

What controls the explosivity of subglacial eruptions?

December 2014 Jacqueline Owen, Hugh Tuffen, Becky Coats

Contents

Talk outline

- Introduction
- The role of volatiles and degassing during the subglacial eruptions of
- 1) Torfajökull (rhyolite)
- 2) Katla (basalt)
- Conclusion

The geology of Iceland

The geology of Iceland

Bárðarbunga

Icelandic Met Office

The geology of Iceland

Torfajökull

Subglacial Torfajökull eruptions

- \diamond Mixed rhyolite-tholeiite
- Alkali basalt

 $\langle \rangle$

Bláhnúkur

Jakobsson and Guðmundsson (2008), Jökull

Angel Peak

Explosivity vs ice thickness

Edifice	Part of ring fracture unit?	Volume (km³)	Eruptive environment	Inferred ice thickness (m)*	Inferred eruptive style
Angel Peak	Yes	<0.1	Subglacial	120ª	Effusive
Bláhnúkur	No	<0.1 ^b	Subglacial⁵	400 ^c	Effusive ^b
Dalakvísl	Yes	<0.2 ^g	Subglacial ^{†g}	330ª	Mixed: effusive-explosive ^g
SE Rauðfossafjöll	Yes	~1 ^h	Emergent ^h	290 ⁱ	Explosive ^h
NW Rauðfossafjöll	Yes	~1	Emergent	290 ⁱ	Explosive

Owen et al., (2013), Geology

No relationship

Dalakvísl

Environment Centre University

Dalakvísl obsidian sheets

Owen et al., (in prep.), Jökull

Dalakvísl obsidian sheets

Owen et al., (2013), JVGR

 $1000\ \mu m$

Dalakvísl

Dalakvísl Pre-eruptive volatile content

Effusive lava lobes: 2.4 wt.% H₂O

More explosive obsidian sheets: $4.8 \text{ wt.\% H}_2\text{O}$

Dalakvísl degassing path

Dalakvísl

Torfajökull pre-eruptive volatile content

Torfajökull degassing path

Torfajökull degassing path

Owen et al., (2013), Geology

Torfajökull conclusion

The behaviour of subglacial rhyolite

- Is little affected by the quantity of ice loading
- However rapid decompression may trigger a transition to more explosive activity
- There is also a correlation between explosivity and
 - Pre-eruptive volatile content
 - Degassing path

Basalt in Iceland

Eyjafjallajökull 2010

Grímsvötn 2011

Holuhraun 2014

Katla

Katla

Katla

<

Eyjafjallajökull 2010

Grímsvötn 2011

Katla1918

Katla vs Eyjafjallajökull

Environment Centre University

	Katla 1918	Eyjafjallajökull 2010
Date of commencement	12 th Oct 1918 ^A	14 th Apr 2010 ^G
Duration of eruption	24 days ^A	39 days ^G
Composition	Basalt (47% SiO ₂) ^B	Benmoreite and trachyte ^H
VEI	4 (at least) ^c	4 (upgraded from 3) ^c
Total erupted volume (DRE)	1 km ^{3 D}	0.2 km ^{3 H}
Max plume height	14 km ^A	10 km ^H
Volume of airborne tephra	0.7 km ^{3 D}	<0.3 km ^{3 H}
Area of tephra fall on land	50,000 km ^{2 A}	12,000 km ²¹
Thickness of ice over eruption site	400 m ^D	200 m ^H
Volume of subglacial lavas	0.2 km ^{3 E}	0.02 km ^{3 H}
Time taken to melt overlying ice	2 hours ^E	3-4 hours ^H
Jökulhlaup volume	>8 km ^{3 E}	<0.06 km ³¹
Flooded area	600-800 km ^{2 F}	57.5 km ²¹
Max discharge rate of jökulhlaup	>300,000 m ³ s ^{-1 E}	2,600 m ³ s ⁻¹¹
Volume of flood transported tephra	0.7-1.6 km ^{3 F}	0.03 km ^{3 H}

A: Larsen (2010); B: Óladóttir et al., (2008); GVP (2013); D: Sturkell et al., (2010); E: Tómasson, (1996); F: Larsen (2000); H: Guðmundsson et al., (2012); I: Gylfason et al., (2012)

Katla 1918 air fall tephra

Environment Centre University

Katla1918 air fall tephra

Katla1918 air fall tephra

Katla1918 air fall tephra

Katla 1918 Grain –size distributions

Guðmundsson et al., (2012), Sci Reports

Lancaster 558 University

Environment

Centre

Katla 1918 Grain –size distributions

Katla 1918 FTIR: air fall deposits

Environment Centre University

0.07 wt.%

- 130 m of meltwater
- 120 m of ice (full thickness ~400 m)
- 40 m of rock (e.g. if fragmentation occurred within the conduit)
- hydration

Katla 1918 TGA

Katla 1918 textures – bubble size

Katla 1918 textures - shearing

Katla 1918 Textures – coalescence

Katla 1918 Textures – connectivity

100 µm

Katla 1918 Hostage – coalescence

Katla 1918 Textures – coalescence

Katla 1918 Textures - microlites

Katla 1918 Textures – bubble collapse

Katla 1918 Textures - welding

1 mm

Katla 1918 textures - mingling

1 mm

- Vesiculation
- Fragmentation
- Bubble collapse
- Welding
- Vesiculation
- Fragmenation

1 mm

Katla 1918 hotstage

Environment Centre University

- Torfajökull the volatiles did it!
- Katla the volatiles might've done it.... Lots of further work required
- Lots of evidence of repeated fragmentation (based on welded clasts) possibly with additional vesiculation and/or re-melting between the fragmentation events... so did fragmentation occur in the conduit????
- Some evidence that the jökulhlaup samples quenched rapidly in a water-rich environment under elevated pressure whereas the air-fall tephra cooled more slowly (high microlite content and larger bubbles in clast center) under atmospheric conditions (FTIR)
Further work

- Detailed investigation of the different layers in the air-fall tephra collected this summer – (imaging, FTIR, TGA)
- Characterisation of external grain morphology
- SEM vesicle size distribution and bubble number densities
- Chemical analysis: LA-ICP-MS for trace elements and EPMA for major elements and some volatiles
- Do the different grain sizes in the air-fall tephra layers represent different extents of fragmentation?
- And if so, what was causing the different eruptive behaviour???

Any questions?

