Heavy Flavour Results from the Tevatron

B**, X(4140), B_s Lifetime, B_c Production, B⁺ F-B Asymmetry, D_s CP Violation, Dimuon Asymmetry

> lain Bertram Beach 2014, Birmingham, 24 July 2014

Orbitally & Radially Excited States

Orbitally & Radially Excited States

• B_c the most massive non-quarkonium meson

•
$$R_{\text{prod}} = \frac{\sigma(B_c^+) \cdot \mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}{\sigma(B^+) \cdot \mathcal{B}(B^+ \to J/\psi K^+)} = \frac{N(B_c^+)}{N(B^+)} \times \epsilon_{\text{rel}}$$

$$p_T(B_c^+) > 6 \text{ GeV},$$

$$|y| < 0.6$$
Production Semileptonic Decay

- Start with a J/ψ , add a third track (μ or K)
- Compare invariant mass distributions $M(J/\psi\mu^+)$ vs. $M(J/\psi K^+)$ Peaks at B^+ mass Fraction from B_c ? Normalization

CDF Note 11083

CDF B_c **Production Ratio**

$$R_{\rm prod} = 0.211 \pm 0.012^{+0.021}_{-0.020}$$

Search for X(4140)

- $B^+ \rightarrow J/\psi \phi K^+$: resonance $X(4140) \rightarrow J/\psi \phi$
 - Standard quark model does not predict a state at this mass
 - Decay suggests cc, but mass is above open charm threshold
- Reconstruct $B^+ \rightarrow J/\psi \phi K^+$ (where $J/\psi \rightarrow \mu \mu$ and $\phi \rightarrow KK$)
 - veto ψ(2S) and check for
 J/ψ + K or π structures
 - Fit for B⁺ yield in bins of M(J/ψKK)

- Status
 - First evidence at CDF (Y(4140)) at 3.8σ
 No evidence at Belle γγ → J/ψφ in but higher mass state reported No evidence at LHCb
 Evidence at CMS at >5σ

- Test theoretical predictions
 - Heavy Quark Expansion: $\tau(B_s^0)/\tau(B_d^0) = 1.00 \pm 0.01$ Phys. Rev. D **70**, 094031
 - ... most recent, Lattice inputs: = 1.001 ± 0.002 Lenz review, arXiv:1405.3601
 - –Need for understanding of complex B_{s^0} mixed system
- Target
 - Lifetimes of B_d^0 and B^+ measured to < 1% precision at B-factories
 - Updating latest DØ measurement (precision 3.7%) with full data set (0.4 \rightarrow 10.4 fb⁻¹)

- B_{s}^{0} lifetime depends on final state!
 - $-\Delta m_s = B_s^L B_s^H$ Mixing, mass eigenstates...
 - $-\Delta\Gamma_{s} = \Gamma_{s}^{L} \Gamma_{s}^{H} \dots \text{ with different lifetimes}$ $-\Delta\Gamma_{s} = \Gamma_{s}^{CP-even} \Gamma_{s}^{CP-odd} \text{ if no CP violation}$

$$\Gamma_s = \frac{\Gamma_s^L + \Gamma_s^H}{2}$$

define $\overline{\tau}(B_s^0) = 1/\Gamma_s$

- Lifetimes
 - $-B_s^0 \rightarrow J/\Psi f_0(980)$ Pure CP-odd, Only single lifetime, Γ_s^{CP-odd} , Γ_s^{H}
 - Pure CP-even, $\Gamma_s^{CP-even}$, Γ_s^{L} $-B_s^0 \rightarrow K^+ K^-$
 - $-B_s^0 \rightarrow D_s^- \mu^+ \nu$

 $-B_{s}^{0} \rightarrow J/\Psi \Phi$

- Flavour specific, 50% CP-even, CP-odd at t=0
- complicated mix of CP-even and -odd, complex analysis to extract.

- B_{s}^{0} lifetime depends on final state!
 - $-\Delta m_s = B_s^L B_s^H$ Mixing, mass eigenstates...
 - $-\Delta\Gamma_{s} = \Gamma_{s}^{L} \Gamma_{s}^{H}$... with different lifetimes $-\Delta\Gamma_{s} = \Gamma_{s}^{CP-even} \Gamma_{s}^{CP-odd}$ if no CP violation

define $\overline{\tau}(B_s^0) = 1/\Gamma_s$

Lifetimes

- $-B_s^0 \rightarrow J/\Psi f_0(980)$ Pure CP-odd, Only single lifetime, Γ_s^{CP-odd} , Γ_s^{H}
- $-B_s^0 \rightarrow K^+ K^-$ Pure CP-even, $\Gamma_s^{CP-even}$, Γ_s^{L}
- $-B_s^0 \rightarrow D_s^- \mu^+ \nu$ Flavour specific, 50% CP-even, CP-odd at t=0
- $-B_{s}^{0} \rightarrow J/\Psi \Phi$ complicated mix of CP-even and -odd, complex analysis to extract.

Bs

Vμ

- Reconstruct B_s⁰ using D_s⁻ with opposite signed muon.
- Single and dimuon triggers
 No IP based triggers
- Kinematic Requirements
 - μ^{\pm} with p_T > 1.5 GeV and p_{tot} > 3.0 GeV
 - $-\phi$: K[±] with p_T > 1.0 GeV and 1.08 ≤ m(KK) ≤ 1.32 GeV
 - − $D_{s:} \pi^{\pm}$ with $p_T > 0.7$ GeV and $1.6 \le m(\phi \pi) \le 2.3$ GeV
 - $B_{s:} 2.5 \le m(\mu D_s) \le 5.5 \text{ GeV}$

 $B_s^0 \to D_s^- \mu^+ \nu X$

 $\rightarrow \phi \pi^{-}$

 $\downarrow K^+K^-$

B_s Reconstruction

Reconstruct a D_s^- associated with a correct-sign muon

- f_{sig} from D_s mass fit, \mathcal{F}_{bckg} Mass sidebands and WS signal.
- Lifetime models: convolved exponentials, cc : Gaussians, combinatorial: multiple exponentials

- f_{sig} from D_s mass fit, \mathcal{F}_{bckg} Mass sidebands and WS signal.
- Lifetime models: convolved exponentials, cc : Gaussians, combinatorial: multiple exponentials

$\tau (B_s^0)_{\rm fs} = 1.479 \pm 0.010 \pm 0.021 \text{ ps}$ $R = \tau (B_s^0)_{\rm fs} / \tau (B_d^0) = 0.964 \pm 0.013 \pm 0.007$

$$\tau(B_s^0)_{\rm fs} = \frac{1}{\Gamma_s} \frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2}$$

- Measurement precision better than previous world average
- DØ working on $B^0_s \rightarrow J/\psi f_0(980)$ Pure CP-odd
- Stay tuned!

D0 Note 6442-CONF

B[±] F-B Asymmetry

- Forward-backward asymmetry may probe for new physics.
- D0 uses $B^{\pm} \rightarrow J/\Psi K^{\pm}$ to probe asymmetry of b-quarks.

 $A_{FB} = \frac{N_F - N_B}{N_F + N_B}$ Forward: b-quark in same direction as proton anti-b in same direction as anti-proton

D0 Note 6441-CONF

NCASTER

B[±] F-B Asymmetry

Unblinded projections: <u>D0 Note 6441-CONF</u>

 $A_{FB} = \left[-0.26 \pm 0.41 \pm 0.17\right]\%$

Theory systematics to come: different PDFs, renorm. scale. etc₂₀

b-jet F-B Asymmetry

 Possible larger than expected F-B asymmetry in top events suggests possible hint new physics.

Direct CPV in $D_s^{\pm} \rightarrow \phi \pi^{\pm}$

- Motivation:
 - Direct CP violation can occur if tree and loop (penguin) can interfere with different strong and weak phases
 - No CP violation is expected in decay $D_{s^{\pm}} \rightarrow \phi \pi^{\pm}$ (all process have same weak phase)
 - Non-zero value implies new physics
- Motivation
 - Assume zero-CPV in many other analyses:

e.g.: $B^0_s
ightarrow \bar{B}^0_s
ightarrow D_s \mu \nu$ CPV in mixing

CPV in mixing Production asymmetry (LHCb)

 $\sigma(D_s^{\pm})$

• Experimentally measure

$$A_{D_s} = \frac{N_{D_s^+} - N_{D_s^-}}{N_{D_s^+} + N_{D_s^-}},$$

Phys. Rev. Lett. 112, 111804 (2014)

23

• CP violation in mixing: $\Gamma(B^0_{(s)} \to \bar{B}^0_{(s)} \to \mu^- X) \neq \Gamma(\bar{B}^0_{(s)} \to B^0_{(s)} \to \mu^- X)$

Reduce syst.

Measure via

$$A = \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}$$
 Constrain backg. Reduce syst.

$$\mathbf{h}_{sl}^{b} = \frac{N_b(\mu^+\mu^+) - N_b(\mu^-\mu^-)}{N_b(\mu^+\mu^+) + N_b(\mu^-\mu^-)}$$

Correct for backgrounds, fraction from b's

Inclusive single muons

 $a^{\mathrm{raw}} = rac{n(\mu^+) - n(\mu^-)}{n(\mu^+) + n(\mu^-)}$

Mostly background

Asymmetry is a linear combination semileptonic charge asymmetries of B_d^0 and B_s^0 $A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s ; \qquad a_{sl}^b = \frac{\Gamma(B \to \mu^+ X) - \Gamma(B \to \mu^- X)}{\Gamma(\overline{B} \to \mu^+ X) + \Gamma(B \to \mu^- X)}$

Dimuon: 2011 Result

 $A_{sl}^b = (-0.787 \pm 0.172(\text{stat}) \pm 0.093(\text{syst}))\%$

- 9.0 fb⁻¹ \rightarrow 10.4 fb⁻¹
- More detailed study of asymmetry dependence on impact parameter (IP) on each muon
- More detailed study of asymmetry dependence on muon (p_T, η)
- Another cross check using independent alternative way to measure background
- Additional CP-violating process included to interpret result CPV in interference of decays w/ and w/o mixing & special decay class

Dimuon Charge Asymmetry

More backgrounds due to $K \rightarrow \mu, \pi \rightarrow \mu$ which result in an asymmetry since $\sigma(K^-N) > \sigma(K^+N)$

Similar result if bin in (η , p_T) where there are 27 independent bins

 $a_{CP} = a_{raw} - a_{det}$

Dimuon Charge Asymmetry

More backgrounds due to $K \rightarrow \mu, \pi \rightarrow \mu$ which result in an asymmetry since $\sigma(K^-N) > \sigma(K^+N)$

IP=1

IP=2

IP=3

PRD 87, 074020 (2013)

Dimuon Charge Asymmetry

Dimuon Charge Asymmetry

- Interpretation & results
 - Sensitive to $\Delta\Gamma_d/\Gamma_d$
 - Fix to WA $\Delta\Gamma_d/\Gamma_d = 0.015$
 - Deviation now only 1.9σ

Summary

- DØ has a well understood detector & dataset with well developed analysis techniques.
 - small levels of pile-up
 - p-anti-p CP symmetric initial state
 - regular flipping of magnet polarities
- Still producing results with LHC in niche areas.
 - new tests of CPV and FB asymmetries
 - Leaving Dimuon charge asymmetry puzzle
 - New Physics
 - Is $\Delta \Gamma_d / \Gamma_d$ the solution?

Backup Slides

L-Excited B Mesons

Orbitally & Radially Excited States

		arXiv:1309.5961
	$m~({ m MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$
B_1^0	$5726.4 \pm 0.8 \pm 1.3 \pm 0.4$	$20 \pm 2 \pm 5$
B_2^0	$5736.6 \pm 1.2 \pm 1.2 \pm 0.2$	$26 \pm 3 \pm 3$
B_1^+	$5726 \pm 4 \pm 3 \pm 2$	$42~\pm11~\pm13$
B_2^+	$5737.1 \pm 1.1 \pm 0.9 \pm 0.2$	$17 \pm 6 \pm 8$
B^0_{s1}	$5828.3 \pm 0.1 \pm 0.1 \pm 0.4$	$0.7\ \pm 0.3\ \pm\ 0.3$
B^0_{s2}	$5839.7 \pm 0.1 \pm 0.1 \pm 0.2$	$2.0\ \pm 0.4\ \pm\ 0.2$
$B(5970)^{0}$	$5978~{\pm}~5~{\pm}12$	
$B(5970)^{+}$	$5961~\pm~5~\pm12$	

• See body of talk for comparison of masses with model predictions

b

L=0 "atomic" system, heavy quark and light *diquark*

spin-0: Λ_b

spin-1: Σ_{h}

• pre-Tevatron, only ground state Λ_b

...at the Tevatron

Phys. Rev. D 89, 072014 (2014)

• More statistics, measure properties with more precis

2006

2b

uuu

 Σ^+

 \varDelta^{++}

J = 3/2 b Baryons

Two data-sets:

- Decays to $J/\psi \rightarrow \mu^+\mu^-$: provides trigger (w/ no lifetime bias) $\rightarrow \Lambda K$ Reference modes $\Lambda_b/\Xi_b/\Omega_b \to J/\psi + \Lambda/\Xi^-/\Omega^ B^+ \to J/\psi K^+$ $B^0 \rightarrow J/\psi K^{*0}/K_S^0$
- Decays to c baryons: two-track displaced hadron trigger (lifetime biase

 $\Xi_b^{-/0} \to \Xi_c^{0/+} \pi^{-/+} \qquad \Omega_b \to \Omega_c^0 \pi^+ \\ \downarrow \Xi^- \pi^+ (\pi^+) \qquad \qquad \downarrow \Omega^- \pi^+$

 Track long charged decay lengths Ξ^{-} and Ω^{-} in silicon detector

 $c\tau = 4.9 \,\mathrm{cm}$, $2.5 \,\mathrm{cm}$

Phys. Rev. D 89, 072014 (2014)

Phys. Rev. D 89, 072014 (2014)

c.f. LHCb (arXiv:1402.6242)

 $\tau(\Lambda_b) = 1.479 \pm 0.009 \pm 0.004 \,\mathrm{ps}$

WA and comparisons in backups

CDF Public Note 11024

First evidence of this decay mode $(3.3 - 3.6\sigma)$

 $M(\Xi_c^0) - M(\Xi_c^+) = 3.11 \pm 0.33 \pm 0.07 \,\text{MeV}$ $M(\Xi_b^-) - M(\Xi_b^0) = 2.5 \pm 5.4 \pm 0.6 \,\text{MeV}$

Isospin splitting (*u* and *d* quarks)

±0.030 ps

±0.040 ps

Backup Bs Lifetime

$$B_{s}^{0} \rightarrow D_{s}^{-}\ell^{+}\nu X$$
If fit with a sine
$$\tau(B_{s}^{0})$$

$$\tau_{H} = \frac{1}{\Gamma_{H}}$$

$$\tau(B_{s}^{0})$$

$$\tau(B_{s}^{0})_{\text{fs}} [\text{ps}]$$
Difficult to constant of the stable of the stable

If fit with a single exponential, measure:

$$\tau(B_s^0)_{\rm fs} = \frac{1}{\Gamma_s} \frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2}$$

Difficult to distinguish two exponentials in a stable fit...

B_s Reconstruction

Reconstruct a $D^-_{\!s}$ associated with a correct-sign muon

B_s Lifetime Systematics

- Decay length resolution
 Replace double-Gaussian model with single + exponential tails
- Combinatorial Background Use single samples (each of mass side-bands, wrong-sign)
- K factors

Use different MC, vary composition and relevant lifetimes within uncertainties

- Non-Combinatorial Background Vary composition within uncertainties
- Detector Alignment
 - Use different silicon microvertex detector alignment files with sensors moved within uncertainties
- Signal fraction

Varied within uncertainties from mass fit, different mass models

Uncertainty source	B_s^0 (µm)	B^0 (µm)	ΔR
Resolution Model	0.7	2.1	0.003
Combinatorial Background Model	5.0	4.9	0.001
K-factor determination	1.6	1.3	0.006
Non-Combinatorial Background	2.6	2.0	0.001
Signal Fraction	1.0	1.8	0.002
Alignment of the detector	2.0	2.0	0.000
Total	6.3	6.4	0.007

B[±] F-B Asymmetry

 Correlation between parent b-quark and reconstructed B meson from MC@NLO. About 80% of the time, the B meson tracks the parent b-quark.

B [±] F-B Asymm	LANCASTER UNIVERSITY
BDT Variations	0.14%
Fit Variations	0.080%
Polarity Weighting	0.0001%
Detector Asymmetries	0.058%
Systematic	0.17%
Statistical	0.41%
Total	0.44%

Determination of the raw asymmetries: $D^{\pm} \rightarrow \phi \pi^{\pm}$

Decay Mode	Yield
$D^{\pm} \to K^0_{\rm s} \pi^{\pm}$	4834440 ± 2555
$D_s^{\pm} \to K_s^0 \pi^{\pm}$	$120976\pm\ 692$
$D^{\pm} \to K^0_{\rm s} K^{\pm}$	1013516 ± 1379
$D_s^{\pm} \to K_s^0 K^{\pm}$	1476980 ± 2354
$D^{\pm} \rightarrow \phi \pi^{\pm}$	7020160 ± 2739
$D_s^{\pm} \to \phi \pi^{\pm}$	13144900 ± 3879

[%]	
Asymmetry	Total
$\mathcal{A}_{ ext{meas}}^{D^{\pm} ightarrow K_{ ext{S}}^{0}\pi^{\pm}}$	-0.95 ± 0.05
$\mathcal{A}_{ ext{meas}}^{D_s^{\pm} ightarrow K_{ ext{S}}^0 \pi^{\pm}}$	-0.15 ± 0.46
$\mathcal{A}_{ ext{meas}}^{D^{\pm} ightarrow K_{ ext{S}}^{0} K^{\pm}}$	$+0.01\pm0.19$
$\mathcal{A}_{ ext{meas}}^{D_s^\pm o K_{ ext{S}}^\pm imes ime$	$+0.27\pm0.11$
$\mathcal{A}_{\mathrm{meas}}^{D_s^{\pm} \to \phi \pi^{\pm}}$	-0.41 ± 0.05

Angelo Carbone

Beauty 2014, Edinburgh 14th -18th July

Additional Source of CPV in Like-Sign Dimuons

Borissov, Hoeneisen, arXiv:1303.0175v1 [hep-ex], Understanding the like-sign dimuon charge asymmetry in pp(bar) collisions

but due to interference between mixing and decay in *B* system:

$$\Gamma(B^0 \to D^+ D^-) \neq \Gamma(\bar{B}^0 \to D^+ D^-) \qquad \mathcal{A} = -\sin(2\beta) \frac{x_d}{1 + x_d^2}$$
$$\mathcal{A}_{\rm CP}^{\rm mix}(SM) = (-0.8 \pm 0.1) \times 10^{-4}$$
$$\mathcal{A}_{\rm CP}^{\rm int}(SM) = (-3.5 \pm 0.8) \times 10^{-4} \checkmark \text{additional}$$

LANCASTER

Dimuon Charge Asymmetry

 Average of all three D0 semi-leptonic charge asymmetries

$$\begin{split} a_{\rm sl}^s &= (-1.33 \pm 0.58) \,\%, \\ a_{\rm sl}^d &= (-0.09 \pm 0.29) \,\%, \\ \Delta \Gamma_d / \Gamma_d &= (+0.79 \pm 1.15) \,\%, \\ \rho_{s,d} &= -0.34, \quad \rho_{d,\Delta\Gamma} = +0.24, \\ \rho_{s,\Delta\Gamma} &= +0.55. \end{split}$$

 3.1σ deviation from SM

- Direct Measurements of a^d_{sl} = (+0.23 ± 0.26)%
 - Previous B-factory results HFAG arXiv:1207.1158 (-0.05 ± 0.56)%
 - DØ: PRD 86, 072009 (2012) (+0.68 ± 0.47)%
 - BaBar: PRL 111, 101802 (2013)
- Direct Measurements of $a_{sl}^s = (+0.50 \pm 0.52)\%$
 - DØ: PRL 110, 011801 (2013) (-1.12 ± 0.76)%
 - LHCb: PLB 728C (2014)

 $(-1.12 \pm 0.76)\%$ $(-0.06 \pm 0.63)\%$

 $(+0.06 \pm 0.38)\%$

- Direct Measurements of $\Delta\Gamma_d/\Gamma_d = (-0.4 \pm 2.0)\%$
 - Previous B-factory results, HFAG, arXiv:1207.1158 (+1.15 ± 1.80)% (Belle, BaBar, [DELPHI])
 - LHCb: JHEP04(2014)114

 $(-4.4 \pm 2.7)\%$

• Dimuon Charge Asymmetry (see talk)

