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Abstract

This article proposes a nonparametric approach to detecting changes

in variance within a time series which we demonstrate is resilient to de-

partures from the assumption of Normality or presence of outliers. Our

method is founded on a local estimate of the variance provided by the

Locally Stationary Wavelet (LSW) framework. Within this setting, the

structure of this local estimate of the variance will be piecewise constant

if a time series has piecewise constant variance. Consequently, changes in

the variance of a time series can be detected in a non-parametric setting.
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In addition, using a simulation study, we explore the robustness of our ap-

proach against the typical assumption of Normality and to the presence

of outliers. We illustrate the application of the approach to changes in

variability of wind speeds at a location in the UK.

Keywords: changepoints, local stationarity, wavelets, wind speed.

1 Introduction

Since its introduction in the context of quality control by Page (1954), change-

point analysis has become a very active area of research. Many important

contributions have been made in recent years, especially in the independent and

identically distributed (i.i.d.) setting, see Eckley et al. (2011) for examples.

Changepoint methods have been used extensively to derive insight for a num-

ber of important environmental and ecological applications. See, for example,

the important work of Andersen et al. (2009); Evans et al. (2016); Hilborn et al.

(2017); Richardson et al. (2018). In this article, we will consider the problem

of detecting changes in variance within wind speed data related to challenges

arising within the renewable energy sector. Specifically, in recent years there

has been an increasing focus on detecting damage in wind turbine blades. As

Chou et al. (2013) report, damage to these blades can cause up to 19.4% of

wind turbine damage. Such damage can be caused by various factors includ-

ing severe environmental conditions such as gusty winds, lightening strikes and

storms (Herr and Heidenreich, 2015; Hoell and Omenzetter, 2015). Amongst

a variety of different analyses one might undertake, it may be of interest to
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segment the wind speed observerd at a given location into regions of differing

variability to allow better understanding of the wind gusts experienced by the

turbine. Data of this form may be heavy tailed, and subject to outliers. This is

the approach we adopt, proposing a novel method for the detection of change

in variance that is resilient to these challenges.

The challenge of detecting changes in a sequence {xi}i=1,...,n of observations,

reduces to the problem of finding the values of m and {τi}i which minimise the

following expression

m+1∑
i=1

[
C(x(τi−1+1):τi)

]
+ βf(m). (1)

Here we have m changepoints with associated ordered positions 0 = τ0, τ1, . . .,

τm, τm+1 = n. As a result, having m changepoints causes the data to be split

into m + 1 segments such that segment i contains the observations x(τi−1+1):τi

and has variance σ2
(i) := σ2

τi−1+1 = . . . = σ2
τi . The first term in equation (1) is a

cost function for the segment x(τi−1+1):τi . The second term in equation (1) is a

penalty which guards against over fitting. The function f(m) is often taken to

be simply the number of changepoints m, resulting in a penalty that is linear

in the number of changepoints. β is a tuning parameter where small values

result in more changes than larger values. Different methods can be adopted

in order to minimise equation (1). Examples of exact methods include PELT

(Killick et al., 2012) and Segment Neighbourhood (Auger and Lawrence, 1989);

whilst Binary Segmentation is a commonly used approximate method (Scott

and Knott, 1974).

Within the literature a number of different variance cost functions have been
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proposed, one of the best known is the penalized likelihood approach, see (Chen

and Gupta, 2012) for a description. Within this setting the log likelihood is

calcuated for each segment and summed over segments to give the log likelihood

for the data sequence. To avoid over fitting, the penalty is subtracted from

the log likelihood as in (1). Alternatives to the likelihood based approach to

changepoint detection include the important work of Inclan and Tiao (1994),

who use a nonparametric Cumulative Sums of Squares (CSS) approach, and

Fearnhead (2006) who develops a Bayesian posterior odds approach.

In practice data sequences are often prone to outliers and/or heavy tail

structures which the majority of approaches are intolerant to. Typically some

pre-processing of the data is often performed in an attempt to mitigate these

effects (Candemir and Oğuz, 2017). In some cases this is a straightforward adap-

tation, however given the unprecedented volume of data now being generated,

pre-processing is becoming increasingly impractical and often subjective (Taleb

et al., 2015). This motivates the need for new methods that are inherently

resilient to such features.

The novel contribution of this article is a non-parametric method for detect-

ing changes in variance in the presence of outliers and heavy tails. We develop

this non-parametric method using the Locally Stationary Wavelet (LSW) model,

due to Nason et al. (2000), to provide a local estimate of the variance of a time

series. The article is organised as follows: in Section 2 we describe the Locally

Stationary Wavelet (LSW) model and our method for detecting changes in vari-

ance. The method is then assessed under various simulation scenarios (Section
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3). Lastly, Section 4 applies our method to wind speed data collected from a

site in the UK.

2 A nonparametric approach to detecting changes

in variance

In this section we describe our non-parametric method for detecting changes

in variance. Our approach is based on the key insight that detecting a change

in variance in the time domain can be transformed into detecting a change in

mean in a transformed domain, given a suitable transformation. We are by no

means the first to consider this, see for example, Darkhovski (1994); Inclan and

Tiao (1994). In contrast to this earlier work we adopt a wavelet based approach

which we described below. Prior to describing our approach we provide a brief

introduction to the locally stationary wavelet modelling framework that we use.

2.1 Locally Stationary Wavelet Framework

Our method for detecting changes in variance relies upon capturing the local

behaviour of a time series’ variance. This could be achieved using a rolling

window estimate of the variance, but would require choice of a window size.

Instead we choose to adopt the locally stationary wavelet (LSW) framework

which is built upon non-decimated wavelets.

The advantage of the LSW framework is that it encompasses many common

time series processes, such as moving average and autoregressive processes. Of
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particular interest for this work, we can use the LSW framework to attain a local

time-varying measure of the variance. Below, we provide a brief introduction to

the LSW approach to time series which have piecewise stationary second order

structure and also introduce a time-varying measure of the variance.

Following Fryzlewicz and Nason (2006), a triangular stochastic array

{Xt,N}t=0,...,N−1, for a dyadic length of time N = 2J ≥ 1, is a locally stationary

wavelet (LSW) process if there is a mean-square representation

Xt,N =

∞∑
j=1

∑
k

Wj(k/N)ψj,k−tξj,k, j ∈ {1, 2, . . .}, k ∈ Z, (2)

where {ψj,k−t}j,k is a set of discrete compactly supported non-decimated wavelets

and the ξj,k are zero-mean, orthonormal, identically distributed random vari-

ables. The function Wj(z) : [0, 1] → R is real-valued and piecewise constant

with some finite unknown number of jumps. Let Jj denote the total magnitude

of jumps in W 2
j (z). Then the functions, Wj(z), satisfy

1.
∑∞
j=1W

2
j (z) <∞ uniformly in z and

2.
∑∞
j=1 2jJj <∞.

This definition of an LSW process (2) is a modification of that by Nason et al.

(2000) in which the Lipschitz continuity constraint is replaced by that of total

variation. This allows a process with piecewise constant second order structure

to be modelled.

The use of the notation Xt,N rather than the traditional Xt is to emphasize

the triangular stochastic array across different N , although in practice depen-

dence on N is often suppressed within notation.

6



To enable various theoretical model properties to be estalished, Nason et al.

(2000) adopted the rescaled-time approach proposed by Dahlhaus (1997). For

a given LSW series {Xt,N}t=1,...,N , its time-varying spectrum is defined as

Sj(k/N) = |Wj(k/N)|2. To estimate the spectrum, define dj,k =
∑N
t=1Xtψj,k−t,

to be the empirical wavelet coefficients of an LSW process Xt,N . They then

demonstrate that the corrected wavelet periodogram Lj(z) =
∑J
l=1A

−1
j,l |dl,z|2

is an asymptotically unbiased estimator of the time-varying spectrum, Sj(k/N).

Here, Aj,l is the discrete autocorrelation wavelet inner product

Aj,l = 〈Ψj ,Ψl〉 =
∑
τ

∑
k

ψj,kψj,k+τ
∑
m

ψl,mψl,m+τ . (3)

We note that the wavelet periodogram is an inconsistent estimator of the evo-

lutionary wavelet spectrum (Proposition 4 Nason et al. (2000)). Therefore in

order to obtain a consistent estimator we would traditionally smooth the peri-

odogram.

Using representation (2), the variance of Xt is given by

var(Xt) =
∑
j,k

W 2
j (k/N)ψ2

j,k−t. (4)

The dependence on time in equation (4) is introduced indirectly via the compact

support of the wavelet. Using the wavelet spectrum, Nason et al. (2000) intro-

duce the localized variance function for a LSW process of length N = 2J .

This is defined to be

σ2(z) =

J∑
j=1

Sj(z), (5)

where z = k/N ∈ (0, 1) is rescaled time. If a time series has a constant variance,

then the dependence on z in equation (5) is lost and the localised measure
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becomes a global one.

The time-varying estimate of the variance (5) can be interpreted as a win-

dowed rolling estimate of the variance of the time series. However, unlike a usual

rolling estimate, no consideration of the window length is required. The benefit

of a wavelet approach is that a variety of window sizes are used in the wavelet

transform. Through the compact support of the wavelets the representation in

(4) is unique given the wavelet (Nason et al., 2000).

Figure 1 shows an example of a process with (a) constant variance and

(b) piecewise variance and their associated smoothed and unsmoothed local

variance functions in (c), (d) and (e), (f) respectively. Figure 1(c) demonstrates

that smoothing the spectral estimate masks the abrupt change that is clearly

visible in (b) and (f). For this reason, the following section presents a method

based on the unsmoothed localised variance.

[Figure 1 about here.]

2.2 The NPLE Method

As previously described, if a time series is second order stationary then its

evolutionary wavelet spectrum will be constant across each scale. Similarly,

if a time series is piecewise second order stationary, then the spectrum will be

piecewise constant (Fryzlewicz and Nason, 2006). Consequently, as the localised

variance function in equation (5) is the sum of the spectrum over scales, this

means that the localised variance function will also be piecewise constant. In

order to exploit this property for changepoint detection, we need to translate
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it into a practical setting. Thus our estimate of the unsmoothed local variance

function is defined as

σ̂2(z) =

J∑
j=1

J∑
l=1

A−1j,l d
2
l,z. (6)

Due to the compact support of the wavelets it is clear that, for a signal

with piecewise constant variance, this estimate is also piecewise constant. The

following section outlines the method for detecting these changes in the localised

variance.

2.2.1 The nonparametric model

The localised variance function (6) is a sum of correlated χ2 random variables.

In practice it is difficult to obtain the distribution for this (Gordon and Ramig,

1983). We choose to adopt a non parametric approach to this changepoint

detection problem.

We consider the localized variance, σ2, and model its cumulative distribution

function, G(u) = P(σ2 ≤ u), for quantile u using the empirical CDF

Ĝ(u) =
1

n

(
n∑
t=1

I{σ̂2
t<u} +

1

2
I{σ̂2

t=u}

)
, (7)

where the σ̂2
t are assumed to be independent. With this distribution function in

mind, following Zou et al. (2014) the maxiumum log likelihood of G(u) is given

by

n{Ĝ(u) log Ĝ(u) + (1− Ĝ(u)) log (1− Ĝ(u))}, (8)

because for a fixed value of u, we have nĜ(u) ∼ Bin(n,G(u)).
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Recall that in order to identify changepoints, we aim to minimise the follow-

ing
m+1∑
i=1

[
C(σ̂2
{τi−1+1}:τi)

]
+ βf(m). (9)

where the cost function for segment i is given by the negative of the empirical

log likelihood of the CDF of the localised variance estimate:

−L(σ̂2
{τi−1+1}:τi ;u) = (τi−τi−1)×

[
Ĝi(u) log Ĝi(u) + (1− Ĝi(u)) log

(
1− Ĝi(u)

)]
.

(10)

Zou et al. (2014) recommend an integrated form of the cost function (10)

∫ ∞
−∞
−L(σ̂2

{τi−1+1}:τi ;u) dw(u), (11)

where w(·) is a weight function, dependent upon the CDF of the data set, such

that the integral is finite. The consistency of this approach is detailed in Zou

et al. (2014). This allows information across all time points to be incorporated

into the cost function.

The computational cost of the cost function suggested by Zou et al. (2014) is

of order O(Mn2+n3), where M is a specified maximum number of changepoints

(Haynes et al., 2017b). Zou et al. (2014) suggest a screening step to help reduce

this computational time; however this jeopardizes the accuracy of the locations

of the changepoints. Haynes et al. (2017b) suggest an improved segment cost

that involves approximating the integral in (11) by a sum with some fixed num-

ber of terms K. This improves the computational time taken to calculate the

cost for a given segment to O(log n). The suggested approximation is as follows.
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Following Haynes et al. (2017b), we fix a K and define γ = − log(2n−1)
K .

Time is then rescaled according to quantiles dependent upon the choice of K.

Let {tk}k=1,...,K. be equal to the (1 + (2n − 1) exp {γ(2k − 1)})−1 empirical

quantile of the data. The approximation to the integral in equation (11) is then

given by:

CK(σ̂2
{τi−1+1}:τi) =

2 log(2n− 1)

K

K∑
k=1

L(σ̂2
{τi−1+1}:τi ; tk). (12)

We could use any search function in order to identify the changepoints using

(12). However, Haynes et al. (2017b) show that this cost function is compatible

with PELT (Killick et al., 2012), a computationally efficient search for change-

points. We therefore use this search method in our simulation study in Section

3.

Based upon the above description, we choose to call the method outlined

here Non-Parametric change in variance detection using Localised Estimates,

abbreviated to NPLE.

2.3 Penalty choice

Penalty choice is a practical challenge in many changepoint settings. We choose

to take an adaptive approach to penalty selection following that of Lavielle

(2005). Intuitively, this approach involves selecting the segmentation which

causes the most significant decrease in the cost function. This can be presented

graphically in an analogous way to a scree plot used in Principal Components

analysis (Jolliffe, 2002). Figure 2 shows an example plot of a cost function

against the number of changepoints identified for a model with 2 true change-
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points. It is visible that the true segmentation occurs at the point of maximum

curvature, or ‘elbow’, of the plot; where the largest relative decrease in the cost

function occurs. The procedure of identifying this ‘elbow’ can be formalized,

and automatized, as follows.

[Figure 2 about here.]

In line with Lavielle (2005), let mMAX be an upper bound on the number

of changepoints in the model. The PELT search algorithm results in a single

optimal segmentation for a given penalty value. In order to obtain segmentations

for a range of penalty values efficiently we utilize the CROPS method (Haynes

et al., 2017a). From this range of segmentations we then wish to determine m̂;

the estimated number of changepoints in the model. Following Lavielle (2005),

we obtain m̂ using the following procedure:

1. For 0 ≤ m ≤ mMAX let

J̃m =
JmMAX

− Jm
JmMAX

− J0
mMAX + 1, (13)

where Jm is the cost for the segmentation corresponding to m change-

points at locations τ1:m. The associated costs have now been normalised

between 1 and mMAX + 1.

2. Then, for 1 ≤ m ≤ mMAX − 1, let

Dm = J̃m−1 − 2J̃m + J̃m+1, (14)

and D1 =∞.
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3. The estimate for the true location of the changepoint is given by the

largest value of m such that the second derivative of Jm, Dm, is greater

than some threshold S,

m̂ = max {0 ≤ m ≤ mMAX − 1|Dm > S}. (15)

The above procedure has also been implemented for penalty choice in a

wavelet context by Killick et al. (2013). The intuition behind this approach

is that true changes will be added to the segmentation first as they will result

in the largest improvement to the cost function. Following this we will start

to add spurious changes to the data, which are just due to noise, and so the

improvement in fit will be small. The aim of the choice of S is to put a threshold

on the rate of change in the scaled test statistic as the number of changes

increases. For an individual dataset we would do this using the changepoint

equivalent of a scree plot.

3 Simulation study

In the following simulation study we test the robustness of NPLE against the log

likelihood of a Normal distribution with changing variance (MLvar) (Chen and

Gupta, 2012) and the non parametric Cumulative Sums of Squares (CSS) (Inclan

and Tiao, 1994). This allows for a comparison between both a parametric and

non-parametric method. Each of these are implemented using the changepoint

package (Killick et al., 2016; Killick and Eckley, 2014) in R (R Core Team, 2018).

For the calculation of the localised variance estimate we utilize the wavethresh
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(Nason, 2012) and changepoint.np (Haynes, 2016) packages. The study also

considers departures from the idealised Normal distribution change in variance

setting. Specifically, the simulations study provides a pratical assessment of the

proposed approach’s resilience to departures from Normality, including outliers

and heavy tailed dependence structure.

3.1 Random Outliers

In this first study we seek to test how each of the methods performs with

varying degrees of outliers. To this end, we simulate time series with dif-

ferent proportions of outliers. Specifically, we simulate epidemic changes in

variance, σ = (1, 3, 1, 3, 1, 3) from a Normal distribution of length 2048 with

changes at 365i for i = 1, . . . , 5. The timing of the outliers are simulated from a

Unif(1, 2048) distribution. To create outliers at these time points, we add a fixed

constant, 15, to the existing observations. We repeat this for P = 0.01%, 1%

and 5% density of outlying observations within each data set as well as the

no outlier case for comparison. The choice to use additive outliers instead of

multiplicative outliers means that the size of the outliers will vary less across

segments with differing variances.

[Table 1 about here.]

Table 1 shows the number of changepoints detected by each of the methods

for the four values of P over 500 repetitions. As expected, the performance of

each method degrades as the percentage of outlying values increases. However,

this degredation is not uniform across the methods. NPLE detects the correct
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number of changepoints 63% of the time when 5% of observations are outliers,

in comparison, CSS achieves a similar rate when only 0.01% of observations are

outliers.

[Figure 3 about here.]

Figure 3 shows the density of detected changepoint locations for each of

the methods for P equal to 0.01%, 1% and 5%. NPLE maintains accurate

changepoint locations as P increases, whereas the other methods are drawn to

the outliers.

The results of these simulations demonstrate that NPLE is less sensitive to

outliers than the other methods. When using MLvar, and similarly CSS, the

outliers contribute to both the likelihood and the sum of squares directly and

distort the estimates.

In the next simulation study, we consider another model with outliers, how-

ever they are located at fixed points in time.

3.2 Fixed Outliers

In this section we test the robustness of the model for increasingly sized changes

in variance, using variance changes that are more difficult to detect than those

in Section 3.1.We simulated 500 repetitions of a Normal distribution of length

2048 with changepoints at 365i for i = 1, . . . , 5 and σ = (1, 1.6, 1, 1.8, 1, 2). We

also consider the effect of proximity of outliers to changepoint locations. Hence,

we introduce multiplicative outliers located at times (361, 462, 723, 924, 1244,

1630, 1881) with inflation factors (20, -20, 16, 18, 20, 10, 7).
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Figure 4a shows a realisation of this model where it is important to note the

location of the outlier in relation to the location of the changepoint. The first

and third outliers occur close to changepoint locations; whereas the remaining

outliers are firmly within segments. Despite the locations of the outliers being

fixed, in comparison to the uncertain locations in Section 3.1, the size of the

outliers are more variable as a consequence of their multiplicative nature.

[Figure 4 about here.]

Figure 4b shows the density of detected changepoints and Table 2 gives

the corresponding numbers of changepoints detected. NPLE detects the true

number of changes 87% of the time, whereas MLvar and CSS achieve only 13%

and 14% respectively.

Turning consideration to the locations of the changes. For the first change,

for MLvar and CSS, the presence of the outliers near the changepoint means that

there are two distinct peaks corresponding the location of the change. This is

not the case for NPLE, but the outlier appears to result in the change is detected

slightly early. At the third change, MLvar and CSS often detect a change either

side of the true changepoint location.

All three methods perform similarly when detecting the second change.

Despite being the largest changes, the last three are detected correctly the

least by MLvar and CSS, this is probably a consequence of the methods detecting

a larger number of changes elsewhere, induced by the outliers. The large outliers

at 462, 924, and 1244 have clearly resulted in spurious changes for both MLvar

and CSS.
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[Table 2 about here.]

Our final simulation study considered data which instead of having outliers,

exhibits heavy tail behaviour.

3.3 Heavy Tail Structure

In this section we consider data which is generated from a Generalised Extreme

Value (GEV) distribution, with zero mean (E(Xt) = 0), that exhibits varying

changes in variance. The changes are located at times 256i, i = 1 . . . 7 and the

sequence of standard deviations is given by σ = (1, 1.6, 1, 1.8, 1, 2, 1, 2.5). We

consider three values of the shape parameter for the GEV distribution: 0, 0.25

and 0.45. Note that as σ is a function of the shape and scale parameters, we

keep the shape constant and only modify the scale across the segments to obtain

the required σ. The tails become heavier as the shape parameter, ξ, increases

across simulations.

[Table 3 about here.]

Table 3 shows the number of changepoints detected and Figure 5 show the

corresponding densities for the locations. As expected, as the tails become

heavier the detection rate decreases for all methods. Whilst they all perform

similarly for ξ = 0 as the shape parameter increases, NPLE is most resilient to

the heavy tails providing around double the detection rate as ξ = 0.25 and 0.45.

[Figure 5 about here.]
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This illustrates NPLE’s reduced sentitivity to heavy tailed distributions. For

MLvar we are using a Gaussian assumption and so we expect this method to

perform poorly but CSS does not have any tail assumptions.

4 Application to Wind Speed Characterization

We now turn to consider the detection of variance changepoints within a time

series of wind speeds. The data we analyse were obtained at a UK wind farm

location during November 2005. Each measurement represents the average wind

speed obtained from an anemometer at the farm. The series contains 4261

observations, as depicted in Figure 6a. The data that support the findings of

this study are available from the corresponding author upon reasonable request.

To explore whether any changes in variance exist within this wind speed

data, we begin by taking first differences to remove the mean behaviour. The

resulting series has a very clear, non-constant variance structure (Figure 6b).

There also appear to be some anomalous observations that could potentially

affect changepoint estimation. Note that whilst first differences were sufficient

for this data sequence, wind speeds are periodic and taking a longer stretch of

data would require a different approach to remove this. Next, we apply both

the NPLE and MLvar methods to the differenced wind speeds. To provide a fair

comparison between the methods we use the Lavielle (2005) method for penalty

choice for both methods. The diagnostic plots are give in Figure 7 where it is

clear that the elbow in the curve for NPLE is at 9 changes and for MLvar is at
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8 changes.

The resulting changepoint plots for NPLE and MLvar are given in Figure 8.

Note, in particular, how MLvar appears to be inflating the variance estimate for

the first segment of data in response to the anomalous points. This results in

a later changepoint than the NPLE method which chooses to use two change-

points to capture the period of smaller variability. For operational decisions the

segmentation provided by NPLE is preferred.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

5 Conclusion

In this article we have introduced a novel changepoint detection procedure to

detect changes in variance (NPLE). The key benefits of our nonparametric ap-

proach are its capacity to provide changepoint estimates that are resilient to

outliers and departures from normality. This method is shown to perform well

against an established nonparametric method (CSS) and penalised likelihood

approaches (MLvar) in all simulated settings. We also considered the utility

of NPLE on data obtained from a UK wind farm. In future work we plan to

extend our approach to detect changes in local autocovariance. Such a develop-

ment could prove useful to a wide variety of environmental applications.
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Figure 1: A time series with (a) constant variance (b) piecewise variance with
their associated smoothed local variance function in (c) and (d) respectively,
and their unsmoothed local variance function in (e) and (f) respectively.
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Figure 2: Example plot of the number of changepoints against the cost function
for a model with two changes in variance. From the plot we can correctly identify
the true number of changes to be two.
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(a) P = 0.01%
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(b) P = 1%
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Figure 3: Density of detected changepoint locations using (blue) NPLE, (purple)
MLvar and (orange) CSS, when the percentage of outliers is equal to (a) 0.01%
(b) 1% and (c) 5%.
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Figure 4: For the outliers model, (a) a realisation of the data and (b) density
plots for detected changes in variance using (blue) NPLE (purple) MLvar and
(orange) CSS for the outliers model.

29



0 500 1000 1500 2000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

D
en

si
ty

(a) ξ = 0
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(c) ξ = 0.45

Figure 5: Density plots for detected changes in variance using (blue) NPLE
(purple) MLvar and (orange) CSS for 500 realisations of simulated Generalised
Extreme Value data.
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Figure 6: (a) Plot of the original Wind Speed data, (b) Difference of the data
from (a).
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Figure 7: Diagnostic plots for (a) NPLE and (b) MLvar following the method
in Lavielle (2005).
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Figure 8: Changepoint plots for (a) NPLE with 9 changes and (b) MLvar with
8 changes following the method in Lavielle (2005).
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P 0 1 2 3 4 5 6 7 ≥ 8
0.00% 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.01% 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

NPLE 1.00% 0.00 0.00 0.00 0.00 0.02 0.98 0.00 0.00 0.00
5.00% 0.01 0.00 0.01 0.08 0.07 0.63 0.08 0.12 0.00
0.00% 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.01% 0.00 0.00 0.00 0.01 0.01 0.74 0.04 0.20 0.00

MLvar 1.00% 0.07 0.03 0.06 0.14 0.13 0.32 0.13 0.12 0.00
5.00% 0.28 0.00 0.21 0.06 0.17 0.06 0.11 0.11 0.00
0.00% 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.01% 0.00 0.00 0.01 0.28 0.00 0.66 0.00 0.01 0.04

CSS 1.00% 0.00 0.00 0.12 0.20 0.02 0.28 0.05 0.10 0.23
5.00% 0.00 0.01 0.14 0.11 0.04 0.10 0.00 0.07 0.53

Table 1: Proportion of changepoints detected for different percentages of outliers
across 500 repetitions.
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0 1 2 3 4 5 6 7 ≥ 8
NPLE 0.00 0.00 0.00 0.02 0.00 0.82 0.01 0.15 0.00
MLvar 0.02 0.01 0.19 0.04 0.30 0.13 0.15 0.15 0.00
CSS 0.09 0.00 0.22 0.02 0.21 0.14 0.11 0.21 0.00

Table 2: Proportion of changepoints detected for the outliers model across 500
repetitions.
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ξ 0 1 2 3 4 5 6 7 ≥ 8
0.00 0.00 0.00 0.00 0.01 0.01 0.11 0.02 0.85 0.00

NPLE 0.25 0.00 0.00 0.00 0.03 0.04 0.19 0.08 0.57 0.08
0.45 0.00 0.02 0.00 0.06 0.08 0.16 0.15 0.31 0.22
0.00 0.00 0.01 0.00 0.02 0.01 0.13 0.02 0.80 0.01

MLvar 0.25 0.00 0.03 0.02 0.11 0.04 0.20 0.10 0.30 0.20
0.45 0.00 0.06 0.08 0.12 0.08 0.20 0.11 0.15 0.2
0.00 0.00 0.00 0.00 0.01 0.00 0.06 0.00 0.87 0.05

CSS 0.25 0.02 0.08 0.01 0.12 0.02 0.17 0.02 0.33 0.22
0.45 0.06 0.07 0.09 0.15 0.05 0.16 0.07 0.15 0.19

Table 3: Proportion of changepoints detected for the simulated Generalised
Extreme Value data.
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