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Why study Katla? Project aim
Katla is one of Iceland’s most dangerous volcanoes. Eruptions tend to be very explosive but also occur relatively frequently (on average -

twice per century?). However, Katla has not erupted since 1918. This is now the longest gap between eruptions since historical records began?.

This coupled with recent unrest3, probably triggered by the recent eruption of Katla’s neighbour, Eyjafjallajokull in 2010, might mean that an

eruption at Katla is imminent.

We will conduct a forensic study of the
1918 deposits to reconstruct eruption dynamics.
Recent studies have provided evidence that some
subglacial eruptions (e.g. the intermediate 2010
Eyjafjallajokull eruption®> and the 70 ka rhyolitic
eruption at Torfajokull®) may have been driven by
volcanic gasses rather than ice interaction. Is the
same true for the basaltic 1918 eruption of Katla?
There is also evidence that rapid depressurisation
may trigger explosive activity (e.g. Gjalp 1996/
and the 70 ka Dalakvisl eruption®). By examining
the fragmentation mechanism and syn-eruptive
pressure changes of the 1918 eruption, we hope
to gain understanding of what controlled
explosivity during the 1918 eruption of Katla
which we hope will then help to mitigate the
hazards relating to the next Katla eruption.

Predicting the behaviour of the next Katla eruption

Katla is a large, predominantly basaltic edifice that lies
underneath the Myrdalsjokull glacier in south Iceland (Figs. 1,2).
L S Although in the past Katla has produced rhyolite (e.g. the 7.5 ka
— eruption) and fissure eruptions that have extended out under
e = the glacier (e.g. the 934—40 A.D. Eldgja eruption), the past ~750

B | . years of Katla activity have been dominated by large explosive
| subglacial basaltic eruptions, that produce vast quantities of
tephra and powerful jokulhlaups (glacial floods)*. Based on this
eruptive history, if Katla does erupt again in the near future, the
most likely scenario will be another large explosive subglacial
basaltic eruption.

Sampling jokulhlaup deposits

Melting of ice during the 1918 eruption triggered one of the worlds
greatest historic floods®. > 8km3 of meltwater was generated!?, flooding an
area of 600-800 km? 1!, with a discharge rate of >300,000 m3 st 10, The
meltwater also transported icebergs (Fig. 3), giant boulders (Fig. 4), and a
huge amount of tephra from the eruption, extending the coastline by 3
km?0, Th.e jokulhlaup deposits (Fig. 1) are still visiI.oIe in sate!lite images hotstage experiments. The other half was thin
today (Fig. 2). We collected four samples from different units'? of the = sectioned. Thin sections were also made of

JI\'cjllflljlila’ulp .depz)Fs-lt, |;\ 2a) vertical profile (Fig. 5) that was exposed by the representative clasts from the 2000-4000 pm, 250-
ulakvisl river (Figs. 1,2).

Analytical procedures

All samples were dried, then sieved. From
the 8000-16000 um clast size, some representative
clasts were chosen and dissected. Half of each
clast was retained for Thermogravimetric Analysis
(TGA), Fourier Transform Infrared (FTIR) and

500 um and <63 um clast sizes.
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Sampling air-fall tephra

Within two hours of the eruption start, a chimney had been
melted through the glacier allowing tephra to also be ejected into the
atmospherel® (Fig. 6). An eruption column 14 km high was produced,
depositing ash over half of Iceland. Air-fall tephra is best preserved
on the Myrdalsjokull glacier. We collected various samples from the
Solheimajokull glacier tongue (Figs. 2,7), including a profile where six
discrete layers could be observed (Fig. 8).
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within the conduit (¥40 m
depth) and/or post quenching
hydration.

distributions is caused by a change in the
predominant wind-direction.

TGA

Total volatile loss determined by weight change on heating, broadly agrees with the FTIR data (Fig. 10); clasts taken from the air-fall deposit
have less total volatiles than those from the jokulhlaup deposits. It could be argued that within the jokulhlaup deposits, there is a slight decline
of volatile concentrations with elevation, however, the difference is not significant enough to rule out natural variation and so more analyses are
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