-
narios, we illustrated the effort an attacker must invest prior to
final weaponisation. The mechanics of a Man-in-the-Middle attack
are relatively simple and well understood, however the preliminary
reconnaissance require to achieve a successful target attack is not.
In cyber-physical systems security we are concerned specifically
with attacks that result in physical impact. To achieve this, attack-
ers must obtain a high level of process comprehension, identifying
ways in which operational process manipulation can be achieved.
This refers to discovering information about process design from
documentation and configuration files. Without detailed knowl-
edge, it is unlikely an attacker can achieve more than obvious,
noticeable, immediately detectable disruption.

There is no a single source of information an attacker could con-
sult. On the example of a small-scale test-bed, we have illustrated
the types of information an attacker would need to gather, where
and how it can be obtained, processed, interpreted, collated, and
fully comprehended, in order to begin targeted process manipu-
lation and detection avoidance. Understanding what information
is critical for the attacker in order to achieve their desired com-
pleteness of process comprehension, is critical for planning defence
activities. By restricting attackers access to critical information,
e.g. point/tag-physical device mapping, effectively interrupts the
kill chain. It also allows for more targeted monitoring of malicious



activities (the reconnaissance process can be noisy). Understanding
what and where information exists within both enterprise and con-
trol networks, is critical for limiting an attackers ability to achieve
desired levels of process comprehension. Classification of infor-
mation, minimisation of information repositories, as well as strict
access control and auditability, have to be prioritised, and become
part of security hardening strategies.

This brings us towards an important security issue of the "path
of least resistance". The attacker is likely to follow the easiest attack
execution path. This is why protection of services utilising Open
Platform Communications (OPC), for example, becomes critical.
OPC services offer a standardised, vendor-independent, legitimate
connection to ICS devices and systems, without the need to re-
construct complex point-to-tag label mapping. Discovering such
likely attack avenues allows for the identification of monitoring
capabilities, ideal when strategising on attack detection avoidance.
In addition, achieving a comprehensive view of an ICSs social and
technical make-up is of great importance. This has been discussed
in our previous work [12], and continues to be of focus in future
works.

Scaling of attacks when considering simple vectors as applied in
Section 4.3, may be possible if the target organisation has deployed
this same device across their estate. However, when considering
other attacks described here, even where the operational facility is
similar in nature (e.g. a water treatment works), the scale of pro-
duction will vary, impacting the design of operational processes.
Undoubtedly this will alter how targeted operational process ma-
nipulation can be achieved. This is before we begin to consider
any diversity in equipment, the age of components, nuances in
operational processes, device configurations, etc. Such diversity
would allow an attacker to apply the same techniques as described
in Section 4 or 5, however process comprehension (see Section 3)
would be required on a facility-to-facility basis.

Where technologies are developing towards comprehensivemon-
itoring and management of ICS networks and protocols, there too
exists developments in low-level attack techniques, such as execut-
ing attack code directly at the micro-controller level. In the hacking
community this is sometimes referred to as a "Race to the Bot-
tom"; as defences are introduced at a certain level of computational
resource, the attackers shift their exploitation down one level.
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