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Abstract

In spatial queues, servers travel to the customers and provide service on the scene. This property makes them
applicable to emergency response (e.g. ambulances, police) and on-demand transportation systems (e.g. paratransit,
taxis) location problems. However, in spatial queues, there exist a different service rate for each customer-server
pairs which creates Markovian models with enormous number of states and makes these approaches difficult to
apply on even medium sized problems. Because of demand uncertainty, the nearest servers to a customer might
not be available to intervene and this can significantly increase the service times. In this paper, we propose two
new aggregate models and an approximate solution method with a dynamic programming heuristic. Results are
compared with existing location models on hypothetical and real cases.

1 Introduction

Emergency response systems and on-demand transportation systems are important for modern societies. The former
protect public health, provide assistance and ensure safety whereas the latter provide services in areas with low
passenger demand, where regular services are economically infeasible. Although both systems have low demand rates,
the service availability is an important aspect for them. The service should be available when it is needed in an
acceptable time. They should provide adequate coverage with rapid and reliable response times (Wisborg et al., 1994)
while staying inside limited budgets. According to Emergency Medical Services (EMS) Systems Act, 95% of requests
should be served within 30 minutes for rural areas and 10 minutes for urban areas (Ball and Lin, 1993).

Usually both emergency response and on-demand transportation systems have low demand to service ratio. The
total demand is lower than the sum of available service capacity of the servers. However, these systems still experi-
ence congestions and even unavailabilities because of the stochastic structure of the demand and their performance
decreases. In 2000, London Ambulance Service (LAS), which is one of the largest emergency response fleet with over
400 ambulances in Europe, was sued because of its high response times (Harpwood, 2000). In New York City, in 1999,
12779 taxis served about 240 million passengers (Schaller, 2006). Both emergency and on-demand transportation sys-
tems are highly variant and congested systems and need to be managed efficiently. For instance, deciding the borders
of service regions and number of paratransit vehicles needed in each region for a required service rate is an interesting
and important question for these systems.

2 Literature Survey

The early models in the literature dealing with the location of emergency response systems assume deterministic
demand. Median problems locate the facilities on candidate locations or the Euclidean space to minimize average
distance. The p-median problem (Hakimi, 1964), the Fermat-Weber problem (Weber, 1909) with its multifacility
version (Cooper, 1963) are the initial location allocation based models in the literature used to deal with emergency
response systems.

Coverage models are used to locate facilities on candidate locations to maximize total coverage and/or minimize
number of facilities. Toregas et al. (1971) and Church and ReVelle (1974) take different aspects of this problem into
consideration. Daskin (1983) and Batta et al. (1989) expands the two former deterministic models and add an explicit
“availability” probability for the servers to model stochastic nature of the problem.

The first model that embeds a queuing theory to calculate implicit availability for the servers is the hypercube
queuing model (HQM) (Larson, 1974). This model is suitable to analyze systems with a spatial queuing character-
istic such as emergency, on-demand transportation, neighborhood services, door-to-door pickup and delivery systems
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(Larson and Odoni, 1981). The HQM is a descriptive model and provides system performance measures for given
demand and server locations Galvão and Morabito (2008).

The HQM (Larson, 1974) considers that time spend on the way to incident is negligible compared to service time
on scene and assumes total service time is independent of the distance between the incident and server which is a fair
assumption for fire brigades but not for ambulances or taxis. This simple model creates 2n states for n servers. In
order to cope with larger cases, Larson (1975) proposes a heuristic method. Atkinson et al. (2008) assume two different
service rates (i.e. intra and interdistrict) for each server according to demand they served and propose a model with
3n states. Recently Iannoni and Morabito (2007) and Iannoni et al. (2008) embed hypercube in a genetic algorithm
framework with multiple dispatch (i.e. more than one server may be needed for an incident) option. Geroliminis et al.
(2009) and Geroliminis et al. (2011) integrate location and distracting in the same framework and solve problem with
steepest descent and genetic algorithms.

3 Hypercube Queuing Models

The HQM models include hypercube in their names because of the shape of the transition graph of the Markov chains
used to represent these models. In Larson (1974)’s hypercube model each server is either available (0) or busy (1) and
each state is a number in base 2. In Atkinson et al. (2008)’s model, number of states increases to three: available(0),
busy with intradistrict (1) and busy with interdistrict (2). In both cases number of states is an exponential function
of the number of servers (n), 2n and 3n respectively.

In order to deal with exponential number of states, we propose to model the problem in an aggregate way. In the
two proposed extended hypercube queuing models (EHQM), a new structure called bin is introduced. Instead of taking
each servers’ state separately, the servers that are close to each other form structures called bins and state structure
of the system is kept in bin level (e.g. the state variables contain number of available servers in each bin instead of
each available server). With this modification, number of states becomes an exponential function of the number of

bins and not the number of servers. The number of states for new models are
∏

i
(ni + 1) and

∏

i

(

ni + 2

2

)

for 2n and

3n EHQM respectively where ni is the number of servers assigned to bin i. The details of these extended models can
be seen in Boyacı and Geroliminis (2011).

Although the new two EHQMs have less states than simpler HQM models, the number of states is still too high
to be applicable to real life problems. Specifically 3n EHQM is more representative since it assumes different service
rates for different bin-demand pairs however has more states. Therefore, we propose to use these models in some
approximation algorithms to deal with real life instances. However, before going into details of this, we want to show
the performance of our model and compare them with the maximal expected covering location problem (MEXCLP)
Daskin (1983) formulation. MEXCLP is selected in this comparison since it (i) is simple to implement, (ii) takes
probabilistic nature of the problem into consideration and (iii) has no parameters to fine-tune.

4 Performance of Extended Hypercube Queuing Model

In order to measure performance of the proposed 3n EHQM, we have generated scenarios with different parameters (i.e.
demand distribution, demand ratio, coverage distance, on scene service time). In each scenario, the model distributes
12 identical servers to four candidate locations to minimize total loss rate. Each scenario is solved both with MEXCLP
and 3n EHQM. In order to convert EHQM to an optimization model, an iterative procedure is implemented that solves
a 3n EHQM for each possible configuration of servers and reports the solution with the minimum lost rate.

In order to have an unbiased comparison, the two approaches are compared with a discrete event simulation which
simulates a spatial queuing system of type M/D/12/12/∞ with slight differences. The interarrival time of incidents
are exponentially distributed whereas the service time is fixed and has a different value for each server-region pair, i.e.,
a system with stochastic demand rate but fixed service time. A single service time equals to sum of travel and on-scene
service times. The former is a function of Manhattan distance between the region served and the server dispatched,
and latter is a fixed predefined value. The queue size is zero and a demand that cannot be served by an available server
is lost. The parameters and the two demand distribution used in experiments can be seen in Figure 1. Note that, each
unit box in the figure is a subregion and creates a demand with some predefined rate. The total demand in the system
has three different values (20,40,60) and distributed between these subregions accordingly. The area shown with the
color red has higher demand than the area shown with color green and two different demand ratios (0.5 and 0.75) are
used in the experiments. The subregions with a cross are candidate locations that servers can placed. The comparison
of lost rate ratio to total demand and average service rate per server of the two approaches for these 24 scenarios can
be seen in Figure 2.
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X X X X

demand distribution: type 1 and 2
total demand rate (# of incidents / hour): 20, 40 and 60

demand ratio between regions: 0.5 and 0.75
on scene service time (minute): 5 and 10

number of servers: 12
server speed (unit distance/minute): 1

server coverage distance (unit distance): 5

demand
distribution
of type 1

X X X X

demand
distribution
of type 2

Figure 1: Parameters used to compare the performance of 3n EHQM and MEXCLP
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Figure 2: The comparison of lost rates and average service rates (per server) of 3n EHQM and MEXCLP

As it can be seen in the graphs given in Figure 2, 3n EHQM outperforms MEXCLP in both performance measures.
The difference is more significant in the lost ratio graph since it is taken as the parameter to be optimized in the
iterative procedure of 3n EHQM. We can also observe that, the difference between methods are more in low demand
rates.

5 Conclusions and On-Going Work

In this paper, two new hypercube queuing models that extend the existing two models (Larson, 1974; Atkinson et al.,
2008) are proposed. We also compare the performance of one of the two models, namely 3n EHQM, with a method
from the literature, MEXCLP Daskin (1983). The results show 3n EHQM significantly outperforms MEXCLP.

On our on-going work, we have already modeled an approximation algorithm that firstly partitions the whole
problem area into manageable subareas. Then this approach merges each subarea iteratively by taking servers that
can serve other subareas into consideration. We have also implemented a dynamic programming heuristic that locates
predefined number of servers on candidate locations. We have started to test the model and heuristic, and the
preliminary results are promising. The partitioning merging and dynamic programming will be presented in the full
paper.
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