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Maximum amplitude of limit cycles in Liénard systems
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We establish sufficient criteria for the existence of a limit cycle in the Liénard system ẋ = y − εF (x),ẏ = −x,
where F (x) is odd. In their simplest form the criteria lead to the result that, for all finite nonzero ε, the amplitude
of the limit cycle is less than ρ and 0 � a � ρ � u, where F (a) = 0 and

∫ u

0 F (x)dx = 0. We take the van der
Pol oscillator as a specific example and establish that for all finite, nonzero ε, the amplitude of its limit cycle
is less than 2.0672, a value whose precision is limited by the capacity of our symbolic computation software
package. We show how the criterion for the upper bound can be extended to establish a bound on the amplitude
of a limit cycle in systems where F (x) contains both odd and even components. We also show how the criteria
can be used to establish bounds for bifurcation sets.
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I. INTRODUCTION

Oscillatory phenomena occur widely in nature [1] and they
also arise in engineered systems [2]. Some of the simplest
mathematical descriptions of nonlinear sustained oscillations
are based on limit cycles in second-order systems [3]. An area
of early research in relation to specific nonlinear systems was
the identification of whether limit cycles could occur and, if
so, the determination of their amplitude and frequency [4–6].
The behavior of coupled systems of nonlinear oscillators has
also attracted attention, particularly since the development
of the Kuramoto model for synchronisation in oscillator
ensembles [7]. In some analyses of coupled oscillators it
has been sufficient to consider only phase aspects of the
dynamical behavior and ignore amplitude aspects [8,9], but
in other systems of coupled oscillators it has been observed
that the dynamical behavior also depends significantly on
oscillator amplitude [10]. A recent development in relation
to the analysis of oscillatory dynamics which are stable
under continuous perturbations includes a generalization of
the limit-cycle concept, the “chronotaxic limit cycle” [11].

In this paper we return to the issue of limit-cycle amplitude.
However, rather than seek an approximation to the amplitude
of oscillations for a specific set of parameters, we seek to
establish general bounds on the amplitude of oscillations.
Such general bounds can serve as a useful cross-check on
numerical results. They may be useful in some engineering
contexts, because the maximum amplitude of oscillations
can have a significant impact on critical aspects of system
behavior. For example, it appears that ferrous alloys have
distinct fatigue limits (i.e., for specific alloys there appears
to be a maximum amplitude of cyclic stress that can be
applied to the material without causing fatigue failure) [12].
Other examples where the maximum amplitude of motion
is important are provided by earthquakes and animal limb
movement in locomotion [13]. Furthermore, the determination
of bounds on oscillation amplitudes is related to a fundamental
mathematical problem [14]: What is the maximum number
of limit cycles for coupled pairs of first-order differential
equations?
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There has been much interest [15] in the control of
nonlinear dynamical systems where bifurcation can occur,
i.e., the occurrence of a significant change in behavior as a
system parameter is smoothly changed. A successful controller
for such systems would typically be required to delay the
onset of a bifurcation or moderate its effects in order to
achieve some target dynamical performance. Our method to
establish bounds on limit-cycle amplitudes generates sufficient
conditions for the existence of limit cycles. A by-product is that
these conditions provide a nonperturbative way of establishing
bounds on bifurcation sets in relation to limit cycles, and
this may assist in the development of systems for real-time
bifurcation control.

A popular choice of model for simulating the dynamics
of nonlinear physical phenomena is the van der Pol oscilla-
tor [16]. Its behavior is governed by the equation

d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = 0, (1)

where ε is a positive scaling parameter. This equation was
introduced in the early 1920s by van der Pol to model
discharges in triode circuits. It has subsequently been applied
to a vast range of phenomena, including vortex shedding [17],
human circadian rhythms [18], and tunnel diode oscillators [2].
The van der Pol oscillator can exhibit a wide range of behavior.
For example, with ε � 1 the time variation of x for a single
oscillator is nearly sinusoidal [5], but with ε � 1 the time
variation of x resembles a square wave [19]. For the latter case
van der Pol introduced the term relaxation oscillation [20].
The popular appeal of the van der Pol oscillator as a modeling
tool may relate to the wide range of behavior it can exhibit, the
simplicity of its formulation, and the large canon of literature
reporting its successful use.

The van der Pol oscillator is a simple example from a class
of nonlinear oscillators known as Liénard oscillators. In the
late 1920s Liénard investigated the equation

d2x

dt2
+ εf (x)

dx

dt
+ ω2x = 0 (2)

in relation to electrical circuits [4]. Here f (x) is even, ε

is a positive scaling parameter, and ω is a constant. In
recognition of this, Eq. (2) bears his name. Because Liénard
systems have received much attention from mathematicians,
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various authors have generated transformations to convert
other two-dimensional systems into Liénard form. See, for
example, Ref. [21]. However, we note that often the definition
of the Liénard form is extended to

d2x

dt2
+ εf (x)

dx

dt
+ g(x) = 0, (3)

where g(x) is not limited to ω2x. In the case where f (x) =
x2 − 1 and ω = 1, Eq. (2) becomes the equation for the van
der Pol oscillator, Eq. (1).

Equation (2) may also be expressed as two coupled first-
order equations,

dx

dt
= y,

dy

dt
= −εf (x)y − ω2x. (4)

Other pairs of coupled first-order equations have been devel-
oped to generate the same system dynamics as Eq. (4) (see
Ref. [22] and the references therein). In this paper we use the
version due to Liénard [4],

dx

dt
= y − εF (x),

dy

dt
= −x, (5)

where F (x) = ∫ x

0 f (s)ds and, for consistency with Refs. [23]
and [19], we set ω = 1. εF (x) is known as the damping term. In
the particular case of the van der Pol oscillator F (x) = x3

3 − x

in Eq. (5). The main focus of this paper is the determination
of bounds for the amplitude (bounds for the maximum x

coordinate) of the limit cycle of Eq. (5), subject to reasonable
physical constraints on εF (x).

In general it is not possible to find an analytic solution to an
arbitrary differential equation [19]. Instead, qualitative tech-
niques have been developed to enable important characteristics
of solutions to be deduced in the absence of a formal solution.
A qualitative device we use to establish our results is the phase
plane [19]. For every pair of values x,y the planar vector field
�E = ( dx

dt
,
dy

dt
) is tangent to the solution of

dx

dt
= P (x,y),

dy

dt
= Q(x,y). (6)

The plane corresponding to the planar vector field �E = ( dx
dt

,
dy

dt
)

is known as the “phase plane” and, in the case that the coupled
equations are given by Eqs. (5), the phase plane is known
as the Liénard plane. To permit the use of some standard
vector results we utilize the Liénard plane but acknowledge
the existence of a z axis perpendicular to the Liénard plane.
This z axis together with the x and y axes of the Liénard
plane forms a right-handed coordinate system. At all times we
impose the condition dz

dt
= 0.

For Eq. (6) equilibrium points in the phase plane occur
where P (x,y) and Q(x,y) are simultaneously zero. A trajec-
tory is the locus of temporally successive points in the phase
plane and trajectories may only cross at equilibrium points.
A limit cycle is an isolated, closed trajectory. Trajectories
adjacent to the limit cycle either spiral in towards the limit
cycle or spiral away from the limit cycle. Every limit cycle
must enclose at least one equilibrium point [19]. The sustained
oscillations of Liénard oscillators correspond to limit cycles
in the Liénard plane. All limit cycles in Liénard systems
must be concentric, because there is only one equilibrium
point [i.e., (0,0)] and trajectories cannot cross. Furthermore,

TABLE I. Amplitudes of limit cycles in the van der Pol equa-
tion (1), calculated by numerical integration for different values of ε,
according to Zonneveld [27] and Odani [26].

ε Amplitude ε Amplitude

0.1 2.000 10 1.0 2.008 62
2.0 2.019 89 3.0 2.023 30
3.2 2.023 41 3.3 2.023 42
3.4 2.023 41 4.0 2.022 96
6.0 2.019 83 10.0 2.014 29
20.0 2.007 79 40.0 2.003 79
60.0 2.002 40 100.0 2.001 32

in representations such as Eq. (5) they possess the symmetry
that the phase plane is unaffected by the substitutions (x,y) →
(−x,−y).

The Poincaré-Bendixson theorem (see, for example,
Ref. [19]) states that if a trajectory remains in a closed bounded
region D of the phase plane, where D consists of ordinary
points of a system (P,Q) = ( dx

dt
,
dy

dt
), then either the trajectory

is closed (i.e., a limit cycle), approaches a closed trajectory,
or terminates at an equilibrium point. If an annular region D,
which contains no equilibrium points, can be found such that
all trajectories which cross the boundaries of the D region do
so inwards, then the existence of at least one limit cycle in the
region D can be inferred and thus bounds on its amplitude can
be established. Practically, it can be very difficult to determine
regions D which satisfy these requirements.

It is known [24] that Eq. (1) has a single limit cycle for
all finite, nonzero ε and Odani [25] has shown that this limit
cycle is not algebraic. Odani [26] has commented that it is a
very difficult problem to determine the maximal amplitude of
the limit cycle of Eq. (1) and, by implication, it is a difficult
problem to determine the maximal amplitude of the limit
cycles of Liénard equations generally. Over 50 years ago, in
the context of numerical analysis, Lefschetz [6] pointed out
the desirability of establishing the amplitude of the van der
Pol limit cycle. The early numerical issues have been resolved
but we have not found reports of any simple, general method
to identify upper bounds on the amplitudes of limit cycles in
Liénard systems.

A wide variety of methods has been used to approximate the
amplitude of the van der Pol limit cycle. They include numer-
ical integration [27] (see Table I), harmonic balance [28,29],
variational analysis [30], the Melnikov method [31], empirical
analyis [23], piecewise approximation [32], and bifurcation
analysis [33]. Most of the methods (Melnikov, piece-wise
approximation, bifurcation, and harmonic balance) are valid
only for specific ranges of the strength parameter ε. The en-
hanced harmonic balance method proposed by Buonomo [29]
generates series in ε which can, in principle, be developed up to
any order. Lopez et al. [34] have applied the homotopy analysis
method to obtain a recursive set of formulae that approximate
the amplitude and form of the van der Pol limit cycle for the
whole range of the strength parameter ε.

Some of the methods used to approximate the amplitude
of the limit cycle of the van der Pol oscillator Eq. (1)
have also been employed with success to approximate the
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amplitude of limit cycles in other Liénard systems where F (x)
is an odd polynomial of degree greater than 3. Among these
methods are the variational method of Depassier and Mura [30]
and the empirical, nonperturbative method of Giacomini and
Neukirch [23].

In this paper we establish sufficient criteria for the existence
of a limit cycle in the system given by Eq. (5), subject to
reasonable physical constraints. In their simplest form the
criteria lead to an upper bound on the amplitude of the
limit cycle, valid for all finite, nonzero, ε. We illustrate
how the bounds developed with F (x) odd can be applied to
systems where the damping term contains both odd and even
components and how the criteria can be used to provide lower
bounds for bifurcation sets in Liénard systems.

II. METHOD

A. Overview

We will develop sufficient criteria for the existence of a
limit cycle in a system given by Eq. (5) with the addition
of simplifying criteria for ε and F (x) [Eq. (7), below]. Our
method shares some features with the geometric path-integral
approach presented by Jordan and Smith [19] but involves
the additional process of aggregating the path integrals. In
order to aggregate the integrals we employ a demichord
technique which was introduced by Liénard [4]. The use of
the demichord technique permits us to convert path integrals to
simple integrals and thereby change the order of integration of
a double integral. This in turn allows us to isolate, to an integral
with respect to x, the sign change related to the occurrence of
a limit cycle. [The main result that Liénard derived using the
demichord technique was that in the Liénard plane for every
trajectory of Eq. (5) the y amplitude exceeds the x amplitude].

Based on the above we will present two general equations
[Eqs. (26) and (27)] in relation to the amplitude of the
corresponding limit cycle. A root of one of the equations gives
an upper bound for the limit-cycle amplitude and a root of
the other gives a lower bound for the limit-cycle amplitude.
We then utilize techniques from the theory of rotated vector
fields [3] to develop upper bounds for limit-cycle amplitudes
in systems where F (x) has both odd and even components.

The analysis is undertaken with respect to the Liénard plane,
but for some vector results we make reference to a right-handed
coordinate system with unit vectors (î ,ĵ,k̂) along the x,y,z

directions respectively (i.e., î and ĵ in the Liénard plane and
k̂ perpendicular to the Liénard plane). In the generic upper-
bound analysis we consider Liénard equations of the form

dx

dt
= y − εF (x),

dy

dt
= −x,

dz

dt
= 0. (7)

with ε > 0 and finite, �E = ( dx
dt

,
dy

dt
), F (x) = ∫ x

0 f (s)ds, and
subject to the following conditions on f (x) and F (x).

Conditions II A:
(i) f (x) is continuous and even,
(ii)

∫ u

0 F (x)dx = 0 for some u > 0,
(iii) for |x| < u,F (x) = 0 only at x = 0 and x = ±a, for

some a such that 0 < a < u, and
(iv) for 0 < x < a,F (x) < 0 and for a < x < u,F (x) >

0.

The vector field �E = ( dx
dt

,
dy

dt
) for this system is unaltered

by the substitution (x,y) → (−x,−y) so if (x,y) is a point on
the limit cycle in the Liénard plane, then so also is (−x,−y).
In particular, if (0,y) is a point on the limit cycle, then so
is (0,−y). There is only one equilibrium point, i.e., (0,0).
The extremum of each trajectory with respect to variations
in y occurs on the line y = εF (x), which divides the region
−u < x < u of the phase plane into an upper portion and a
lower portion. The extrema of each trajectory with respect to
variations in x all occur on the y axis and trajectories rotate
clockwise about the origin. The direction of rotation can be
confirmed by considering the vector cross product of a vector
along the positive x axis with �E (i.e., î × �E). A resultant vector
parallel to the vector k̂ in a right-handed coordinate system
corresponds to a counterclockwise rotation from the x axis
to the vector field �E. However, for the system given by (7),
(î × �E) = −xk̂ so the trajectories rotate clockwise.

B. Line integrals in the Liénard plane

Consider a polynomial H (x,y) which satisfies the following
conditions.

Conditions II B:
(i) H (x,y) = H (−x,−y),
(ii) H (x,y) has continuous first partial derivatives,
(iii) dH

dt
= �∇H · �E is a function of x only,

(iv) 1
x

dH
dt

is finite for all finite x, and

(v) −î · (k̂ × �∇H )x=0 is a monotonic odd function of y

only.
Clearly H (x,y) = x2 + y2 satisfies these conditions. As

shown in Sec. II C, there is a systematic method to generate
other polynomials which possess these properties. The poly-
nomials H (x,y) can be used to generate the vectors

�H =
(

∂H

∂y
,−∂H

∂x
,0

)
= �∇H × k̂, (8)

where k̂ is a unit vector along the positive z axis. Using the
vector identity �∇ · ( �A × �B) ≡ �B · ( �∇ × �A) − �A · ( �∇ × �B) and
Eq. (8) it can be readily shown that for all �H

�∇ · ( �H) = 0. (9)

Consider integrals along paths in the Liénard plane as
illustrated in Fig. 1. Each path consists of a trajectory γ of
the system (7) in the right half-plane from a point A (0,yA) on
the positive y axis through the extremum of γ at B (x,εF (x))
back to a point on the negative y axis at C (0,yC). The path is
then closed back along the y axis to A. Using the divergence
theorem and Eq. (9) the integral along the closed path ABCA
of the flux due to the vector field �H(x,y) is 0. We designate
the flux through the portion of the path along the trajectory γ

as IABC and the flux through the portion of the path along the
y axis as ICA. Thus

IABC = −ICA.

The outward normal to the exterior of the path ABCA along
CA is −î so the aggregate flux of the vector field �H through
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FIG. 1. (Color online) Right half-plane of the Liénard plane
illustrating the integration path ABCA. The portion of the path ABC is
a trajectory γ of the system; the portion CA lies along the y axis. The
trajectory has its maximum x coordinate at the point B = (x,εF (x)).

path segment CA along the y axis is given by

ICA =
∫

CA
−î · ( �H)x=0dy =

∫
CA

−î · ( �∇H × k̂)x=0dy

=
∫

CA
−∂H

∂y
dy. (10)

Using Eq. (10) and the property that −î · (k̂ × �∇H )x=0 is a
monotonic odd function of y only, we see that the net flux, ICA,
through the portion of the path CA along the y axis is dependent
only on the y coordinates of C and A. If |yA| = |yC |, then the
net flux through the path CA along the y axis will be 0; the
net flux, IABC, through the path ABC will also be 0 and the
trajectory in the right-hand plane will be part of a limit cycle.
If |yA| > |yC |, then ICA < 0,IABC > 0 and on the path ABC
the trajectory is spiraling inwards so it is not part of a limit
cycle. If |yA| < |yC |, then ICA > 0,IABC < 0 and on the path
ABC the trajectory is spiraling outwards and so it is not part
of a limit cycle.

Since the trajectory is rotating clockwise about the z axis
the outward normal along the portion of the path ABC in the
right half-plane is given by (k̂ × �E). The aggregate flux, IABC,
through the path ABC is given by

IABC =
∫

ABC

(k̂ × Ẽ) · ( �∇H × k̂) dt

= −
∫

ABC

�∇H · �E dt = −
∫

ABC

dH

dt
dt

= −
∫

ABC

dH

dt

dt

dy
dy =

∫
ABC

1

x

dH

dt
dy. (11)

Consider the line through x = X,(0 � X < xB) and two
trajectories γi and γk as illustrated in Fig. 2. For y > εF (x)
all trajectories whose extremum (with respect to variations
in y) occurs for x > X cross the line x = X in the direction
of increasing x. Since trajectories cannot cross each other
[except at the equilibrium point (0,0)], we deduce that if
OAi < OAk , then the y coordinates of the points where γi and

FIG. 2. (Color online) Right half-plane of the Liénard plane
illustrating two trajectories γi,γk crossing the line x = X. Mk

indicates the y coordinate of the upper portion of trajectory γk at
x = X,Mi indicates the y coordinate of the upper portion of trajectory
γi at x = X,Lk indicates the y coordinate of the lower portion of
trajectory γk at x = X, and Li indicates the y coordinate of the lower
portion of trajectory γi at x = X.

γk cross x = X satisfy Mi < Mk . Similarly, for y < εF (x), all
trajectories whose extremum (with respect to variations in y)
occurs for x > X cross the line x = X in the direction of
decreasing x and the y coordinates of the points where γi and
γk cross x = X satisfy Li > Lk . Thus for x = X,(0 � X <

xB),Mk − Lk > Mi − Li and for all x = X,(0 � X < xB) the
length of the chord of the trajectory γi at X is less than the
length of the chord of the trajectory γk at X.

We now use a result due to Liénard [4] to convert the line
integral IABC to a simple integral. For a general trajectory γ

let M(x) be the y coordinate of the portion of the trajectory
in the right half-plane for y > εF (x) and let L(x) be the y

coordinate of the portion of the trajectory for y < εF (x) and
let

ζ (x) = [M(x) + L(x)]

2
, (12)

η(x) = [M(x) − L(x)]

2
. (13)

Thus η(x) is the length of the demichord at x of the portion
of trajectory γ in the right half-plane. It can readily be shown
(see Ref. [4]) for the trajectory γ in the right half-plane with
extremum (xB,εF (xB)) that

(i) η(x) � 0 for 0 < x � xB . η(x) = 0 when x = xB and
y = εF (xB), i.e., η(x) = 0 at the extremum of the trajectory
with respect to variations in y,

(ii) dη

dx
= − x

η(1−θ2) < 0 with ζ (x) − εF (x) = θ (x)η(x);

|θ (x)| < 1. This property of dη

dx
is derived in Ref. [4]. We

include it here for completeness but do not use it in our analysis,
and

(iii) M(x) = ζ (x) + η(x),L(x) = ζ (x) − η(x).
It can also easily be shown (again see Ref. [4]) that for an

arbitrary function 
(x) which is a function of x only that the
path integral along a path ABC whose start point A and end
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point C have the same x coordinate,∫
ABC


(x)dy =
∫

AB

(x)d[ζ + η] +

∫
BC


(x)d[ζ − η]

=
∫

AB

(x)dη −

∫
BC


(x)dη

= 2
∫

AB

(x)dη. (14)

By conditions II B, 1
x

dH
dt

is a function of x only, so applying
Eq. (14) to Eq. (11) with 
(x) = 1

x
dH
dt

,

IABC =
∫

ABC

1

x

dH

dt
dy = 2

∫
AB

1

x

dH

dt
dη = 2

∫ 0

η0

1

x

dH

dt
dη,

(15)

where η0 is the length of the demichord at x = 0. For every
trajectory in the right-hand plane there is a unique extremum
with respect to variations in y [i.e., (xB,εF (xB))], and for every
positive xB there is a trajectory and associated path integral
IABC(xB).

We now consider the aggregate J (xβ) of all integrals IABC

(i.e., for all trajectories) in the right half-plane which have an
extremum, (xB,εF (xB)) with xB � xβ in the right half-plane.
If J (xβ) changes sign as xβ gets progressively larger, then this
indicates that, at some value of xB < xβ , the value of IABC has
changed sign. This in turn implies that the trajectory through
(xβ,εF (xβ )) lies outside the limit cycle,

J (xβ) =
∫ xβ

0
IABC(xB)dxB

= 2
∫ xβ

0

[ ∫ 0

η0

1

x

dH

dt
dη

]
dx. (16)

Integration is a linear operation and, with ε finite, we assume
that for all physically reasonable trajectories the integrals∫ 0
η0

1
x

dH
dt

dη are finite. Under these conditions inversion of the
order of integration is permitted. We also invert the limits of
integration for η

J (xβ) = −2
∫ η0

0

[ ∫ xβ

0

1

x

dH

dt
dx

]
dη, (17)

where the integrand, 1
x

dH
dt

of the inner integral, is now a
function of x only. Since η � 0 for all the integrals, the sign
of J (xβ ) is determined by the sign of − ∫ xβ

0
1
x

dH
dt

dx.
We assemble these results for line integrals along trajec-

tories in the Liénard right half-plane to establish sufficient
conditions for the existence a limit cycle. If − 1

x
dH
dt

< 0 for
0 < x < a∗, then IABC < 0 for 0 < x < a∗, so |yA| < |yC |.
From this we deduce that all trajectories wholly contained
in the region −a∗ < x < a∗ are spiralling outwards. This
implies there can be no limit cycle wholly contained in the
region −a∗ < x < a∗. If, further,

∫ xβ

0
1
x

dH
dt

dx = 0 for some
xβ,xβ > a∗, then J (xβ ) = 0 and so for the trajectory through
(xβ,ε(F (xβ)),|yA| > |yC | and this trajectory is spiralling
inwards. This implies there is a limit cycle through some
point (xB,εF (xB)), where a∗ < xB < xβ . In particular, the
maximum amplitude of the limit cycle satisfies a∗ < xB < xβ .

Thus sequential sign changes in 1
x

dH
dt

and
∫ xβ

0
1
s

dH
dt

ds provide
a sufficient condition for the existence of a limit cycle.

C. Giacomini and Neukirch polynomials

Giacomini and Neukirch [23] introduced a sequence of
polynomials hN (x,y) with the following form:

hN (x,y) = yN +
N−1∑
n=0

yngn,N (x), (18)

where gn,N (x),0 � n � N − 1 are polynomials in x only and
N is even. By enforcing the constraint that dhN (x,y)

dt
is a function

of x only and observing the behavior of dhN (x,y)
dt

as x is varied,
Giacomini and Neukirch were able to make empirical claims
about the number and approximate location of limit cycles in
Liénard systems [23].

Our subscript notation for polynomials hN (x,y) differs
from that introduced in Ref. [23] because, for clarity in
recurrence relations, we reserve N to designate the highest
degree of y in the polynomial. The time derivative of hN is
given by

dhN (x,y)

dt
= ∂hN (x,y)

∂x

dx

dt
+ ∂hN (x,y)

∂y

dy

dt
. (19)

Substituting for dx
dt

and dy

dt
gives

dhN (x,y)

dt
= ∂hN (x,y)

∂x
[y − εF (x)] − ∂hN (x,y)

∂y
x, (20)

where

∂hN

∂x
= ġN−1,N (x)yN−1 + · · · + ġ1,N (x)y + ġ0,N , (21)

∂hN

∂y
= NyN−1 + (N − 1)yN−2gN−1,N (x) + · · · + g1,N ,

(22)

and ġn,N (x) with 0 � n � N − 1 represents the deriva-
tive of polynomial gn,N (x) with respect to x. Combining
Eqs. (20)–(22) gives

dhN

dt
= yN (ġN−1,N (x))

+ yN−1[ġN−2,N (x) − εF (x)ġN−1,N (x) − Nx]

+ · · ·
+ y[ġ0,N (x) − εF (x)ġ1,N (x) − 2xg2,N (x)]

+ [−εF (x)ġ0,N − xg1,N (x)],

and, if dhN

dt
is independent of y,

dhN

dt
= −εF (x)ġ0,N (x) − xg1,N (x). (23)

The condition that for 0 < n � N − 1 the coefficient of yn

should be zero in Eq. (23) gives the following recurrence
relation:

ġn,N (x) = εF (x)ġn+1,N (x) + (n + 2)xgn+2,N (x), (24)
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TABLE II. GN Polynomials for N = 2 and N = 4.

N = 2 N = 4

y2 + x2 y4 + 2x2y2 + 4εy
∫ x

0 F (s)sds + 4ε2
∫ x

0 F 2(s)sds + x4

with initial conditions

gN,N (x) = 1, gN−1,N (x) = 0, ġN−2,N (x) = Nx. (25)

Following Ref. [31] we use the designation “GN polynomials”
for polynomials hN (x,y) = Z which satisfy Eqs. (18), (24),
and (25). We note that h2(x,y) (i.e., x2 + y2) is a polynomial
irrespective of the form of F (x). However, in general, for N >

2,hN (x,y) is not a polynomial unless F (x) is a polynomial.
The ordinary differential equations in the recurrence relation
given by Eq. (24) are easily integrated with respect to x

when F (x) is a polynomial. Symmetry conditions require the
constants of integration for ġn,N to be zero for n odd. Following
Ref. [23] we set all constants of integration to be 0 but note
that symmetry does not require the constants of integration for
ġn,N to be 0 for n even. We consider the choice of constants of
integration further in Sec. IV.
Examples of GN polynomials are given in Table II and
examples of their time derivatives are given in Table III.
By construction each hN (x,y) satisfies conditions II B. Thus
hN (x,y) = hN (−x,−y), dhN

dt
= �∇hN · �E is a function of x

only, dhN

dt
is finite for all finite x, and −î · (k̂ × �∇hN )x=0 is a

monotonic odd function of y. Accordingly, the results derived
in Sec. II B for the polynomial H (x,y) also apply to the GN
polynomials hN (x,y).

D. Bounds on limit-cycle amplitude using h2 and h4

For paths using h2 = x2 + y2 we consider the integral IABC

[see Eq. (11)] for the trajectory through point (xB,εF (xB)) in
the right half-plane,

IABC =
∫

ABC

1

x

dh2

dt
dy = −

∫
ABC

2εF (x)dy.

For all trajectories through points (xB,εF (xB)) in the right-
hand plane such that |xB | < a,F (xB) < 0 (see conditions II A),
so |yA| < |yC | and the trajectories are spiraling outwards. This
gives the result of Ref. [19], applicable for all finite nonzero
ε, that no limit cycle can be wholly contained in the region
−a < x < a.

We then consider the sum J (xβ) [see Eq. (17)]. J (xβ)
changes sign when

∫ xβ

0
1
x

dh2
dt

dx = ∫ xβ

0 εF (x)dx changes sign.
From conditions II A J (xβ) = 0 when xβ = u so, for all
finite, nonzero ε, there is a trajectory through some point
(xB,εF (xB)), with a < xB < u, for which IABC = 0. Thus for
all finite, nonzero ε the system (7) subject to conditions II

TABLE III. Derivatives of GN Polynomials for N = 2 and N = 4.

N = 2 N = 4

dhN

dt
−2εxF (x) −4x3εF (x) − 4xε

∫ x

0 sF (s)ds − 4ε3xF 3(x)
− 1

x

dhN

dt
2εF (x) 4x2εF (x) + 4ε

∫ x

0 sF (s)ds + 4ε3F 3(x)

A has a limit cycle, and the amplitude of the limit cycle lies
between a and u, where

F (a) = 0, (26)∫ u

0
F (x)dx = 0. (27)

For paths using h4(x,y) (see Table II) we again consider
the integral IABC [see Eq. (11)] for the trajectory through point
(xB,εF (xB)) in the right half-plane. From these we deduce that
the system (7) subject to conditions II A has a limit cycle, and
the amplitude of the limit cycle lies between a4 and u4, where

4x2εF (a4) + 4ε3F 3(a4) + 4ε

∫ a4

0
sF (s)ds = 0, (28)

∫ u4

0

{
ε

[
4x2εF (x) + 4

∫ x

0
sF (s)ds

]
+ 4ε3F 3(x)

}
dx = 0.

(29)

For ε � 1 the term
∫ x

0 4ε3F 3(s)ds will be dominant in Eq. (29)
and for ε � 1 the term ε[

∫ x

0 4s2
1F (s1) + 4

∫ s1

0 sF (s)ds)ds1]
will be dominant. The result for the lower bounds [i.e.,
Eqs. (26) and (28)] is effectively the same as that given in
Ref. [23], except our result explicitly retains ε. The results
given by Eqs. (27) and (29) are new. Similar results can be
given for hN (x,y) for N > 4 but the number of terms in the
expressions for the corresponding aN and uN becomes larger
as N increases.

E. Rotated vectors

We now utilize elements from the theory of rotated vector
fields [3] to extend our method. The extension allows us to
establish an upper bound for limit-cycle amplitude in systems
where the damping term has both odd and even components.
If the minimum x value on the limit cycle is x− (in the left
half-plane) and the maximum x value on the limit cycle is
x+ (in the right half-plane), then we seek a bound ρ on the
amplitude such that ρ > x+ and ρ > |x−|.

Let �E = ( dx
dt

,
dy

dt
) = (P (x,y; α),Q(x,y; α)) with

dx

dt
= y − εF (x) + αP ∗(x),

dy

dt
= −x. (30)

F (x) satisfies the conditions II A and P ∗(x) contains both
odd and even components. We impose the following further
conditions.

Conditions II E:
(i) α � 0.

(ii) ε > 0 and ε is finite.
(iii) P ∗(0) = 0; this ensures that for every α the sys-

tem (30) has only one equilibrium point in the Liénard plane
for all α.

(iv) xP ∗(x) < 0 for 0 < |x| < u, where
∫ u

0 F (x)dx = 0.
(v) �∇h2 · �E � 0 in a region  about the origin wholly

contained within 0 � |x| < u. Thus in ,�E cuts the circles of
h2 in an interior to exterior direction. Here we have used the
notation of Sec. II D (i.e., h2(x,y) = x2 + y2).

System (30) is just system (7) with the addition of an extra
term αP ∗(x) to dx

dt
. Hence with α = 0 system (30) reduces to

the system considered in Sec. II D and for all finite, nonzero
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FIG. 3. (Color online) Liénard plane illustrating the regions D

and .  is the region about the origin for which condition II E
(v) applies. D is the annular region between the boundary of  and
the limit cycle �0 of Eq. (30) with α = 0. The arrows with straight
tails illustrate the vector field (�E)�α at the boundaries of D. The
arrowheads without tails illustrate the vector field (�E)0 on the limit
cycle �0.

ε, there is a limit cycle with amplitude <u. From Sec. II B
we know that the corresponding limit-cycle trajectory, which
we designate �0, is rotating clockwise. We now show that for
α = 0 + �α (�α > 0) the system given by Eq. (30) has a limit
cycle ��α bounded by �0. Consider the vector cross product

(�E)0 × (�E)�α

=
(

0,0,PQ − QP − Q
∂P

∂α
�α + P

∂Q

∂α
�α

)

=
(

P
∂Q

∂α
− Q

∂P

∂α

)
�αk̂ . (31)

The right-hand side of Eq. (31) corresponds to a vector
perpendicular to the Liénard plane with magnitude determined
by the sine of the angle, measured counterclockwise, between
the vectors (�E)0 and (�E)�α ,

P
∂Q

∂α
− Q

∂P

∂α
= 0 × P (x) − (−x)P ∗(x) = xP ∗(x). (32)

From condition II E (iv), in the region 0 � |x| < u,xP ∗(x) �
0, so the trajectories γ�α of the system (�E)�α are either
tangent to �0 or are rotated clockwise with respect to �0.
Thus any trajectory γ�α after entering the region about the
origin bounded by �0 cannot run out again. This is a local
result, similar to the global result given in Ref. [3] in relation
to a complete family of rotated vector fields.

Although we cannot express �0 algebraically we select it as
the outer boundary for an annular region D to which we will
apply the Poincaré-Bendixson theorem. For the inner boundary
of the annular region we select any level set of h2(x,y) wholly
contained in . Regions D and  are illustrated in Fig. 3 where
we use arrows without tails to illustrate the vector field (�E)0 and
vectors with straight tails to illustrate the vector field (�E)�α .
By condition II E (v), all trajectories of �E cross level sets of

h2(x,y) in an interior to exterior direction (i.e., from the interior
to the exterior of  in Fig. 3). This in turn means that they
cross the inner boundary of region D in an exterior-to-interior
direction. Thus no trajectory which enters into the region D

can ever leave the region. By the Poincaré-Bendixson theorem
a limit cycle (��α) must exist within the annular region D or
on its boundary. In particular, ��α is bounded by �0 and thus
the amplitude of ��α is less than u.

Using induction and the above result that a limit cycle ��α

exists, these arguments can be extended to show that a limit
cycle wholly bounded by �0 exists for any value of α > 0
provided that condition II E (v) remains valid.

F. Multiple limit cycles

In Sec. II A we do not impose conditions on the behavior
of F (x) for |x| > u. We now extend the conditions of II A on
system (7) for |x| > u by conditions II F.

Conditions II F:
(v)

∫ u2

0 F (x)dx = 0 for some u2 > u.
(vi) For u < |x| < u2,F (x) = 0 only at x = ±a2, for some

a2 such that u < a2 < u2.
(vii) For u < x < a2,F (x) > 0 and for a2 < x <

u2,F (x) < 0.
With these extra conditions the arguments of Sec. II B

can be extended to show the existence of a second limit
cycle, concentric with the first. The amplitude of the second
limit cycle lies between a2 and u2. This process can be used
iteratively to provide sufficient conditions for further limit
cycles.

III. EXAMPLES

A. Van der Pol and damping term εF(x) = ε(x3/3 − x)

In this section we take the van der Pol oscillator Eq. (1)
as an example to illustrate our results. In Sec. II B we
showed that for a damping term satisfying conditions II A
system (7) has a limit cycle whose amplitude lies between
the value a such that | dH

dt
= 0|x=a and the value of u such

that
∫ u

0
1
x

dH
dt

dx = 0, where H satisfies conditions II B. In
Sec. II C we showed that the GN polynomials hN (x,y) satisfy
conditions II B. For the van der Pol equation we have used
MAPLE10 symbolic computation software to generate the terms
for 1

x

dhN

dt
and

∫ x

0
1
s

dhN

dt
ds (here s is a dummy variable to

represent x under integration) for even N up to 18. For
hN,N = 2,4,10,12,14,16, and 18, Table IV illustrates the
x values at the zeros of the resultant terms. For ease of
presentation, the terms are aggregated in their powers of ε.

With respect to the van der Pol oscillator we observe
empirically that for every combination of even N (N � 18)
and odd power of ε in − 1

x

dhN

dt
, the corresponding polynomial

has a form that contains the key features of WA(x) and WB(x)
as illustrated in Fig. 4. Empirically, we observe that for even
N the term for each odd power of ε in − ∫ x

0
1
s

dhN

dt
ds also has

a form that contains the key features of WA(x) and WB(x).
The key features are

(i) WA(0) = 0 and WB(0) = 0 (i.e., a root at x = 0),
(ii) WA(x) and WB(x) have a single root (respectively at

x = A and x = B) for x > 0, and
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TABLE IV. Locations of zeros derived from the corresponding GN polynomial. Values designated “Lower” correspond to the value of x

for which 1
x

dhN

dt
= 0 and values designated “Upper” correspond to the values of x for which

∫ x

0
1
s

dhN

dt
ds = 0. Terms for h6 and h8 are omitted

for ease of presentation. As N increases, for each degree of ε the x values for the zero of the corresponding polynomial associated with the
upper bound progressively decrease (i.e., improve). Also as N increases, the largest x value for the zero of a polynomial for the upper bound
progressively decreases, i.e., the zero which determines the maximum possible limit-cycle amplitude progressively decreases.

Lower Lower Lower Lower Lower Lower Lower Upper Upper Upper Upper Upper Upper Upper
h2 h4 h10 h12 h14 h16 h18 h2 h4 h10 h12 h14 h16 h18

ε 1.7320 1.8257 1.9148 1.9272 1.9365 1.9436 1.9493 2.4490 2.2361 2.0976 2.0817 2.0702 2.0615 2.0548
ε3 1.7320 1.9139 1.9278 1.9378 1.9455 1.9514 2.1950 2.1021 2.0877 2.0767 2.0681 2.0617
ε5 1.9086 1.9256 1.9373 1.9458 1.9524 2.0994 2.0886 2.0794 2.0718 2.0653

ε7 1.8962 1.9197 1.9343 1.9446 1.9521 2.0914 2.0851 2.0786 2.0726 2.0672
ε9 1.7320 1.9076 1.9281 1.9413 1.9503 2.0771 2.0772 2.0745 2.0709 2.0670

ε11 1.7320 1.9164 1.9347 1.9466 2.0648 2.0672 2.0666 2.0647

ε13 1.7320 1.9235 1.9402 2.0561 2.0596 2.0603
ε15 1.7320 1.9294 2.0495 2.0537
ε17 1.7320 2.0444

(iii) WA(x) and WB(x) are both negative as x increases
to their respective root and are positive thereafter.

Let W (x) = σ1WA(x) + σ2WB(x), where σ1 and σ2 are
finite constants such that σ1σ2 > 0. Applying the intermediate
value theorem between x = A and x = B we deduce that W (x)
has a zero for x > 0 at x = w, where A < w < B. The values
A and B as illustrated in Fig. 4 correspond to the x values
associated with a zero of a polynomial with specific N and
specific degree of ε in Table IV. For example, consider the
terms in Table III for N = 4. We take the term with degree 1
in ε, substitute F (x) = (x3/3 − x), and integrate,

4ε

∫ x

0

[
s2

2F (s2) +
(∫ s2

0
s1F (s1)ds1

)]
ds2

= 4ε

∫ x

0

[
s2

2

(
s3

2

3
− s2

)
+

(∫ s2

0

s4
1

3
− s2

1ds1

)]
ds2

= 4ε

(
x6

15
− x4

3

)
. (33)

FIG. 4. (Color online) WA(x) and WB(x) illustrate the form of
each aggregate term in − ∫ x

0
1
s

dhN

dt
ds for specific degree in ε and N =

2,4,6,8,10,12,14,16,18. In particular, each WA(0) = 0,WB(0) =
0,WA(x) < 0 for x � 1,WB(x) < 0 for x � 1 and WA(A) =
0,WB(B) = 0. The values A and B as illustrated correspond to the
x values associated with a zero of a polynomial with specific N and
specific degree in ε in the columns of Table IV marked “Upper.”

Solving x6

15 − x4

3 = 0 gives roots x = 0 and x = ±2.2361. The
positive root corresponds to the value in Table IV on the row
ε in the column “Upper h4.”

We take the corresponding term with degree 3 in ε and
integrate,

4ε3
∫ x

0
F 3(s)ds = 4ε3

(∫ x

0

s9

27
− 3s7

9
+ s5 − s3ds

)

= 4ε3

27

(
x10

10
− 9x8

8
+ 27x6

6
− 27x4

4

)
.

(34)

Solving x10

10 − 9x8

8 + 27x6

6 − 27x4

4 = 0 gives roots x = 0 and
x = ±2.1950. The positive root corresponds to the value in
Table IV on the row ε3 in the column “Upper h4.” Adding the
terms with ε degree 1 and ε degree 3 we obtain

−
∫ x

0

1

s

dh4

dt
ds = 4ε3

27

(
x10

10
− 9x8

8
+ 27x6

6
− 27x4

4

)

+ 4ε

(
x6

15
− x4

3

)
. (35)

− ∫ x

0
1
s

dh4
dt

ds has the same form as W (x) with 4ε = σ1 and
4ε3 = σ2 so applying the intermediate value theorem to∫ u

0
1
s

dh4
dt

ds between u = 2.1950 and u = 2.2361 we find for
all finite, nonzero ε that

∫ u

0
1
s

dh4
dt

ds = 0 for some u, where
2.1950 � u � 2.2361.

All the polynomials for N = 2,4,10,12,14,16, and 18 and
specific degree in ε have the same form as WA(x) and WB(x),
so the value of x such that

∫ x

0
1
s

dhN

dt
ds = 0 cannot lie outside

the range of x values associated with zeros in Table IV for the
corresponding value of N .

We observe empirically that, as the highest degree of y in
the corresponding GN polynomial (i.e., N ) increases, for each
degree of ε the x value for the zero of the corresponding
polynomial associated with the upper bound progressively
decreases, (i.e., improves). Thus, for example, for N = 4
to N = 18 we observe that the x value of the zero for
the ε3 polynomial progressively decreases from 2.1950 to
2.0617. We also observe that, as N increases, the largest
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value of x corresponding to a zero in the polynomials for
the upper bound progressively decreases (i.e., the x value of
the zero which determines the maximum possible limit-cycle
amplitude progressively decreases). For the highest degree GN
polynomial (N = 18) shown in Table IV, the largest value of
x for the zero of a polynomial is 2.0672 and this occurs for
ε7. (For comparison see the numerical approximations to the
amplitude given in Table I.) From this we deduce that for all
finite, nonzero ε, the amplitude of the limit cycle of the van
der Pol oscillator is less than 2.0672.

B. Damping term with odd and even components

In this section we establish an upper bound for the amplitude
of the system �E = ( dx

dt
,
dy

dt
) with

dx

dt
= y − εF (x) + αP ∗(x),

dy

dt
= −x, α > 0, ε > 0,

(36)

where P ∗(x) = x(x2 − x�u − u2 − u�u) with �u � 0 and
F (x) = x3

3 − x. F (x) satisfies the conditions II A and in
particular

∫ u

0 F (x)dx = 0 for u = √
6. P ∗(x) contains a factor

x so P ∗(0) = 0. Also xP ∗(x) � 0 for −u < x < u + �u so
xP ∗(x) satisfies conditions II E (iii) and II E (iv).

To show the presence of a limit cycle for this system and to
determine an upper bound for its amplitude, we seek an annular
region D such that all the trajectories of �E which cut the inner
boundary of D do so in an exterior to interior direction, and all
the trajectories of �E which cut the outer boundary of D do so
from exterior to interior. For the case α = 0 we have shown in
Sec. II D that there is a limit cycle, which we now designate as
�0, with amplitude less than u. We then select �0 for the outer
boundary of our region D.

P ∂Q

∂α
− Q∂P

∂α
= xP ∗(x) < 0 for −u < x < u + �u so,

using Eq. (31), for α 
= 0 and |x| < u all trajectories of
system (36) which cut �0, do so from exterior to interior.

We now seek to establish the inner boundary of D. Using
the notation for h2 from Sec. II D and substituting u2 = 6,

�E · �∇h2 = 2x
dx

dt
+ 2y

dy

dt

= 2xy − 2ε

(
x4

3
− x2

)
+ 2αx2(x2 − x�u− u2 − u�u)

− 2xy

= −2ε

(
x4

3
− x2

)
+ 2αx2(x2 − x�u − u2 − u�u). (37)

For x small we neglect x3 and higher-order terms in x and find
�E · �∇h2 > 0 for ε > α(u2 + u�u). Accordingly, it is possible
to construct a circular (i.e., h2) inner boundary for D, using
a sufficiently small circle that does not intersect �0, such that
all trajectories of system (36) cut the inner boundary of D

from exterior to interior. Applying the Poincaré-Bendixson
theorem to region D we find that, for ε > α(u2 + u�u), the
system (36) has a limit cycle and its amplitude is less than

√
6.

Our bound for the amplitude of �0 can be improved from
√

6
to 2.0617, using the result of Sec. III A. Likewise, our bound
for the amplitude of the limit cycle for system (36) can be
improved to 2.0617.

C. Bifurcation and damping term εF(x) = ε(x5 − μx3 + x)

In Ref. [35] Giacomini and Neukirch considered the
Liénard system with ε(x5 − μx3 + x) as a damping function.

They determined that for ε = 0.1 and μ =
√

41
9 the system

has two limit cycles but for ε = 8 there are no limit cycles.
Giacomini and Neukirch reported the example to illustrate an
erroneous prediction using Melnikov theory that there are two
limit cycles for this system independent of ε.

Our condition [i.e., Eq. (27)] for an upper bound for the
limit-cycle amplitude for all finite, nonzero ε requires u 
= 0
such that

∫ u

0 F (x)dx = 0. This corresponds to the condition∫ u

0 x5 − μx3 + xdx = 0, which requires u6

6 − μu4

4 + u2

2 = 0.

Real roots for u exist only for μ �
√

48
9 (i.e., μ > 2.309) so

for μ =
√

41
9 (i.e., μ = 2.134) we cannot establish a real value

of u such that Eq. (27) is satisfied. Accordingly, and correctly,
using h2(x,y) we are unable to establish sufficient conditions
for the existence of a limit cycle for all nonzero ε.

We now use h4(x,y) and introduce a double subscript
notation for the parameters a and u. The first subscript
designates the degree N of the corresponding GN polynomial,
and the second subscript indicates the zero being considered
(e.g., the smallest positive value of a satisfying 1

x
dh4
dt

= 0 is
designated a4,1). We find that for x > 0 each term in Eq. (28)
has two zeros and for all ε there are values x = a4,1 and

x = a4,2 that satisfy 1
x

dh4
dt

= 0. In Eq. (29) with μ >

√
100
21 (i.e.,

μ > 2.182) there are two values u4,i=1 and u4,i=2 such that the
term

∫ u4,i

0 [4x2εF (x) + 4ε
∫ x

0 sF (s)ds]dx = 0, but there is no
u4 such that

∫ u4

0 ε3F 3(s)ds = 0 with μ < 2.2654. If ε � 1
the former terms will dominate

∫ u4

0 ε3F 3(s)ds = 0 and for
μ > 2.182 we can establish two distinct values of a4,i and
two distinct values of u4,i such that Eqs. (28) and (29) are
both satisfied. For ε � 1 the term 4

∫ x

0 ε3F 3(s)ds = 0 will
dominate and we cannot yet establish sufficient conditions
for limit cycles to be present for μ < 2.2654. The largest
intermediate value of ε such that there are two distinct values
of u4,i satisfying Eq. (29) provides a lower bound on the
value of ε for which the system has two limit cycles for
2.182 < μ < 2.2654. Using hN (x,y) with N > 4 the ranges
of ε or μ for which two limit cycles exist can be further
refined. In this way sets of bounding parameters for the (saddle
node) bifurcation of two limit cycles to no limit cycles can be
found by considering the range of parameters (e.g., ε or μ)
for which two positive values uN,i=1,uN,i=2, exist such that∫ uN,i

0
1
s

dhN

dt
ds = 0.

IV. DISCUSSION

A. Constants of integration for GN polynomials

In the recurrence relation Eq. (24) we selected the constants
of integration for the integral of dgN,n

dx
,n even, to be 0 although

this was not required on symmetry grounds. Let H 0
N (x,y)

designate the GN polynomial of degree N in y developed
by taking constants of integration to be 0. Let H ∗

N (x,y)
designate the GN polynomial of degree N in y generated
with a nonzero constant of integration k for the integral of
dgK,N

dx
. Then, applying the recurrence relation Eq. (24), we find
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H ∗
N (x,y) = H 0

N (x,y) + kH 0
K (x,y). This result for HN (x,y) is

just a linear combination of GN polynomials H 0
N (x,y) and

H 0
K (x,y) derived with the rule that constants of integration

should be 0.
In Sec. II C we dismissed the possibility of nonzero

constants of integration for terms dgN,n

dx
,n odd, as being

incompatible with the symmetry of the Liénard equation.
However, the question arises, if the damping term in a system
is not odd and thus the limit cycle of the system (if it exists)
is altered by the change (x,y) → (−x,−y), could we admit
nonzero constants of integration for n odd? For example, the
choice of a constant of integration k,k 
= 0 for the integral
of dg2,1

dx
generates polynomials H2(x,y) = y2 + ky + x2 = Z.

These polynomials consist of circles with center (0,−k) in the
Liénard plane. However, we note that there would be some
choices of Z for which the corresponding circle would not
enclose the equilibrium point (0,0). If the closed curve does not
enclose the equilibrium point, then our arguments of Sec. II B
about trajectories spiralling inwards or spiralling outwards do
not apply. As a consequence, we would be unable to infer
the existence of limit cycles from our criteria. Accordingly,
our method does not admit nonzero constants of integration
for n odd. In any case, in Sec. II E, we present a simple
alternative approach to the problem of establishing bounds
on the amplitude of the limit cycle for cases of damping terms
with both odd and even components.

B. Retention of ω in the original Liénard equation

If the factor ω2 from Eq. (2) is retained, then the system
given by (5) becomes

dx

dt
= y − εF (x),

dy

dt
= −ω2x. (38)

The recurrence relation Eq. (24) can be readily generalized to
allow for this. The simplest corresponding GN polynomial is
the ellipse

h2(x,y) = x2 + y2

ω2
. (39)

It is easily verified that h2(x,y) of Eq. (39) satisfies condi-
tions II B and

dh2

dt
= ∂h2(x,y)

∂x
[y − εF (x)] − ∂h2(x,y)

∂y
ω2x,

= 2xy − 2εxF (x) − 2ω2x
y

ω2

= −2εxF (x), (40)

IABC = −
∫

ABC

dh2

dt
dt =

∫
ABC

1

ω2x

dh2

dt
dy

= −
∫

ABC

2εF (x)

ω2
dy. (41)

There can be no limit cycle wholly contained in the region
where the integrand of IABC is of one sign (see Sec. II B). A
change of sign for the integrand of IABC occurs when 2εxF (x)
changes sign [i.e., at x = a such that F (a) = 0]. A change of
sign for J (xβ) [see Eq. (17)] occurs when

∫ u

0
2εF (x)

ω2 dx changes
sign [i.e., at x = u such that

∫ u

0 F (x)dx = 0]. Thus there is

a limit cycle whose amplitude ρ satisfies a < ρ < u, and the
simplest bounds on the amplitude which we established for the
corresponding limit cycle with ω = 1 remain valid for ω 
= 1.

C. Convergence failures

The homotopy analysis method is an analytic approxi-
mation method and over the past 20 years there have been
many reports of its use in relation to nonlinear differential
equations. For example, Lopez et al. [34] have used the
technique to approximate the limit cycle of the van der Pol
equation. Despite its widespread use, circumstances have been
reported where application of the homotopy analysis method
has failed to converge to correct values [36]. Where homotopy
analysis is applied to Liénard systems simple bounds for the
amplitude of limit cycles, such as those presented in this paper,
can provide a plausibility check on numerical results and
reduce the likelihood of convergence problems propagating
unnoticed.

D. Application to a Burridge-Knopoff model for elastic
excitable media

Our result (27) can be used to place a bound on the
amplitude of propagating wavefronts in a Burridge-Knopoff
model of an excitable medium with elastic coupling [37],
irrespective of the propagation speed of the front. These simple
models were developed to describe the interactions between
tectonic plates [38] in relation to earthquakes. Cartwright
et al. [37] replaced the “stick slip” friction behavior typically
used in such models with a creep-slip friction, which they
designated as “asymptotically velocity weakening friction,”
leading to the equation

∂2χ

∂t2
= c2 ∂2χ

∂x2
(χ − νt) − γφ

(
∂χ

∂t

)
. (42)

Here χ (x,t) is the local longitudinal deformation of the surface
of the upper plate in the reference frame of the lower plate, γ

is the magnitude of the friction, c is the speed of sound, and
ν represents the slip rate. They applied Eq. (42) to laboratory
friction experiments and postulated that it might be applicable
to electronic transmission lines and active optical waveguides.

With ψ = ∂χ

∂t
, equation (42) can be reduced to two first-

order partial differential equations,

∂ψ

∂t
= γ [η − φ(ψ)], (43)

∂η

∂t
= −1

γ

(
ψ − ν − c2 ∂2ψ

∂x2

)
. (44)

For some slip rates the system generates global oscillations
(i.e., one surface executes temporally periodic motion with
respect to the other surface). At slip rates close to, but above,
the slip threshold, global oscillations become unstable. Small
perturbations from the global oscillations grow to become
synchronized pacemakers that emit fronts in both directions.
Cartwright et al. investigated the equations qualitatively and
considered solutions of the type ψ(x,t) = f (z̃), where z̃ =
x
v

+ t , and v is the velocity of the front. As a tool to understand

the behavior, they manipulated Eq. (43) so φ(ψ) = ψ3

3 − ψ .
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As a result, the model becomes a set of elastically coupled
van der Pol oscillators. By assuming solutions of the form
ψ(x,t) = f (z̃), where z̃ = x

v
+ t further manipulation leads

to z = z̃√
1− c2

v2

and

d2f

dz2
+ μ(f 2 − 1)

df

dz
+ f = ν. (45)

This is similar to the van der Pol equation (1), but with the
nonlinearity scaled by μ = γ (1 − c2

v2 )−1 and the x axis in the
Liénard plane displaced by ν. The propagating fronts are then
periodic solutions of the van der Pol equation but the value
of the parameter μ is not known until the value of the front
velocity v is chosen. Our results in Eqs. (26) and (27) provide
bounds for the amplitude of such wave fronts irrespective of
the chosen value of v. Our results could also be applied for
different forms of φ(ψ).

E. Application to bifurcation control

In Sec. III C we discussed how the behavior of zeros for
the polynomials

∫ x

0
1
s

dhN

dt
ds, as parameters are varied, can

provide a nonperturbative method to determine lower bounds
in relation to bifurcation sets for limit cycles. In applications
involving real-time control, methods which involve simple
polynomial root finding have potential speed benefits over both
perturbative techniques and also over techniques involving
integration forward in time.

F. Comparison with results of Giacomini and Neukirch

We acknowledge similarities between the technique de-
scribed by Giacomini and Neukirch in a series of papers in the
late 1990s [23,35,39,40], and our method. Both approaches
are nonperturbative, both utilize GN polynomials, and both
bring insights into the location of limit cycles and parameters
associated with bifurcations. We highlight some significant
similarities and differences between the two approaches:

(i) The lower bound aN [i.e., the zero of 1
x

dhN (x,y)
dt

]
developed by our method coincides with the approximation
to the limit cycle developed by Giacomini and Neukirch. They
acknowledge that their use of this value as an approximation
to the amplitude of the limit cycle is based on empirical
observation (i.e., they do not analytically demonstrate the value
coincides with the existence of a limit cycle). By contrast our
method delivers a pair of bounds (aN,uN ) for the limit-cycle
amplitude as part of sufficient conditions for the existence of a
limit cycle. In the absence of an upper bound uN we are unable
to definitely associate the existence of a zero, aN , of 1

x

dhN (x,y)
dt

with the existence of a limit cycle.
(ii) Giacomini and Neukirch acknowledge that they are

unable to explain analytically the empirical improvement they
observe in the approximations to the limit-cycle amplitude
as N increases. We have found that in particular cases the
improvements in aN as N increases may be extremely slow.
For example, with ε � 1 the term with highest degree in
ε dominates the location (or existence) of the value(s) of
x for which 1

x

dhN

dt
= 0. It can be seen from the recursion

formula (24) that the term of highest degree of ε in 1
x

dhN

dt

is KεN−1xFN−1(x), where K is a constant, and that the value

for which this term is zero is simply the value of x for which
F (x) = 0. This is clearly illustrated in Table IV. Thus if ε � 1,
the value of x such that 1

x

dhN

dt
= 0 is “trapped” near the value

of x for which F (x) = 0 and does not rapidly converge to the
limit-cycle amplitude as N increases. Empirically, we observe
improvements in our upper bound, uN (see Table IV). In a
few cases we are able to show analytically some convergence
properties for aN and uN , but generally we, too, rely on
empirical results. The particular cases where we can show
improvements are all in the system (7) with conditions II A
and F (x) convex for a < x < u. For the transition N = 2 →
N = 4 we can show that that the bounds provided by both aN

and uN improve (or remain the same) for all ε. To do this we use
a combination of integration by parts, Jensen’s inequality [41],
and the intermediate value theorem. For system (7) with
conditions II A and F (x) convex for a < x < u, we can also
show that for N � 2, uN tends to the recognized limit-cycle
amplitude.

(iii) Both methods can generate bounds for the parameters
associated with bifurcations. In many cases the method in
Ref. [39] may converge more rapidly to the bifurcation set
than do the zeros of the polynomials discussed in Sec. III C.
However, our bounds for the bifurcation set are conservative,
in the sense that they are based on sufficient conditions for the
existence of a corresponding limit cycle.

(iv) In Sec. II E we show how our techniques can be applied
to systems where the damping term has both odd and even
components. By contrast, Neukirch [40] acknowledges that
the technique used by Giacomini and Neukirch to approximate
limit-cycle amplitudes (based on zeros for 1

x

dhN

dt
) does not work

if the damping term in Eq. (5) is not an odd function of x.

V. CONCLUSION

In summary, we have introduced simple and sufficient
conditions for the existence of limit cycles in Liénard systems.
Our method is sufficiently simple to permit a valid, reasonably
accurate upper bound for the amplitude of the limit cycle to be
generated by inspection of the damping function of the Liénard
system. Our method starts from geometric observations but
primarily uses the techniques of vector algebra. The method
does not rely on perturbation techniques and is applicable for
all nonzero, finite values of the strength parameter ε.

We have shown that all systems of the form (7) which satisfy
conditions II A possess a limit cycle. The maximal amplitude
ρ of the limit cycle satisfies a < ρ < u, where F (a) = 0 and∫ u

0 F (x)dx = 0. We have shown that, by utilizing a technique
developed by Giacomini and Neukirch in a different context,
it is possible to generate improved upper bounds for the
amplitude of the limit cycle for the van der Pol oscillator
Eq. (1). The criteria for establishing the existence of a limit
cycle can also be used to develop bounds on bifurcation sets
relating to the existence of limit cycles.

In many practical situations it is unlikely that the system
being investigated will have the high symmetry of a Liénard
equation, such as the van der Pol equation. Nevertheless, as
shown in Sec. II E, there are many lower-symmetry systems
for which bounds on the amplitude can be readily derived
from those of a constituent Liénard system. The parameters
of differential equations used to model physical systems are
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rarely known exactly and to assess systematically the con-
sequences of parameter variations numerically could require
extensive numerical simulations. By contrast, the results we
present here can be used to provide simple bounds for the
limit-cycle amplitude without the need for extensive numerical
work.
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