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Studies of the crab cavities at KEKB revealed that the RF phase could shift by up to 50◦ within
∼50 µs during a quench; while the cavity voltage is still at approximately 75% of its nominal
amplitude. If such a failure were to occur on the HL-LHC crab cavities, it is likely that the
machine would sustain substantial damage to the beam line and surrounding infrastructure due
to uncontrolled beam loss before the machine protection system could dump the beam. We have
developed a low-level RF system model, including detuning mechanisms and beam loading, and
use this to simulate the behaviour of a crab cavity during a quench, modeling the low-level RF
system, detuning mechanisms and beam loading. We supplement this with measurement data
of the actual RF response of the proof of principle Double-Quarter Wave Crab Cravity during a
quench. Extrapolating these measurements to the HL-LHC, we show that Lorentz Force detuning is
the dominant effect leading to phase shifts in the crab cavity during quenches; rather than pressure
detuning which is expected to be dominant for the KEKB crab cavities. The total frequency shift for
the HL-LHC crab cavities during quenches is expected to be about 460 Hz, leading to a phase shift
of no more than 3◦. The results of the quench model are read into a particle tracking simulation,
SixTrack, and used to determine the effect of quenches on the HL-LHC beam. The quench model
has been benchmarked against the KEKB experimental measurements. In this paper we present
the results of the simulations on a crab cavity failure for HL-LHC as well as for the SPS and show
that beam loss is negligible when using a realistic low-level RF response.

I. INTRODUCTION

The High Luminosity upgrade for the LHC (HL-
LHC) [1] will use crab cavities to compensate for the lu-
minosity reduction at the interaction points (IPs) due to
the crossing angle of the counter-rotating bunch trains.
A crab cavity is a deflecting cavity, phased such that
the centroid of the beam passes through the cavity on
the zero-crossing; hence providing an effective rotation
to the bunches. If the phase of the cavity field changes
with respect to the bunches, then the bunch centroid ex-
periences a kick, which can lead to particle losses. Dur-
ing a quench, the phase and amplitude of the cavity field
can change relatively quickly, potentially leading to beam
losses throughout the ring.

The response time of the machine protection system
depends on many different factors, but has an upper limit
of 3 turns of the LHC ring, or approximately 267 µs [2].
Beam losses which occur within 267 µs of a failure can
potentially damage the LHC beam line.

Measurements of the crab cavities installed at KEKB
have revealed that the RF phase shifts by up to 50◦
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within 50 µs during a quench; while the cavity voltage is
still approximately 75% of its nominal value [3]. Should
such a failure occur on the HL-LHC crab cavities, the
beam losses could cause substantial damage to the beam
line. The following studies are critical as CERN could not
risk installing crab cavities in HL-LHC if they have the
potential to damage the machine; which would severely
limit the luminosity upgrade for HL-LHC.

In this paper, we investigate the mechanisms occurring
during the quench of a crab cavity and perform a compar-
ison between the HL-LHC crab cavities and the KEKB
cavities. It should be stated that there are notable differ-
ences between the two cavities, namely the HL-LHC crab
cavities operate at 2K, whereas for KEKB, they operate
at 4K. In addition to this, for KEKB, the RF system is
switched off as soon as a quench is detected, while for
HL-LHC, it is intended for the RF system to remain on
until the beam has been dumped.

Several design studies for the HL-LHC crab cavities
include the double-quarter (DQW) wave [4], RF Dipole
(RFD) [5, 6] and the four-rod crab cavity (4RCC) [7];
although the 4RCC was not selected to be one of the final
designs. Before installing the crab cavities in HL-LHC,
prototypes of the DQW and RFD crab cavities will first
be installed in SPS for testing. Therefore we simulate the
impact on the beam due to a crab cavity quench in the
SPS in order to compare to measurements during SPS
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tests. The comparison of simulation and measurement
will be used to verify the HL-LHC simulations ahead of
the installation of the HL-LHC crab cavities.

Previous studies have imposed an arbitrary phase and
amplitude response on the crab cavities to study beam
losses [8]. In this paper we utilise a more realistic RF
system model, including low-level RF (LLRF), pressure,
Lorentz Force and resistive detuning mechanisms, as well
as microphonics and beam loading in order to obtain a
more realistic phase and amplitude evolution during crab
cavity quenches.

II. MODELING THE RF SYSTEM

A. Cavity model

We shall consider an RF cavity driven by an RF source;
which we shall assume to be a tetrode. We shall assume
that the tetrode excites a total of N modes in the cav-
ity. In this case, the cavity voltage for the ith mode is
governed by the second order ODE given in Eq. 1 [9].

d2Vi

dt2
+
ωi
Q0,i

dVi

dt
+
ωi
Qe,i

N∑
k=1

dVk

dt
+ω2

iVi =
2ωi
Qe,i

d

dt

[
Fe−jωt

]
(1)

WhereQ0,i andQe,i are the intrinsic and external qual-
ity factors for the ith mode respectively, k is the summa-
tion index over all modes and ωi is the resonant angular
frequency of the ith mode. The bold font is used to indi-
cate that the functions are complex numbers and there-
fore vectors. F is the voltage corresponding to the input
power, Pin from the tetrode, expressed as

F =

√
2

(
R

Q

)
QLPin. (2)

Where QL is the loaded quality factor, given as 1
QL

=
1
Q0

+ 1
Qe

and (R/Q) is the shunt impedance divided by

intrinsic Q-factor. For most cases, we can assume that
only one mode is excited in the cavity. This is because the
mode separation and bandwidth of the nearby modes are
far away from the frequencies excited by the amplifier [7,
10]. In this case, Eq. 1 is simplified to

d2V

dt2
+
ω0

QL

dV

dt
+ ω2
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2ω0

Qe

d

dt

[
Fe−jωt

]
(3)

where the subscript i has been removed as we only con-
sider one mode and ωi replaced with ω0 to be consistent
with conventional notation. ω0 is the resonant frequency
of the cavity and ω is the driver frequency from the RF
source.

Under steady state conditions, Eq. 3 is the well known
equation of motion for the driven, damped harmonic os-
cillator, however, during a quench or other type of failure,

this is not true. During a quench, Q0 hence QL decreases
due to increased resistive losses. In addition, detuning
mechanisms, such as Lorentz detuning [11], will change
ω0 over time. Eq. 3 can be solved numerically if we have
a model for Q0 (t) and ω0 (t) during a quench.

Although Eq. 3 can be solved numerically, to study the
performance of the LLRF system, the RF phase must
be calculated with accuracy on the order of millidegrees
as this is the expected stability of the LLRF system.
To achieve this, a low-order numerical integrator, such
as a 4th-order Runge-Kutta method (RK4), would need
to evaluate the cavity voltage hundreds or thousands of
times per RF cycle. Alternatively, a higher order integra-
tor, such as RK12, would require evaluating the cavity
voltage less often, but each evaluation step would require
more computations. In either case, solving Eq. 3 accu-
rately over hundreds or thousands of RF cycles requires
substantial computing time.

In order to overcome the challenges of evaluating Eq. 3
accurately over many RF cycles, we can make some ap-
proximations to derive an envelope equation. This allows
us to calculate the cavity voltage once every RF cycle,
while still providing the same degree of accuracy. We
shall assume that the solution to Eq. 3 can be expressed
as

V (t) = Vcav (t) e−jωt, (4)

relative to a reference frequency ω, where Vcav (t) is the
complex envelope as a function of time, which gives in-
formation of the amplitude and phase of V (t) and is
assumed to be a slowly varying complex function. By
differentiating Eq. 4, we obtain

dV
dt =

[
V̇cav − jωVcav

]
e−jωt

d2V
dt2 =

[
V̈cav − 2jωV̇cav − ω2Vcav

]
e−jωt

. (5)

By substituting Eq. 5 into Eq. 3 and canceling the
e−jωt term throughout, we obtain

V̈cav +
(
ω0

QL
− 2jω

)
V̇cav +

[(
ω2

0 − ω2
)
− j ωω0

QL

]
Vcav

= 2ω0

Qe

[
Ḟ− jωF

] .

(6)
As we assume that Vcav is slowly varying, we can ne-

glect the V̈cav term. For almost all RF cavities, QL � 1,

hence by multiplying Eq. 6 by
(
ω0

QL
+ 2jω

)
and neglect-

ing terms dependent on Q−2
L , we obtain

V̇cav

ω0
+

[
ω2

0 + ω2

4QLω2
+ j

ω2
0 − ω2

2ωω0

]
Vcav =

jḞ + ωF

ωQe
. (7)
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It should be noted that Eq. 7 is valid for any mode,
hence it can be applied for accelerating cavities as well
as deflecting or crabbing cavities.

B. Modelling Pressure detuning

As described in the following section, there are sev-
eral detuning mechanisms that will change the resonant
frequency of the cavity. Due to the high Q-factors asso-
ciated with SRF cavities, they are very sensitive to small
shifts in frequency, therefore it is important to take de-
tuning mechanisms into account. Pressure detuning is
the most challenging mechanism to model as it depends
on many factors, such as temperature, location and na-
ture of the quench. In this section we will develop very
simple models for pressure detuning in normal liquid He-
lium (LHe) (at 4K) and superfluid LHe (at 2K). The fol-
lowing models are simplistic models aimed at helping to
provide insight into the order of magnitudes of pressures
we expect.

1. Pressure detuning in normal LHe

In order to determine the pressure spike from LHe boil-
ing during a quench, we shall make some assumptions to
help simplify the problem so that an analytical expression
can be obtained:

� The power dissipation is assumed to be constant
during the quench as the stored energy dissipates
from the structure.

� We will assume that the localised pressure spike
can be approximated as the average pressure on
the cavity distributed evenly over the surface.

� Gaseous Helium behaves like an ideal gas.

� The quench propagates over the surface of the
cavity at the speed of sound in Niobium (vq ≈
5000 m/s).

� The volume of the gaseous Helium ‘bubble’ expands
as a sphere, whose radius increases at the speed of
sound in LHe (vr ≈ 175 m/s at 4K [12]).

The quench behaviour will affect the pressure detun-
ing, but we shall use values based on the measurements
of a quench taken at CERN and presented in Section III.
Namely, we shall assume that the stored energy dissi-
pates from the cavity for a duration of 10 ms and that
the total energy dissipated as heat is Hdiss = 12.56 J.

The specific latent heat of evaporation for LHe is HL =
84.5 J/mol = 21.1 J/g. At 4K, LHe has a density of
approximately 0.125 g/cm3, therefore, we can calculate
the mass of Helium boiled during the quench as:

m =
Hdiss

HL
=

12.56

21.1
= 0.595 g. (8)

Therefore, the volume of LHe boiled during the quench
is

VLHe =
Hdiss

ρHL
= 4.76 cm3. (9)

At 4K, gaseous Helium has a volume 757 times larger
than LHe at the same temperature at normal atmo-
spheric pressure of 1013.25 mbar (1 atm). Therefore, a
total of 3.6 litres of Helium gas is produced at 1 atm. As
we assume that the power dissipation is constant during
the quench, the Helium is boiled at a constant rate of
0.36 m3/s at 1 atm. As we assume that gaseous Helium
is an ideal gas and that the gas and liquid are both at
4K, we get

P1V1 = P2V2. (10)

We can use Eq. 10 to determine the volume and pres-
sure of the gaseous Helium as it boils as we will not
assume that it is at atmospheric pressure. We have as-
sumed that the gas volume will increase as a sphere whose
radius increases at the speed of sound in LHe. However,
as the quench spot grows much more rapidly on the cav-
ity surface, this means that the gas volume will actu-
ally grow rapidly over the surface of the cavity, but very
slowly radially out from the surface of the cavity:

V2 =
4

3
πv3

r t
3 =

4

3
πv2

q ṽrt
3. (11)

Therefore the gas will grow radially out from the sur-
face of the cavity at a rate

ṽr =
v3
r

v2
q

= 0.214 m/s. (12)

Once the quench has fully covered the surface of the
cavity, the gas can no longer expand over the surface and
will now grow radially outwards at a speed vr, given as

V2 (t > t0) =
4

3
πv2

r t
3
0 +Acavvr (t− t0) , (13)

where t0 is the time after the start of the quench when
the entire surface of the cavity becomes covered by the
quench, Acav is the surface area of the cavity, which we
shall assume to be 1 m2, therefore

t0 =

√
Acav
πv2

q

= 0.113 ms. (14)
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We know that the volume of gas at 1 atm increases as

V1 =
757Hdiss

ρHL

(
t

tq

)
= 0.36t [m3]. (15)

where tq = 10 ms is the duration of the power dissipation
from the cavity. We shall assume that the effect of the
localised pressure spike is equal to the average pressure
applied uniformly over the surface of the cavity, therefore,
while the ares of the quench spot (Aquench) is growing,
the average pressure is

〈P 〉 = P2
Aquench
Acav

= P1
V1

V2

πv2
q t

2

Acav
= 0.218

Hdissv
2
q

v3
r tq

. (16)

Note that while the quench spot is growing, the average
pressure is constant and using the assumed parameters,
the average pressure is 1278 mbar, therefore during a
quench, we expect the pressure on the cavity to be of the
order of 102 − 103 mbar.

Once the quench spot has covered the full surface of
the cavity, the volume grows radially outwards at a speed
vr = 175 m/s and the average pressure on the cavity
surface evolves as

〈P 〉 ≈ 0.284
Hdiss

Acavvrtq

(
t

t− t0

)
. (17)

When t > t0, the pressure drops rapidly to an equilib-
rium pressure of approximately 2 mbar.

2. Pressure detuning in superfluid LHe

The model for pressure detuning in superfluid LHe is
more straightforward than in in a viscous fluid because
the absence of viscosity in a superfluid means that the
gaseous Helium bubble can be thought of as expanding
into a vacuum. We will apply many of the same assump-
tions as for the previous model, namely that the power
dissipation as the stored energy dissipates as heat and
that the gaseous Helium can be treated as an ideal gas.

In addition, we will assume that the gas expands into
the vacuum region of the cryostat, which has a volume,
Vcryo ≈ 1.6 m3. The actual volume of the cryostat used
for HL-LHC is 4 m3, but only about 40% of the volume
is vacuum. Using the equation for an ideal gas again, we
get that

< P >= P1
V1

V2
= 0.767

Hdiss

ρHLVcryo

(
t

tq

)
. (18)

Therefore the pressure grows linearly during the
quench up to a maximum of approximately 2.3 mbar.

Figure 1 shows a comparison of < P > vs time during
the quench for normal LHe at 4K (blue) and superfluid

FIG. 1. Comparison of pressure vs time for gaseous Helium
produced by boiling LHe during a quench, showing normal
LHe at 4K (blue) and superfluid LHe at 2K (red).

LHe at 2K (red). The pressure is plotted on a logarith-
mic scale show how pressure varies over several orders of
magnitude.

As these models are intended to provide an under-
standing of the order of magnitude of the pressure during
a quench and that the pressure will depend on many vari-
ables, we conclude that the pressure due to boiling LHe
at 4K will be of the order of102 − 103 mbar and for su-
perfluid LHe at 2K, the pressure will be of the order of
10−1 − 102 mbar.

C. Frequency detuning mechanisms

In order to determine the cavity voltage from Eq. 7,
we first need to understand how to model the coefficients
and RHS (driving terms). For now, we will neglect any
feedback and control on the RF source, so the incoming
RF frequency, ω, will be assumed constant, as well as
Qe. The resonant frequency of the cavity, ω0, is affected
by the cavity detuning mechanism, QL depends on the
behaviour of the quench and the material properties and
F on the LLRF system.

In a superconducting RF (SRF), from Eq. 7, the high
loaded Q-factor (& 105) suppresses the real part of the
complex coefficient on the left hand side of the equa-
tion. Hence a small frequency change can result in a
relatively large phase shift. For normal conducting RF,
the lower Q-factors result in less sensitivity to frequency
offsets, thus detuning is often neglected. For the sim-
ulation model, we consider four detuning mechanisms;
namely resistive, Lorentz, pressure and microphonics.

1. Resistive detuning

If we consider the undriven form of Eq. 3, we have
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d2V

dt2
+
ω0

QL

dV

dt
+ ω2

0V = 0. (19)

The general solution to this is

V = [A cosωt+B sinωt] e
− ω0t

2QL (20)

where

ω = ω0

√
1− 1

4Q2
L

. (21)

Therefore the resistive frequency shift is

δfR = f − f0 = f0

(√
1− 1

4Q2
L

− 1

)
. (22)

2. Lorentz force detuning

The electromagnetic fields in an RF cavity apply a ra-
diation pressure to the surface of the cavity given as

PL =
µ0H

2 − ε0E
2

4
(23)

due to the Lorentz force [11]. The stored energy in the

cavity scales with E2, H2 and |V|2. The radiation pres-
sure deforms the cavity and therefore changes the reso-
nant frequency. The frequency shift is linearly propor-
tional to the radiation pressure, therefore the Lorentz
force detuning can be expressed as

δfL = −KL

(
|V|2 − |Vnominal|2

)
, (24)

where KL is the Lorentz force detuning coefficient. Typi-
cally, SRF structures are designed such that they operate
at the correct frequency when they are under normal op-
erating conditions, therefore the frequency shift is taken
as the change in cavity voltage from its nominal value,
Vnominal. As the Lorentz force detuning depends on the
cavity voltage, this implies that Eq. 7 becomes nonlinear.
If we make the substitution ω → ω+δωL in Eq. 7, we can
separate the envelope equation into linear and nonlinear
terms.

V̇cav

ω0
+
[
ω2

0+ω2

4QLω2 + j
ω2

0−ω
2

2ωω0

]
Vcav−[

ω2
0

2QLω2 + j
ω2

0+ω2

2ωω0

]
δωL
ω Vcav = jḞ+ωF

ωQe

. (25)

In Eq. 25, δωL
ω � 1 for most scenarios, therefore the

nonlinear terms are much smaller than the linear terms.

3. Pressure detuning

Low temperature SRF structures are cooled in liq-
uid Helium (LHe). During a quench, the cavity sur-
face becomes normal conducting and power is dissipated
through Ohmic losses and converted into heat. The heat
in turn boils the surrounding Helium, resulting in an in-
creased pressure exerted on the cavity.

A quench typically starts at a single point and quickly
spreads over the surface of the cavity. As the normal
conducting region grows, the heat produced from Ohmic
losses increases rapidly and causes the LHe to violently
flash-boil on the outer surface of the cavity. The vol-
umetric expansion ratio for liquid to gaseous Helium is
1:757; thus when the LHe boils, it results in a sudden
pressure increase.

If the LHe temperature is above 2.17◦K, the liquid is a
normal fluid and has a viscosity. The rapidly expanding
volume of gas pushes again the viscous liquid and causes
an increased pressure on the cavity wall. If the LHe tem-
perature is below 2.17◦K, the liquid is superfluid and has
no viscosity. The boiling Helium experiences no resis-
tance from the LHe and the pressure increase is caused
by the increase in vacuum pressure from the gaseous He-
lium. During a quench, pressures are expected to in-
crease up to 102−103 mbar as the LHe boils in a normal
fluid state because of the reaction force of the rapidly
expanding gas on the viscous fluid. As superfluid LHe
boils, the pressure increase is substantially reduced as
the gaseous Helium expands into the vacuum, thus the
pressure increase is expected to be ∼ 10−2 − 102 mbar.
Measurements of frequency shift vs pressure range from
0.1-100 Hz/mbar [13, 14]. Therefore we expect the fre-
quency shift due to pressure detuning during a quench to
be of the order of kHz for LHe above 2.17◦K and of the
order of 100 − 102 Hz for superfluid Helium.

A physically realistic model of pressure detuning is dif-
ficult as there are many unknowns, such as the location
of the quench point. These unknowns affect the transi-
tion time of the quench, the pressure distribution around
the cavity and therefore the actual frequency shift due to
pressure. We have assumed that the frequency shift due
to pressure detuning is of the form

δfP =
∆fp

2

(
1 + tanh

(
t− tquench

τp

))
(26)

where ∆fp is the maximum frequency shift, tquench is the
start time of the quench and τp is the transition time.
This model is not realistic because the pressure detuning
begins before the quench occurs, violating causality, but
this is negligible if τp is small. In addition, given that τp is
small, the pressure detuning occurs rapidly and the exact
form of pressure as a function of time is not important.

If τp is comparable or greater than the LLRF latency,
the LLRF system can react and compensate for the de-
tuning, which will result in a short oscillatory response
until the pressure detuning stabilises.
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4. Microphonics and mechanical oscillations

Microphonics is the term used to describe the periodic
frequency shift due to vibrations caused by nearby equip-
ment, such as the cryogenic system and cooling pumps,
as well as the impulse from the two previously described
mechanical detuning mechanisms. These vibrations are
broadband and allow the SRF structure to oscillate at its
mechanical resonant frequency [15, 16]. Assuming that
the SRF structure only has one mechanical resonant fre-
quency, we can model the microphonic detuning as

δfm = ∆fm sin (ωmt+ φ) (27)

where ∆fm is the amplitude of the microphonic frequency
shift, ωm the mechanical resonant angular frequency of
the SRF structure and φ and arbitrary phase shift. We
can extend Eq. 27 to include additional terms of different
resonant frequencies if desired.

Microphonics, pressure and Lorentz force detuning are
all mechanical detuning mechanisms. Therefore we can
expect all three mechanisms to excite oscillations. We
can define the total frequency shift, δftot, due to all de-
tuning mechanisms as

δftot = δfR + δfmech (28)

where δfmech is the frequency shift due to the mechan-
ical detuning mechanisms. δfmech is the solution for a
driven, damped harmonic oscillator where δfL, δfp and
δfm are the driving terms. A simple model can be de-
scribed as [16]

δ̈fmech + 2ηωm ˙δfmech + ω2
mδfmech = δ̈fdr (29)

where η is the mechanical damping coefficient and δfdr
is the driving term given as

δfdr = (δfL + δfp + δfm) e−jωm(t−tquench) (30)

It is assumed that the damping term is small and can
be neglected when simulated over small timescales. The
mechanical resonant frequency of the RF structure is of
the order of 100-104 Hz, however the pressure detuning
occurs on the scale of MHz. We shall assume that δfmech
from the pressure detuning only will have a form

δfmech =
∆fp

2

(
1 + tanh

(
δt

τp

))(
1 + je−jωmδt

)
, (31)

where δt = t−tquench. If we determine the second deriva-
tive and rearrange as well as taking the approximation
1/τp � ωm, we obtain

δ̈fmech +
[
ω2
m + 2

τ2
p

sech2
(
δt
τp

)]
δfmech

= ω2
mδfp +

∆fp
τ2
p

sech2
(
δt
τp

) (
1 + e−jωmt

) , (32)

where we see that the resonant frequency of mechanical

oscillation becomes ω2
m+ 2

τp
sech2

(
δt
τp

)
. This implies that

during the rapid change in Helium pressure, the mechan-

ical frequency briefly increases up to
√

2
τp

, allowing the RF

frequency to rapidly change.
In simulation, the frequency shift due to pressure de-

tuning is determined using Eq. 31 rather than evaluating
Eq. 32 because the result is the same, but requires fewer
computational steps. Similarly, microphonics are mod-
eled as in Eq. 27. The frequency shift due to Lorentz
detuning is determined by evaluating

δ̈f + ω2
mδf = ω2

mδfL, (33)

because the detuning depends on the cavity RF voltage
and must therefore be evaluated in parallel with the RF
voltage. Since Lorentz detuning occurs over much longer
timescales than the RF period, an RK4 integrator is un-
necessary and a forward Euler integrator is used instead.
For each time step, the frequency shift due to Lorentz
detuning is calculated as

˙δfn = ˙δfn−1 + ω2
m (δfL − δfn−1) δt

δfn = δfn−1 + ˙δfnδt

. (34)

D. Low-level RF system

In the model of the RF cavity and the detuning mech-
anisms, described in the previous sub-sections, Lorentz
detuning is the only source of nonlinearities in our mod-
elled system. As explained in the previous sub-section,
the nonlinear terms from Lorentz detuning are several
orders of magnitude smaller than the linear terms and
can therefore be neglected. As such, there is no need to
simulate a sophisticated LLRF system, capable of non-
linear corrections. Hence, the LLRF system is assumed
to be a proportional-integral (PI) controller [9, 17, 18].

The cavity RF voltage is measured at regular intervals,
given by the digital sampling rate; for SPS and HL-LHC
simulations this is taken to be 40 MHz. The cavity RF
in-phase (I) and quadrature (Q) voltages are measured
relative to a reference clock signal. This is effectively the
real and imaginary components of the cavity RF rela-
tive to the nominal RF frequency, and therefore provides
all the relevant information about the cavity RF voltage.
The PI controller compares the measured I and Q volt-
ages to the set values stored and calculates a correction.
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The correction to the cavity RF from the PI con-
troller consists of two terms; a proportional and an inte-
gral term. The proportional term calculates a correction
based on the previous measurement of the I and Q volt-
age, and corrects for fast changes in the cavity voltage.
The integral term calculates a correction based on the
integral (or sum) of the I and Q voltage over all previ-
ous times and corrects for slower changes and analogue
drifts. The PI controller response is given as

δF = cp (Vcav −V0) + ci
∑
i

(Vcav −V0), (35)

where cp and ci are the gains for the proportional and
integral controllers respectively. The LLRF has a latency,
which is typically much longer than the digital sampling
rate; for the following simulations it is taken to be 1 µs.

E. Beam loading

As a charged particle bunch travels through an RF
structure, the particles interact with the RF fields. In the
case of an accelerating cavity, if the bunch is accelerated,
energy has been taken from the RF cavity. The stored
energy in a cavity is related to the voltage as

Ustored =
V 2

cav

ω
(
R
Q

) . (36)

Thus, a change in stored energy will result in a change
in voltage. For a deflecting or crabbing cavity, the energy
gain of the particle bunch depends on the transverse po-
sition of the bunch as it passes through the cavity. The
Panofsky-Wenzel theorem [19] relates the transverse volt-
age, V⊥, to the transverse variation of the longitudinal
electric field

V⊥ = −jc
ω

∫
∇⊥Ez · dz = −jc

ω
∇⊥Vz. (37)

In these simulations, it is assumed that the cavity op-
erates in a dipole mode [20–23] and that Vz (x) varies
linearly with x and Vz (0) = 0; where x is taken to be
the direction of the deflecting RF field. Therefore the
transverse voltage is

V⊥ = −jc
ω

Vz (x)

x
. (38)

Eq. 36 is valid for both transverse and longitudinal
voltages, provided the appropriate definition of R/Q is
used. The transverse R/Q can be defined by substituting
Eq. 38 into Eq. 36

(
R

Q

)
⊥

=
V 2
z (x)

ω
(
xω
c

)2
Ustored

. (39)

By conservation of energy, the change in stored energy,
δUstored = qVbeam, and the energy gain from the bunch
is −qVbeam where q is the bunch charge and Vbeam is
the voltage seen by the beam. The negative sign for the
energy gain of the bunch is because a positive voltage
accelerates a negatively charged particle. Assuming the
change in stored energy is small, we can determine the
change in cavity voltage from Eq. 36

δUstored = qVbeam =
2V⊥

ω
(
R
Q

)
⊥

δV⊥. (40)

If we assume that the bunch passes through the cavity
with a phase error, φ, then Vbeam = Vz (x) ejφ, where x
is the transverse position of the bunch centroid. There-
fore we can determine the instantaneous change in cavity
voltage by sustituting Eq. 38 into Eq. 40 as

δV⊥ =
qω

2
ejφ
(ωx
c

)(R
Q

)
⊥
. (41)

Note that the change in voltage depends on the trans-
verse and longitudinal position of the bunch. Therefore
the cavity voltage depends on the beam dynamics of the
bunch, conversely, the beam dynamics depends on the
state of the cavity. Hence there is a complicated inter-
action between the cavity and the beam. However, from
initial studies described later in this article, we conclude
that the LLRF system is easily able to compensate for
beam loading, which allows us to neglect the effect the
beam has on the cavity fields; significantly simplifying
the simulations.

III. CRAB CAVITY QUENCH
MEASUREMENTS

To verify the model of the quench dynamics and its
impact on the crab cavity RF system, measurements of
the RF amplitude and phase in order to determine the
frequency shift during quench were taken at SM18 [24],
CERN, on the Double Quarter-Wave (DQW) Proof-of-
Principle (PoP) crab cavity. The measurements were
performed in a vertical test configuration where the cav-
ity is immersed in a liquid Helium bath operating at 2K,
and the external Q is chosen to be slightly lower than
the intrinsic Q-factor to minimise power requirements.
In order to mitigate microphonics the measurement was
run as a self-excited loop (SEL) [25] where the drive fre-
quency is locked to the cavity frequency. This configu-
ration is not an exact replica of the setup in HL-LHC as
the drive frequency will be fixed by a master oscillator
for HL-LHC, and the loaded Q factor will be orders of
magnitude less, but from these measurements it is pos-
sible to reconstruct the change in cavity frequency with
time in order to apply this to the LLRF system model.
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In addition the Lorentz force detuning and pressure sta-
bility of the bare PoP cavity, with a stiffening frame, are
significantly higher than in the dressed DQW cavity due
to the LHe vessel, hence the frequency shift contributions
will need to be separated and scaled accordingly.

The cavity is configured with a fundamental power cou-
pler (FPC), with an external Q slightly less than the cav-
ity ohmic Q prior to the quench, and a pick-up probe set
to have an external Q factor at least an order of magni-
tude above the ohmic Q prior to the quench. The pick-up
probe allows a transmitted power to be obtained to give
a direct measurement of the stored energy in the cavity,
given the external Q is measured during the calibration
of the experiment, and also as a feedback signal to the
SEL. Power is delivered to the cavity via the FPC, and
we measure the input power and any power reflected back
towards the source.

A. Stored energy and transverse voltage

To measure the cavity amplitude and phase we down-
mix the input and output waveforms with a local oscil-
lator operating at a frequency of around 400 MHz, set
to be close to the cavity frequency prior to the quench.
From the experimental measurements, we obtain the am-
plitudes of forward (PF ), reflected (PR) and transmitted
(PT ) power, as well as the respective RF phases relative
to local oscillator signal (φF , φR and φT ). In addition,
the fundamental power coupler is measured to have a Q-
factor, Qin = 1.2×109, and the pickup probe to measure
the transmitted power has a Q-factor, QT = 1.5 × 1011.
During a quench, the cavity RF system is not in equilib-
rium, so from the conservation of energy, where the drive
is locked to the cavity frequency, we obtain

PF − PR − PT − PC −
dU

dt
= 0 (42)

where PC is the power dissipated in the cavity and U is
the stored energy in the cavity. When the RF system
and the cavity are in equilibrium, dU/dt = 0. From the
definition of Q-factor, we can relate the stored energy, U ,
to QT and PT as

U =
2QTPT
ω

. (43)

The stored energy in the crab cavity can be related to
the transverse deflecting voltage as

V 2
T = kU, (44)

where k has been experimentally measured previously [4]
to be 1.0234 MV2/J for the DQW PoP crab cavity. Fig-
ure 2 shows the stored energy (red) in the cavity, using
Eqs. 43 and the measured data.

FIG. 2. Intrinsic Q-factor, Q0, (blue) and stored energy (red)
vs time in the DQW PoP crab cavity during a quench mea-
surement at SM18, CERN. The black dashed line indicates
the time of peak power dissipation, PC .

B. Intrinsic Q-factor

The intrinsic Q-factor, Q0, can be related to the stored
energy in the cavity and the power dissipated in the cav-
ity as Q0 = ωU

PC
. From Eqs. 42 and 43, we can define Q0

as

Q0 =
QTPT

PF − PR − PT − dU
dt

, (45)

Q0 vs time (blue) is shown in Figure 2. The vertical
axis is logarithmic because the Q-factor drops by more
than two orders of magnitude over the duration of the
quench. The Q-factor begins to increase again from
about 35 ms because the measured data shows a ‘soft’
quench where the cavity recovers before the cavity be-
comes fully normal conducting. By comparison, in the
simulations we present later in this paper, we only model
‘hard’ quenches.

For the model of quench dynamics, we assume that
the intrinsic Q-factor of the cavity decays exponentially
during a quench as

Q0 (t) = Q0,NC + (Q0,SC −Q0,NC) e
− t
τq , (46)

where Q0,SC and Q0,NC are the superconducting and
normal-conducting Q0 respectively and τq is the quench
transition time. If we assume Q0,NC � Q0,SC , then we
can obtain

ln (Q0 (t)) ≈ ln (Q0,SC −Q0,NC)− t

τq
. (47)

By fitting a straight line to ln (Q0) vs time during the
quench transition (25 ms ≤ t ≤ 30 ms in Figure 2), we
estimate the quench transition time to be τq = 1.63 ms.
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FIG. 3. Frequency shift, δfcav (blue), and calculated Lorentz
Force detuning (red) vs time in the DQW PoP crab cavity
during a quench measurement at SM18, CERN.

C. Frequency shift

From the power amplitudes, we have been able to de-
termine U , VT and Q0 vs time. From the phase mea-
surement, we are able to determine the frequency shift
of the cavity during a quench. The frequency shift can
be calculated from any of the phase data, but we have
chosen to use φT . Given that φT is measured in degrees,
the frequency shift is given as

fcav,0 + δfcav =
1

360

dφT
dt

+ fLO, (48)

where fcav,0 is the cavity resonant frequency before the
quench, δfcav is the change in cavity frequency over time
and fLO is the local oscillator frequency. Figure 3 shows
the frequency shift, δfcav (blue), vs time. As can be
seen the frequency shift measured is very close to the
calculated detuning from the stored energy and the sim-
ulated detuning factor. This provides confidence that the
RF system is indeed frequency locked to the cavity fre-
quency. In the measurement data before the quench, the
cavity resonant frequency is measured to be 3.005 kHz
higher than the local oscillator frequency; this has been
subtracted from the data to only show the change in fre-
quency during the quench. From Eq. 24, we can calculate
the frequency shift due to Lorentz Force detuning (red),
given that the Lorentz detuning factor is measured to be
KL = −206 Hz/MV2 [4] for the DQW PoP crab cavity.

By plotting the frequency shift with the predicted
Lorentz Force detuning subtracted (Figure 4, blue curve),
we are able to observe the effect of other detuning mech-
anisms, such as pressure detuning as well as mechanical
vibrations in the cavity at several different frequencies;
although we cannot be certain that the oscillations later
in the pulse when the transmitted power is low are not
due to self-excited loop (SEL) instabilities. The effect

FIG. 4. Frequency shift with Lorentz Force detuning sub-
tracted (blue) and dissipated power (red) vs time in the DQW
PoP crab cavity during a quench measurement at SM18,
CERN.

of the pressure detuning coincides with the peak power
dissipation (red curve). The slow drop in frequency af-
ter 20 ms is due to a low frequency mechanical vibration
(10-20 Hz) and a higher frequency mechanical oscillation
(∼ 200 Hz) is also visible. The DQW PoP crab cavity’s
resonant frequency has a measured pressure sensitivity of
448 Hz/mbar [4]. The observed pressure detuning during
a quench of the DQW PoP cavity is 100-200 Hz. This
would give a pressure spike of 0.22-0.44 mbar, which is
consistent with the value of 0.23 mbar predicted by the
model in Section II-B.

Figure 4 shows the dissipated power, PC , in the cavity
vs time. The dissipated power peaks at approximately
1.85 kW at a time of 31.16 ms, which is consistent with
the suspected pressure detuning spike. Unfortunately,
there is no way to conclusively prove that the frequency
spike in Figure 4 is due to pressure detuning. However
the peak in power dissipation occurring at the same time
as the frequency spike strongly suggests that this is likely
due to pressure detuning.

D. Extrapolation to HL-LHC

As previously stated, the DQW PoP crab cavity has a
measured Lorentz Force detuning factor of -206 Hz/MV2

and a pressure sensitivity of 448 Hz/mbar. By compar-
ison, the dressed crab cavity that will be installed in
SPS has a measured Lorentz Force detuning factor of
-40 Hz/MV2 and a pressure detuning sensitivity factor
of -0.103 Hz/mbar [26]. These values are also expected
to be the same for HL-LHC.

Based on these measured values and the measured fre-
quency shift for the PoP cavity, we estimate a frequency
shift for SPS/HL-LHC due to Lorentz Force detuning of
∼ 460 Hz and a pressure detuning of ∼ 0.3− 0.6 Hz. For
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the PoP crab cavity, it was observed that Lorentz Force
detuning and its associated microphonics were the dom-
inant mechanism of frequency detuning; for SPS/HL-
LHC, it is expected to be even more dominant.

E. Choice of quench parameters for simulations

In reality, the dynamics governing the behaviour of a
quench is a very complex, multi-physics problem. As
such, the quench parameters can vary drastically from
one quench to another in the same structure. For exam-
ple, it is known that the quench transition time can vary
by several orders of magnitude, depending on the initial
location of the quench, due to the local physical and ther-
mal properties of the cavity as well as the cause of the
quench. For HL-LHC, quenches which occur on the or-
der of the bunch revolution period are considered to have
the highest potential to result in significant beam loss be-
cause they will cause every bunch to be scattered onto
different orbits; resulting in large betatron oscillations.
For very fast quenches, only a few bunches are likely to
be scattered, while all other bunches will remain on the
reference orbit; thus only limited beam losses would be
expected. Conversely, very slow quenches are also not a
problem because feedback systems within the HL-LHC
ring will correct the orbits of scattered bunches and any
particle losses will occur over many turns, by which point
the interlock system will have dumped the beam.

For the simulation studies described in the following
sections, we choose the worst-case scenario for quench
parameters and therefore choose a quench transition time
of τq = 10 µs, which results in the transverse deflecting
voltage taking approximately 1 revolution period of the
HL-LHC to go from nominal value to the post-quench
value (∼ 1 kV). We will use a Lorentz detuning factor
which is 5 times larger than the expected value to allow a
margin of safety in the simulations. Similarly we will also
use a pressure detuning factor which is a factor of 5 larger
as the detuning factor assumes a uniform pressure on the
cavity surface, the effect of a non-uniform pressure is less
predictable. For simulations at 4K, we use a significantly
higher pressure detuning factor to provide a frequency
shift of 4000 Hz, which is consistent with the observed
phase shift during a quench of the KEKB crab cavity [3].

IV. BEAM DYNAMICS STUDIES

Particle tracking simulations were undertaken in two
different ways. First, a method of transporting particles
using sector maps produced by MAD-X [27] and a second
method where the Matlab cavity simulation results are
read into the tracking code SixTrack [28], in order to
model the interaction between the cavity and the bunch
train.

In these simulations, we assume that only one crab cav-
ity has failed. In the cases where there are multiple crab

cavities (such as for HL-LHC) we assume all the other
cavities are ideal and do not have phase or amplitude
jitter.

A. Tracking with sector maps

A map refers to a transformation which describes how
the particle phase space distribution changes from one lo-
cation in a beam line to a location further downstream.
In circular machines, a one-turn map refers to the trans-
formation of the phase space distribution when the bunch
travels an entire revolution of the ring and a sector map
refers to the transformation of the phase space over some
part of the ring.

A first order map, often known as a transfer matrix,
can be expressed in index notation as

x
(1)
i =

∑
j

Rijx
(0)
j , (49)

where the superscripts 0 and 1 refer to the initial and final
coordinates respectively. For these studies, we consider
the first and second order tensors, in which case, the
transformation is written as

x
(1)
i =

∑
j

Rijx
(0)
j +

∑
j

∑
k

Tijkx
(0)
j x

(0)
k . (50)

If we now use a second sector map to transform the
beam from position ‘1’ to position ‘2’ and express in
terms of x(0), we obtain

x
(2)
i =

∑
j

∑
k R

(2)
ij R

(1)
jk x

(0)
k +

∑
j

∑
k T

(2)
ijk

(∑
lR

(1)
jl x

(0)
l

)(∑
lR

(1)
kl x

(0)
l

)
+

∑
j R

(2)
ij

(∑
k

∑
l T

(1)
jklx

(0)
k x

(0)
l

)
+O(x4)

(51)

Note in Eq. 51 that tracking through multiple second
(or higher) order maps introduces additional higher order
terms. In the sector map tracking, we truncate to second
order as these higher order terms are orders of magnitude
smaller than the first and second order terms and storing
these higher order terms will significantly increase the
required computing time to track particles over many
turns.

The particles are tracked from one crab cavity to the
next (or to the interaction points IP1 and IP5) and each
cavity is modeled as a thin kick by applying the angular
deflection from the cavity to the beam at the longitudinal
midpoint of the cavity. The tracking simulations using
sector maps shown in this article track 3 particles, which
initially lie on the reference orbit, but are longitudinally
at the head, centre and tail of the bunch.
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The use of sector maps is advantageous because it al-
lows the particles to be tracked very quickly by avoid-
ing the need to model every element in the beam line.
However, in a ring this technique does not allow us to
accurately predict beam losses as the particles are sim-
ply mapped from one location to another in a discrete
manner. Sector map tracking was used to qualitatively
study the cavity behaviour and the interaction between
the beam and the cavity.

B. Particle tracking in SixTrack

Particle tracking in SixTrack allows for a more detailed
analysis of the beam dynamics and losses, but requires
significantly more simulation time than the sector map
method. It works by tracking the particles element-by-
element through the lattice of the machines. Two ver-
sions of this code are available: The “standard” ver-
sion that only considers the deterministic particle dy-
namics [28–30], and the “collimation” version [31] which
also incorporates Monte-Carlo routines for scattering the
particles in the collimator jaws. This scattering is im-
portant for understanding the spatial distribution of the
losses, especially in the superconducting magnets.

In general, the “standard” SixTrack version was used
as no collimation setup was available for the SPS; here
the losses were computed by comparing {x, y} position
of each particle to the aperture at the aperture bottle-
necks. For the HL-LHC, where collimation input files
are available [32–34], the collimation version of SixTrack
was also run. The latter code also takes the material
of the bottlenecks (i.e. the primary collimators) into ac-
count, allows for scattering or absorption of the particles
using a Monte-Carlo method, and computes a loss map
along the ring. A comparison between the losses code
that only takes the bottlenecks into account, and the
SixTrack collimation version was performed. As shown
in Figure 15, the results are very similar, indicating that
only considering the aperture bottlenecks is a reasonable
approximation.

In the SixTrack simulations, each bunch in the bunch
train is treated separately, and the cavity voltage and
phase as a function of time are loaded from pre-calculated
files using the Dynamic Kicks functionality (DYNK) [35,
36], which updates the cavity parameters at the begin-
ning of every turn. The pre-calculated files were prepared
as described earlier in this paper.

All the simulations were run for a total of 120 turns,
where the cavity parameters are kept constant at their
“ideal” values for the first 20 (SPS) or 100 (HL-LHC)
turns, before the mentioned files are loaded. Note that
the plots only show what happened after the cavity pa-
rameters were “unlocked” and allowed to vary.

In the SixTrack studies, we neglect beam loading. For
HL-LHC, the bunch charge is approximately 18.4 nC and
the RF amplifier for the cavity can deliver a maximum
of 80 kW, from Eq. 40, we can estimate that for beam

loading to be comparable to the maximum RF power,
the full bunch train would need a transverse offset of ap-
proximately 4 mm. In reality, the expected offset is es-
timated to be of the order of 100 µm. Furthermore, the
assumption that the bunch train has a constant trans-
verse offset is unphysical. In reality, the transverse mo-
tion of the beam undergoes betatron oscillations, which
will cause the beam loading effect to cancel itself over
approximately 3 revolutions of the ring.

For both the HL-LHC and SPS cases, the particles in
each bunch were assumed to be distributed according to
a correlated bivariate Gaussian with tails in each plane
of the transverse phase space; the tails, representing 5%
of the total bunch population, were taken to have the
same distribution and were 1.8 times wider in {x, x′}
and {y, y′} as described in [8, 37]. The initial particle
distribution was matched at the injection point to the
transverse phase space using the given Twiss parameters,
dispersion, orbit, and emittance at the injection point;
for the transverse tails the phase space was scaled by the
given factor.

For the longitudinal phase space, an uncorrelated bi-
variate Gaussian distribution was used; here the bunch
length and energy spread were set to fill the bucket. The
energy spread was adjusted by hand in order to minimize
the oscillation in bunch length, something that occurs
when the distribution is not perfectly matched. Some
amount of this oscillation remained, however it is not
likely to have any considerable impact on the results as
the oscillation period (approximately 1

2 the period of the
synchrotron oscillations) is much slower than the pro-
cesses under study. In order to avoid simulating parti-
cles outside of the RF bucket, when generating the lon-
gitudinal distribution we check that the initial energy
and z-position of each generated particle was inside the
bucket, and generated new longitudinal coordinates for
any particles that did not pass this test until they did
pass; effectively cropping the distribution at the bucket
edge with an accept/reject Monte-Carlo generator.

In total, each bunch was represented by 60,000 parti-
cles, 40,000 for the core and 20,000 for the tail; the finer
sampling of the tails were used in order to improve the
beam loss estimates. Each bunch was generated from
a separate random seed, and the bunches were different
between the different machines but identical between dif-
ferent simulations of the same machine; i.e. the initial dis-
tribution of bunch 1 for HL-LHC was always the same,
and so on for the rest of the bunches and for the SPS
simulations. This allows comparison between the simu-
lations, subtracting the statistical noise from the effect
of the crab cavity.
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TABLE I. Key parameters of the SixTrack simulations for the
three machines.

SPS / 55 SPS / 120 HL-LHC
Optics name Nom. Q26 Nom. Q26 v1.2
Num. bunches 288 288 2810
Energy/p+ [GeV] 55 120 7000
Rev. time [µs] 9.7 9.7 88.9
εn H/V [µm] 3.1 /2.8 3.1/2.8 2.5/2.5
Tune Qx/Qy 26.13/26.18 26.13/26.18 62.31/60.32
Sync. tune 0.00805 0.00583 0.00212
CC plane V V V
βy at CC [m] 64.7 64.7 3760

∆y′ = qV
E

[µm] 55 25 0.43

∆y′/
√
εg/βy [σ] 2.02 1.36 1.97

V. RESULTS

A. Benchmarking with KEKB results

The motivation for this study was due to experimental
measurements of the crab cavities installed at KEKB [3].
During a quench, KEKB observed the crab cavity phase
shifting by up to 50◦ within 50 µs. Based on the pressure
detuning model described in Section II-B, in order to
achieve a phase shift of 50 degrees in 50 µs, a frequency
shift of 3-4 kHz is required (depending on parameters
of the LLRF and vacuum systems). Assuming that the
pressure sensitivity of the KEKB crab cavity is similar
to the HL-LHC cavity, a pressure spike of the order of
102 mbar would be required, which is consistent with the
expected pressure spike from the model.

The quench presented in reference [3] shows that the
klystron power begins to slowly increase approximately
800 µs before the quench is detected and the RF is
switched off. The beam is dumped approximately 400 µs
after the RF is switched off. For the presented quench,
appears that the pressure detuning rapidly increased at
approximately the same time as the RF was switched off.

Due to the unpredictable nature of a quench, there are
many variables, such as the location of the centre of the
quench, which can greatly alter the transition time of the
quench and the time at which pressure detuning becomes
significant.

In addition to the observed behaviour due to a quench,
microphonics were also observed at KEKB [3]. For the
KEKB crab cavities the microphonics affects the cav-
ity phase more than the amplitude and that it predomi-
nantly consists of a single frequency component. This is
generally true for SRF cavities because as shown in Eq. 7,
the RF phase is very sensitive to changes in frequency,
but the amplitude is not.

Figure 5 shows the results of a simulation of a KEKB-
like cavity during a quench. The simulation uses the HL-
LHC beam optics, but the KEKB crab cavity parameters
from [3], summarised in Table II. Hence the beam load-
ing will not accurately represent the true KEKB system;
but these studies still allow a qualitative interpretation

FIG. 5. Plot of the simulated cavity voltage and phase vs.
time during a quench for a KEKB-like cavity. The vertical
red line represents the start time of the quench.

of some of the key features observed in [3].

TABLE II. Comparison between the KEKB [3, 38] and HL-
LHC [1] Crab cavities

Cavity parameter KEKB HL-LHC
Beam energy [GeV] 8 7000
Transverse voltage [MV] 1 3
Resonant frequency [MHz] 509 400
Transverse R/Q [Ω] 50 400
Superconducting Q0 109 109

Normal conducting Q0 103 103

Qe 1× 105 5× 105

Operating temperature [K] 4 2
Quench transition time [µs] 10 10
LLRF parameters
Latency [µs] 1 1
Digital refresh time [ns] 25 25
Proportional controller gain (cp) 6.06 30.3
Integral controller gain (ci) 6.94×10−7 3.47×10−6

Amplifier Q 400 400
Maximum tetrode power [kW] 80 80
Signal to noise ratio 1000 1000
Detuning parameters
Lorentz (KL) [Hz/MV2] 200 200
Pressure (∆fp) at 4K [Hz] 4000 4000
Pressure (∆fp) at 2K [Hz] 100 100
Microphonics (∆fm) [Hz] 2000 2000
Mechanical frequency (ωm) [Hz] 900 900

In the simulation, the frequency shift due to pressure
detuning, which depends on the stiffness and geometry
of the cavity, was assumed to be ∆fp = 4 kHz, but is
consistent with measurements of other SRF structures,
given that the boiling LHe causes a pressure increase on
the cavity of 0.1-1 Bar [13, 14]. In Figure 5, the dis-
crete jumps in phase between 0.4-0.5 ms are due to beam
loading. As the cavity voltage is very low, the changing



13

FIG. 6. Plot of the simulated cavity voltage and phase vs.
time under the influence of microphonics.

voltage due to the beam can shift the phase rapidly.
The results from the simulations show that when the

RF is switched off, which is also assumed to be approx-
imately when the pressure detuning becomes significant,
the phase shifts by 80◦ in 50 µs; similar to the 50◦ in
50 µs measured at KEKB. In addition to the consistency
of the rate of change of phase between simulation and
measurement, the ramp down of the voltage amplitude
is also consistent. The time for the voltage to ramp down
is approximately 50 µs for both cases and the ‘kink’ on
the curve is consistent; the kink is dependent on QL and
rate of change of QL during a quench.

Figure 6 shows a simulation of the microphonics in
a KEKB-like cavity. The voltage amplitude varies by
approximately 1.5% and the time structure of the bunch
train is observed due to beam loading. The frequency
shift due to microphonics is assumed to be ∆fm = 2 kHz
and results in a phase oscillation of ∼ 4.5◦; the KEKB
studies measured a 4◦ phase oscillation, showing good
agreement.

B. Parameter studies

The benchmarking of the cavity quench model to mea-
surements from the KEKB crab cavities has shown that
the model can successfully reproduce the key features ob-
served during a quench. However, this does not provide
any insight into the factors which affect the cavity be-
haviour during a quench. In order to determine which
physical phenomena affect the cavity, a study was under-
taken that compares the simulation results when different
effects were included or omitted in the model. For the
simulations in this study, microphonics will be neglected
in order to make the quench behaviour easier to see in
plots. The cavity detuning is treated in exactly the same
way for all simulations, although the magnitude of pres-

FIG. 7. Plots of cavity voltage amplitude (top) and phase
(bottom) for a KEKB-like cavity at 4K during a quench, com-
paring the effects of the RF system and beam loading.

sure detuning depends on the temperature of the LHe
that we are simulating.

Table II shows the cavity, LLRF and quench param-
eters used during the studies in this paper. For these
studies, the quenching cavity is taken to be the crab cav-
ity further upstream of interaction point, IP1 (ATLAS),
for Beam 2. The bunch positions are taken at the centre
of this cavity during tracking simulations.

1. KEKB-like cavity

Figure 7 shows the amplitude and phase of the KEKB-
like cavity when the LHe temperature is 4K. This is a
comparison of the effects of including beam loading (BL)
in the simulation (BL on/off) and keeping the RF on or
off during a quench (RF on/off). Beam loading causes
rapid fluctuations in the cavity voltage phase after the
quench if the RF is switched off. Other than this, beam
loading has an extremely small effect on the cavity volt-
age because the RF system is able to compensate.

It can be seen that the change in phase during a quench
is reduced if the RF is kept on during a quench (green
line) compared to turning the RF off (black and red
lines). Figure 8 shows the same comparison as Figure 7,
but the LHe temperature is 2K and therefore superfluid.

By comparing the phase plots in Figures 7 and 8, it is
clear that the rapid phase shifts observed on the KEKB
crab cavities is due to the LHe temperature and switch-
ing off the RF during the quench. Figure 9 shows the
transverse position of the centre of the bunches vs. time
with the RF kept on (blue) or switched off (red) when the
quench is detected. The top plot shows the comparison
when the LHe temperature is 4K and the bottom plot
when the LHe is at 2K. These plots use the sector map
tracking method to provide a qualitative understanding.
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FIG. 8. Plots of cavity voltage amplitude (top) and phase
(bottom) for a KEKB-like cavity at 2K during a quench, com-
paring the effects of the RF system and beam loading.

FIG. 9. Transverse beam position during a quench in 4K LHe
(top) and 2K LHe (bottom) for a KEKB-like cavity, with the
RF kept on (blue) or switched off (red) when a quench is
detected.

In the top plot of Figure 9, particles are cut if the
transverse position exceeds ±20 mm; although this is not
the actual aperture of the KEKB crab cavities, this is a
reasonable aperture to assume for the optics used.

Table III shows the estimated number of particles
which survive 10 turns after the quench for the KEKB
case under different conditions. Only 3 particles are
tracked per bunch for the sector map tracking, situated
longitudinally at the head, middle and tail of the bunch.
Thus the values in Table III are only meant to qualita-
tively understand the impact on the beam due to a crab

TABLE III. Summary of fraction of particles surviving
10 turns after a quench of the KEKB-like cavity under differ-
ent conditions.

Simulation LHe at 2K LHe at 4K
RF on, BL on 40.08% 8.42%
RF off, BL on 51.92% 9.76%
RF on, BL off 40.05% 8.43%
RF off, BL off 51.89% 9.77%

FIG. 10. Plots of cavity voltage amplitude (top) and phase
(bottom) for an HL-LHC cavity at 4K during a quench, com-
paring the effects of the RF system and beam loading.

cavity failure.
As expected, beam loading causes a negligible effect

on the fraction of the beam which survives 10 turns.
However, counter-intuitively, keeping the RF on during
a quench causes more particle losses than switching it off
during a quench at both 2K and 4K. This can be ex-
plained by inspection of Figures 7 and 8. Although the
RF reduces the phase shift during a quench, it also keeps
the amplitude of the voltage higher for longer; hence pro-
viding more erroneous deflection to the bunch train for
longer. Therefore for the KEKB case, it is preferable to
protect the RF system and switch it off when a quench
is detected.

2. HL-LHC cavity

The same study was repeated for the HL-LHC cavity,
using the parameters in Table II. Figures 10 and 11 show
the cavity voltage and phase when cooled in 4K and 2K
LHe respectively, comparing the effects of beam loading
and keeping the RF on or off during a quench.

We note once again that beam loading has very little
effect on the cavity voltage except for causing jumps in
the cavity phase when the RF is switched off and only
after the quench. Therefore for all further simulations,
beam loading will be neglected. Figure 12 shows the
cavity phase for the HL-LHC crab cavity during a quench



15

FIG. 11. Plots of cavity voltage amplitude (top) and phase
(bottom) for an HL-LHC cavity at 2K during a quench, com-
paring the effects of the RF system and beam loading.

FIG. 12. Cavity phase vs. time during a quench for an HL-
LHC crab cavity under normal operating conditions.

under normal operating conditions. In the absence of
microphonics, the phase changes by < 1◦ with the RF
kept on and the LHe temperature at 2K.

Figure 13 shows the transverse beam position during
a quench when the LHe temperature is 4K (top) and 2K
(bottom). Due to the much higher energy of the HL-
LHC beam compared to KEKB, the beam, hence refer-
ence particle, experiences significantly less deflection.

C. SixTrack simulation results

For both the SPS and HL-LHC, 3 different cases were
studied with SixTrack. They will hereafter be named as
follows:

Const: The crab cavity voltage amplitude and RF phase
at the time of arrival for the ideal particle are con-
stant throughout the simulation. This is meant as

FIG. 13. Transverse beam position during a quench in 4K
LHe (top) and 2K LHe (bottom) for an HL-LHC cavity, with
the RF kept on (blue) or switched off (red) when a quench is
detected.

a reference of comparison for the other losses

NoFail: The crab cavity voltage and phase are constant
for 20 (SPS) or 100 (HL-LHC) turns in the begin-
ning of the simulation in order to make sure that
the beam has stabilized, and then follow a set of
pre-calculated values corresponding to a cavity ex-
periencing microphonics but no quench, being con-
trolled by an LLRF controller for the remaining
100 or 20 turns. The modelled cavity is a LHC-
type cavity at 2K, as described in Table II.

Fail: The crab cavity voltage and phase are constant in
the beginning of the simulation, and later follow a
set of pre-calculated values corresponding to a cav-
ity experiencing microphonics and then quenching
with presure detuning. The quench starts at 200 µs
after the “unlocking” of the crab cavity, and the
pressure detuning occurs after 250 µs. The mod-
elled cavity is a LHC-type cavity at 2K, as de-
scribed in Table II.

In all cases, the initial voltage and phase of the controlled
CC was set to 3 MV and 0◦ respectively. The time-
developement of the RF voltage and phase are shown in
Figures 14 (LHC) and 17 (SPS), for both the NoFail and
Fail scenarios. These plots start from the time where
the controlled cavity is “unlocked”, which is considered
as t = 0 and the beginning of turn 1. As shown in the
plots, in the NoFail scenario the voltage remains con-
stant at 3 MV ± 3 kV, while the swings within ±2◦ due
to microphonics, both for the SPS and LHC cases; for
the Fail scenario we see the same behaviour up to 200 µs
when the quench happens, the voltage then stays ap-
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proximately stable for 80 µs until it drops to zero within
60 µs, while the phase has an excursion up to 6.7◦ due
to a combination of the pressure and Lorentz detuning,
and microphonics.

1. HL-LHC machine

For the LHC, the cavity parameters were always con-
stant for the first 100 turns, and then controlled by the
LLRF system model for the last 20 turns. The voltage
and phase during these last 20 turns of the Fail- and
NoFail cases are shown in Figure 14.

HL-LHC version 1.2 optics and sequence for beam 1
was used [1, 39], which includes 4 cavities per beam
per IP per side. Only one of the crab cavities, named
“ACFCA.AL1.B1”, which is the cavity on beam 1 “up-
stream” of IP1 that is closest to the IP, was controlled
by the LLRF system and experienced the quench. All
other cavities were assumed to have a constant voltage
and phase; the other upstream cavities have a voltage
of 3.0 MV, while for the downstream cavities the volt-
age is matched using MadX [27] to 2.871 MV for IP1
and 2.902 MV for IP5, in order to minimize orbit error
through the ring during normal operation.

As mentioned previously, both collimation SixTrack
and the standard SixTrack with an external aperture
check was used to simulate the Fail and NoFail sce-
narios. This allowed comparing the losses between the
two cases, checking that the specially developed exter-
nal aperture check was functioning correctly, as the use
of this code was a neccessity for the SPS simulations.
Using the external aperture check, the particle popu-
lation was trimmed at the three primary collimators
“TCP.D6l7.b1”, “TCP.C6l7.b1”, and “TCP.B6l7.b1”,
which are located in IP7 and have an aperture of 5.7 σ
relative to a normalized emittance of 3.5 µm; equiva-
lently, the collimator aperture is 6.74 σ relative to the
actual normalized beam emittance of 2.5 µm. As seen in
Figure 15 (right), the two methods are quite comparable,
with the external aperture check predicting slightly larger
losses than the collimation version. This is expected as
the external check does not take particle scattering into
account, so that all particles touching the collimator are
lost. Furthermore, if the material of the primary col-
limators in the collimation simulation is changed from
carbon to a perfect black absorber, the predicted losses
are larger than those predicted by the external aperture
check. This is also expected since the collimation sim-
ulation takes the length of the collimators into account,
while the external aperture check only checks the losses
at a sigle plane. Finally, the losses are found to be on the
order of 3 · 10−5 of the full beam 10 turns after the fail-
ure, which is comparable to what has been seen in similar
simulations previously [33, 40]. This level of losses would
be survivable for the collimation system [8, 41]; however
this is greatly influenced by the betatron tune and the
phase advance between the failing crab cavity and the

primary collimators [33].
As seen in the upper plots of Figure 16, the cavity

failure creates a movement of up to ≈ ± 50 µm in the
vertical plane at the point of the cavity. As expected, the
frequency of the beam position oscillation is the vertical
betatron tune; and as seen in Figure 15 (left), this fre-
quency is also observed in the time profile of the losses,
where the beam touches a collimator jaw every 3 turns.
The centroid motion is caused by the phase error while
the cavity voltage has not yet dropped to zero; however
as this phase error is on the order of a few degrees, we ob-
serve a relatively small motion. In the horizontal plane,
the centroid motion is only ≈ ±2 µm; this motion is
caused by coupling from the vertical plane.

For the non-failed case there is still a movement up to
≈ ± 20 µm due to the phase variation.

For the vertical beam size, shown in Figure 16 (bot-
tom), we see that it increases from approximately 1.2 mm
to 1.45 mm, an increase of 20%. As discussed in more
detail in the analysis of the SPS data, this is caused by
different z-slices of the bunch seeing a different kick due
to the non-cancellation between the cavities creating and
closing the bump, and are thus traveling on different tra-
jectories. This results in the projection of the bunch onto
the y-axis being wider, and thus a larger vertical beam
size. The horizontal beam size remains constant within
1 µm in all cases.

2. SPS machine

The crab cavities have never been used in proton ma-
chines and is therefore crucial to ensure that there will be
no detrimental side effect for the beam in the HL-LHC
machine. With this in mind, a set of prototype vertical
crab cavities have been installed first in the SPS, and
served as a test-bed between May to November 2018.

Prior to the crab cavity installation, dedicated Ma-
chine Development (MD) studies were undertaken in or-
der to ensure good understanding of the SPS machine
and the limitation of its instruments. Due to the limited
available time for MDs, good preparation and planning
of the studies was essential.

The quenching of the SPS crab cavity was studied us-
ing the nominal (Q26) SPS optics, the main parameters
of which are summarised in Table I. The emittance was
chosen based on the initial emittance at 55 GeV [42].
Two different beam energies were studied, 55 GeV and
120 GeV, and for each energy, 3 simulations were per-
formed as discussed above. The controlled cavity was
the first crab cavity along the ring, and the second one,
installed 1.05 m later, was held a constant voltage of
3.0 MV and constant phase of 0◦.

In order to study the losses in the SPS, the two
aperture bottlenecks, the momentum scraper “TIDP”
and a beam dump “TIDV”, were included as described
above. The {H,V} apertures of these bottlenecks are
{41,15} mm for the momentum scraper, which corre-
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FIG. 14. Crab cavity voltage and phase as a function of time for the HL-LHC, both NoFail (left) and Fail(right) as defined in
Section V C. For the Fail scenario, the first vertical line (red) marks the beginning of the quench, and the second line (purple)
the time when pressure detuning becomes important.

FIG. 15. Losses in the HL-LHC as a function of time; both instantaneous losses (left) for the Fail scenario, and cumulative
losses comparing different scenarios and simulation techniques (right). The first vertical circle or line (red) marks the beginning
of the quench, and the second circle or line (purple) the time when pressure detuning becomes important for the Fail scenario.

sponds to a relative aperture of {19.8,13.06} σ; and
{42.5,20.4} mm for the beam dump, which corresponds
to {34.77,10.48} σ. The listed relative aperture values
are calculated for the 55 GeV case; for the 120 GeV case
the geometrical emittance is smaller and thus the rela-
tive aperture is even larger. No losses were observed from
either the core or the halo, in either aperture bottlenecks.

From Figure 18 (top left), we see that in the NoFail
case (orange line) there is a small oscillation, which is
due to the phase error caused by the microphonics which
causes the orbit to change adiabatically; the period is
approximately the same as the phase oscillation of cavity.
Comparing the Fail and NoFail (top right plot), we can
see that soon after the point where the cavity quenches,
the amplitude of the vertical oscillation increases rapidly.
Note that even for this case there are no losses observed

in the SPS simulation, as the apertures bottlenecks are
very large.

Unlike the vertical case, the horizontal centroid is con-
stant in time in both Const and NoFail cases. In the Fail
case, some very small oscillation is observed also in the
horizontal centroid; this is due to the coupling between
the vertical and horizontal planes that is introduced by
the sextupoles installed in the SPS lattice.

There is a clear increase in the vertical beam size
when the cavity quenches, as shown in Figure 18 (bot-
tom right); while for the NoFail there is little effect of
the phase oscillation (bottom left plot). The oscillation
in the Fail case is due to the head and tail of the bunch
having a similar y position. This is confirmed and ex-
plained by the evolution of the bunch shape shown in
Figure 19.
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FIG. 16. Vertical beam position (top) and size (bottom) at the controlled crab cavity in the LHC, comparing scenarios NoFail
vs. Const (left) and Fail vs. NoFail (right). For the Fail scenario, the first vertical line (red) marks the beginning of the quench,
and the second line (purple) the time when pressure detuning becomes important.

FIG. 17. Crab cavity voltage and phase as a function of time for the SPS, both NoFail (left) and Fail (right) as defined in
Section V C. For the Fail scenario, the first vertical line (red) marks the beginning of the quench, and the second line (purple)
the time when pressure detuning becomes important.

The frequency and amplitude modulation of the os- cillations of the vertical beam size observed in Fig-
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FIG. 18. Vertical beam position (top) and size (bottom) at the controlled crab cavity in the SPS / 55 GeV, comparing NoFail
vs. Const (left) and Fail vs. NoFail (right). For the Fail scenario, the first vertical line (red) marks the beginning of the quench,
and the second line (purple) the time when pressure detuning becomes important.

ure 18 (bottom right) after the quench is due to the z-
dependence of the closed orbit, which for a given particle
moves with the synchrotron oscillation. Particles that be-
fore the quench were at the head or tail of the bunch, after
the quench found themselves far away from their closed
orbit, and were thus effectively injected into a large am-
plitude betatron oscillation around this new closed or-
bit. When the head and tail are opposite in phase of
their betatron motions, this results in large σy when they
are furthest away from y = 0 (Figure 19, turn 40), and
small σy when they are both close to y = 0 (Figure 19,
turn 42). This causes the fast oscillation with frequency
equal to the betatron frequency, as seen in Figure 18 (bot-
tom right). As the particles that were originally (before
the quench) at the head and tail drift towards z = 0 due
to the synchrotron oscillation, their closed orbit moves
towards y = y′ = 0, adiabatically “dragging” the parti-
cles along. This means that their y-position is now only
caused by the the betatron oscillation, with little addition
contribution from the orbit. At the same time, the par-

ticles that were originally close to z = 0 are also moved
adiabatically outwards in {y, y′} phase space, resulting
in the betatron amplitudes not increasing as much. This
causes the modulation of the amplitude of the oscillation,
which is four times the frequency of the synchrotron tune.

For the horizontal beam size no clear effect of the fail-
ure is observed, apart from a very small oscillation which
is most likely due to the initial distribution not being
absolutely perfectly matched.

Similar behaviour is observed between the 55 GeV and
120 GeV cases. In both cases, the optics and thus the
betatron tune is the same, which leads to the oscillations
of the centroids staying in phase. The main difference is,
as expected, the amplitude of the oscillations and beam
sizes, as they scale linearly with energy. The other dif-
ference is the synchrotron tune, which is slightly faster
for the 55 GeV case. This also affects the oscillation of
σy, where the “minimum” that is discussed above comes
earlier for the 55 GeV case; this is consistent with the
explanation of this effect.
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FIG. 19. Projection of the particle population of bunch 1 into the {z, y} plane at 4 characteristic points in time, for the SPS
at 55 GeV failure case at the point of the crab cavity under study. Upper left: Turn 20, before the quench; Upper right: Turn
40, near the top of the first peak seen in the left-hand plots of Figure 18; Lower left: Turn 42, near the bottom of the first
minimum just after that peak; Lower right: Turn 65, near the stable region seen around 0.6 ms, where the y projection is quite
stable between different turns.

3. Comparison of the LHC and the SPS

The observed centroid motion of the bunch is due to co-
herent betatron motion; and as expected, the frequency
of the centroid motion is equal to the fractional tune.
This was confirmed by a bunch-by-bunch FFT on the
data. Given the difference in the fractional part of the
betatron tunes (see Table I), this causes the centroid mo-
tion as a function of the turn number to be much faster
in the LHC case.

The crab cavity failure in the SPS case is seen more
gradually by the beam than for the LHC case, as the
number of revolutions during the voltage collapse is larger
(the SPS voltage drops to 0 V within 8 turns, as op-
posed to less than 1 turn in the LHC case, see Figures 14
and 17).

Note that while the number of turns tracked after the
crab cavity failure is much larger in the SPS (100) than

for the LHC (20), the difference in revolution time (see
Table I) causes the actual time from the start of the
quench to the end of the simulation to be much larger
in the LHC case (LHC: 1.5 ms, SPS: 0.5 ms)

Comparing the effect of the maximum kick (V =
3.0 MV) on the beam, from Table I we see that for the
three cases the maximum kick ∆y′ is very different for the
different energies and thus beam rigidity. However the
betatron functions in the relevant plane are much higher
for the LHC case than for SPS, resulting in a magnified
effect on the beam. Thus when comparing the maximum
kick ∆y′ to 1 σ of angular displacement

√
εg/βtwiss, the

resulting normalized kicks are very comparable between
the 3 cases. However since in the SPS case the aperture
is much larger, we only see losses in the HL-LHC case.
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VI. CONCLUSIONS AND SUMMARY

In this article we present a model of an RF cav-
ity and include models of beam loading, the low-level
RF system, detuning mechanisms and superconducting
quenches. These results were bench-marked against ex-
perimental measurements of the KEKB crab cavities. Af-
ter successfully reproducing the key features from the
KEKB crab cavity studies, parameter studies were un-
dertaken to identify the causes of the rapid phase shifts
observed at KEKB. The same parameter study was also
undertaken for the HL-LHC crab cavity to model how it
would behave during a quench under different conditions;
this is essential for designing suitable machine protection
for the crab cavity system.

Full tracking studies with SixTrack were undertaken
to obtain a quantitative understanding of the expected
beam losses in HL-LHC and SPS due to a quench of
one of the crab cavities as well as the evolution of the

beam parameters. The results show the beam loss is
negligible for SPS and HL-LHC because the studies of
quench dynamics and RF have indicated that the crab
cavities would not be able to detune fast enough to deflect
the beam before it is dumped.

Further studies are envisaged to use the cavity model
described to study quenches of the HL-LHC accelerating
cavities and has been integrated into SixTrack as a mod-
ule for other applications. This now allows SixTrack to
communicate in a general way with external codes and
files.
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