
Photonics 2015, 2, 414-425; doi:10.3390/photonics2020414 

 

photonics 
ISSN 2304-6732 

www.mdpi.com/journal/photonics 

Article 

Gain and Threshold Current in Type II In(As)Sb Mid-Infrared 

Quantum Dot Lasers 

Qi Lu *, Qiandong Zhuang and Anthony Krier 

Physics Department, Lancaster University, Lancaster LA1 4YB, UK;  

E-Mails: q.zhuang@lancaster.ac.uk (Q.Z.); a.krier@lancaster.ac.uk (A.K.) 

* Author to whom correspondence should be addressed; E-Mail: q.lu3@lancaster.ac.uk;  

Tel.: +44-015-24-597-50; Fax: +44-015-24-593-651. 

Received: 27 February 2015 / Accepted: 11 April 2015 / Published: 15 April 2015 

 

Abstract: In this work, we improved the performance of mid-infrared type II InSb/InAs 

quantum dot (QD) laser diodes by incorporating a lattice-matched p-InAsSbP cladding 

layer. The resulting devices exhibited emission around 3.1 µm and operated up to 120 K in 

pulsed mode, which is the highest working temperature for this type of QD laser. The 

modal gain was estimated to be 2.9 cm−1 per QD layer. A large blue shift (~150 nm) was 

observed in the spontaneous emission spectrum below threshold due to charging effects. 

Because of the QD size distribution, only a small fraction of QDs achieve threshold at the 

same injection level at 4 K. Carrier leakage from the waveguide into the cladding layers 

was found to be the main reason for the high threshold current at higher temperatures.  
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1. Introduction 

The mid-infrared wavelength range (2–5 µm) continues to attract significant research interest due to 

its importance for various potential applications, such as optical gas sensing, environmental pollution 

monitoring, chemical process control, non-invasive medical diagnosis, tunable IR spectroscopy, laser 

surgery and infrared countermeasures [1]. Efficient and cost-effective solid-state laser sources emitting 

in this spectral range are required in many applications. In recent years, mid-infrared quantum well 

(QW) lasers have made significant progresses in reducing the threshold current density, increasing 

maximum working temperature and output power [2,3]. Moreover, the quantum cascade lasers (QCLs) 

and inter-band cascade lasers (ICLs), which make use of the inter sub-band transition, have achieved 
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superior performance [4,5]. However, these types of devices suffer from lower wall plug efficiency 

and higher turn-on voltages than QW lasers. In addition, QCLs and ICLs are typically composed of 

hundreds of thin layers, making their growth more challenging. From theoretical studies, due to their 

discrete density of states, QDs have higher material gain, narrower gain spectrum, and are less 

temperature sensitive than QWs [6], making them the ideal candidate as the gain medium in 

semiconductor lasers. Compared with QCLs and ICLs, QD lasers also have the advantage of less 

complicated growth. Although the growth conditions for successful realization of QDs needs careful 

attention to detail to obtain the correct size distribution and area density, once these conditions are 

established the active region growth can be easily completed and does not require an extended growth 

period. Despite these potential merits, to date there are still very few reports on QD lasers in the  

mid-infrared range and their performance lags behind the aforementioned types of lasers. However, 

type II InSb/InAs QDs grown by molecular beam epitaxy (MBE), which have exhibited room 

temperature mid-infrared photo-luminescence (PL) [7] and electro-luminescence (EL) [8], could be a 

route towards QD light sources and lasers emitting beyond 3 µm. 

In this work, we present broad area InSb QD laser diodes grown on InAs substrates, which emitted 

around 3.1 µm. The structure incorporated a p-InAs0.61Sb0.13P0.26 cladding layer grown by liquid phase 

epitaxy (LPE). The laser diodes worked up to 120 K in pulsed mode, which is a significant 

improvement compared with previous work [9,10]. The gain of these type II QDs was estimated and 

the different contributions to the threshold current were studied. 

2. Experimental Section 

The QD lasers were grown on (100) oriented p-InAs substrates. Firstly, a 2 µm thick 

InAs0.61Sb0.13P0.26 cladding layer was deposited by LPE from an indium-rich melt. The material was  

p-type doped with Zn to a concentration of ~2 × 1018 cm−3. The rest of the structure was then grown in 

a VG V80H MBE reactor. Ten layers of InSb QDs with 20 nm thick InAs spacers between each layer 

were deposited in the middle of a 1.2 µm thick undoped (1 × 1016 cm−3) InAs waveguide region. On 

top of that, an n-doped cladding layer was grown, which was composed of 0.3 µm thick n-InAs with a 

doping concentration of 1 × 1017 cm−3 and 1.7 µm thick n+-InAs with a doping concentration of  

5 × 1018 cm−3 which had a lower refractive index to complete the waveguide. The structure and band 

alignment of the resulting lasers are sketched in Figure 1a. 

Current-voltage measurements from the fabricated lasers revealed good p-i-n diode rectifying 

characteristics. As shown in Figure 1b, the turn-on voltage decreased from 0.34 V at 4 K to 0.10 V at 

300 K. The diode series resistance was ~2 Ω for all temperatures and the reverse leakage current was  

4 mA (0.5 V reverse bias) at 300 K. 

Unlike the common Stranski-Krastanov growth of QDs, which mainly relies on the strain effect 

between the deposited material and the substrate [11], in this case the growth of the InSb QDs is based 

on the As-to-Sb anion exchange reaction, which is achieved by exposing the substrate to Sb2 flux for a 

very short time interval. The substrate temperature during dot formation can be adjusted in the interval 

320–450 °C, resulting in InSb layers of thickness in the range 0.5–0.9 monolayer (ML). Ideally, larger 

QDs are required for use in lasers to maintain sufficient hole localization. For QDs grown using the 

exchange reaction, this is only possible at growth temperatures below 350 °C. However, it was found 
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that at growth temperatures in the range 320–350 °C the PL intensity decreased dramatically because 

of the poor material quality. Furthermore, strong Sb segregation can occur on the InAs surface forming 

rougher interfaces. Thus, to avoid this problem, in our laser structure the QDs were grown at higher 

substrate temperature (420 °C). Then to increase the size of the QDs, InSb was deposited for 4 s 

following the Sb exchange reaction, resulting in QDs about 0.8 ML in thickness (i.e., a few nanometers 

in each dimension) but with a very high density (~1012 cm−2). More details of the QD exchange growth 

can be found in our earlier work [8]. In agreement with previous reports, no wetting layer was 

observed. The QDs grown using this method typically emitted in the 3–4 µm spectral range, and the 

emission wavelength was dependent upon the substrate temperature and Sb2 flux exposure time during 

the growth [8,9]. After growth, broad area laser stripes were fabricated from the sample using 

conventional photolithography and wet chemical etching. Ti/Au (20 nm/200 nm) metallization was 

thermally evaporated on both sides to form the ohmic contacts. The lasers were fabricated to be 75 µm 

in width and of selected varying cavity lengths. The diodes were mounted and wire-bonded on TO-46 

headers for measurements and testing. 

 

 

Figure 1. (a) Illustration of the QD laser structure and the conduction and valence band 

alignments. (b) Current-voltage curves of the laser diode measured at 4 K and 300 K. 

3. Results and Discussion 

3.1. Gain from InSb QDs 

QD laser diodes with different cavity lengths were tested in pulsed mode (100 ns pulse width, 2 kHz 

repetition rate) from 4 K to 120 K. The threshold current density (Jth) increased from 1.59 kAcm−2 to 

4.68 kAcm−2 as the cavity length was reduced from 1.17 mm to 0.33 mm. Using the same method as 

for QW lasers [12], the gain of our InSb QD lasers was estimated from the relation between Jth and 

different laser cavity lengths L, using: 

𝐽𝑡ℎ =
𝑛𝑤𝐽𝑡𝑟
𝜂𝑖

𝑒𝑥𝑝(
𝛼𝑖 +

1
𝐿
𝑙𝑛 (

1
𝑅
)

𝑛𝑤Γ𝑤𝐺0
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where nw is the number of QD layers, Jtr is the transparency current density per layer, ηi is the internal 

quantum efficiency, αi is the waveguide loss, R is the reflection coefficient of the end facet, ΓwG0 is the 

modal gain in which Γw is the optical confinement factor per layer and G0 is the material gain 

coefficient. By making a linear fit between ln (Jth) and 1/L, the modal gain can be extracted. 

 

Figure 2. Threshold current density (Jth) vs. reciprocal cavity length (1/L) of the laser 

diodes at 4 K. The red line shows the linear fit between ln(Jth) and 1/L. 

From Figure 2, the modal gain of the QD laser was estimated to be ~29 cm−1, (i.e., 2.9 cm−1 per QD 

layer on average). This value is lower than typical (InAs) type I QDs emitting in the near-infrared 

range which is in the order of 10 cm−1 [13,14], but is close to that of type II QWs emitting at a similar 

wavelength [12]. The relatively lower modal gain from type II structures is closely related to the large 

spatial separation between electrons and holes compared with type I structures, which results in a 

much smaller electron-hole wave function overlap. 

 

Figure 3. (a) Calculated transition energy of InSb QD as a function of the QD height for 

different radius (R) values at 4 K. (b) Calculated transition energy of InAsxSb1–x QD as a 

function of As composition at 4 K, where the QD size is fixed at 3 nm base radius and  

2 nm height. 
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From previous reports [7–9,15], the peak emission wavelength of such InSb QDs typically falls 

between 3.2 and 3.8 µm at low temperatures, corresponding to transition energies in the range  

0.326–0.388 eV. The dependence of transition energies of pure InSb QD on the radius and height of 

the QDs at 4 K were evaluated using three-dimensional single band Schrödinger calculations in 

COMSOL multiphysics. The results are plotted in Figure 3a, where the transition energy exhibits a 

strong dependence on the QD size. For example, with a fixed radius of 2 nm, a 0.5 nm change in QD 

height (from 1.5 nm to 2 nm) resulted in about 70 meV difference in transition energy. Although the 

COMSOL calculation is a much simpler estimation than the k.p calculations, the values obtained here 

are in fact in good agreement with the results from 6 × 6 k.p calculations [16]. Assuming the QD was 

composed of pure InSb, it was found from both k.p modeling in [16] and COMSOL calculation from 

Figure 3a that, to achieve typical transition energy of 0.35 eV, the QD height needed to be about 1.0 nm 

and radius 1.25–1.5 nm. However, high resolution microscopic images reported in [17] revealed that the 

QDs could possibly be much larger in size (~3 nm base radius and ~2.5 nm in height). The most probable 

reason for this disagreement is that instead of pure InSb, the QDs may contain a large proportion of 

As. By fixing the QD size according to the microscopic image in [17], the transition energy 

dependence on the composition of As was also calculated by the same method in COMSOL and 

plotted in Figure 3b. To obtain the 0.35 eV transition energy, the QD composition should be close to 

InAs0.6Sb0.4. It needs to be stressed that one image cannot represent all of the QDs in the structure and it is 

most likely that there are deviations in both QD size and composition. Thus, both QDs with pure InSb in an 

extremely small size or larger QDs with more As in the composition can exist in the same sample. 

In the In(As)Sb QDs, holes are the only confined carriers, while electrons can move freely in the 

InAs matrix. Both COMSOL simulations and 6 × 6 k.p calculations [16] confirm that the ground heavy 

hole (GHH) state was the only confined energy state within QDs of base radius 1.25–3 nm. For both 

pure InSb QDs (~1.25 nm) and larger InAs0.6Sb0.4 QDs (~3 nm), the electron-hole wave function 

overlap lies within the range 35%–40% (using both simulation methods), which is lower than in type I 

QDs and W-structures [18,19]. However, due to the high QD density, an exceptionally high material 

gain of ~20 × 104 cm−1 can be estimated for our type II QD, which is in the same range as for type I 

QDs [13]. Despite the smaller electron-hole wave function overlap, these type II QDs can serve as an 

efficient gain medium for mid-infrared laser diodes. 

The laser diodes emitted between 3.02–3.11 µm and the details of the laser spectrum can be 

revealed by using high resolution Fourier transform infrared (FTIR) spectroscopy. The measured 

spectra of one laser diode at 4 K with different drive currents are plotted in Figure 4. The relatively 

broad overall spectra are probably caused by the size distribution of QDs. Two representative groups 

of modes are circled in this figure. At lower current injection, the longer wavelengths modes (circled in 

red) appeared first. With higher current injection, the shorter wavelengths modes (circle in blue) 

became stronger. This means the longer wavelength modes reach threshold first, associated with 

coherent emission from the larger QDs. This is also consistent with the transfer of holes between 

adjacent QDs by tunneling or thermal excitation [20] so that QDs with lower GHH states (i.e., emitting 

at longer wavelengths) become occupied first as current injection is increased. 
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Figure 4. Multimodal laser spectra measured at 4 K using different pulsed drive currents. 

Two representative groups of modes are identified and are circled using red and blue 

dashed lines in the figure. 

3.2. Spontaneous Emission 

The spontaneous electro-luminescence (SE) emission spectra from the laser diodes were measured 

from the end facet when the injected current was below threshold. An interesting phenomenon was 

observed that with increasing current injection, there was a large blue shift of the SE peak position. In 

Figure 5a, the SE peaked at 3.236 µm at 50 mA and moved down to 3.094 µm at 750 mA, 

corresponding to an energy difference of about 18 meV, but without significant broadening. The above 

threshold spectrum envelope at 1.0 A is also shown in the low resolution spectra of Figure 5a, where 

the lasing peak lies very close to the peak of the SE spectrum at 750 mA. 
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Figure 5. (a) Comparison of the sub-threshold emission spectrum at 50 mA current 

injection (green curve) and at 750 mA current injection (blue curve) with the laser 

spectrum envelope just above threshold at 1.0 A current injection (red curve). The peak 

intensities of the three spectra have been normalized. (b) Below threshold spontaneous 

emission peak wavelength shift with increasing current from a laser diode measured at 4 K. 

The threshold current of this laser Ith = 950 mA. 

The SE peak position dependence on the injected current is shown in Figure 5b. In the lower current 

range the rate of the SE peak shift is greater than in the higher current range. Since there is only one 

quantized heavy hole state in our QDs, one possible reason to explain the SE peak shift is the  

band-bending effect caused by the electric field in type II structures. When the holes occupy the QDs, 

the electrons can be attracted closer to them, causing the conduction band to bend into a triangular 

shape, as illustrated in Figure 6a. Quantized electron states may occur in the triangular potential, 

resulting in higher recombination energy. Blue shifts caused by band-bending have already been 

reported from other kinds of type II QWs [21] and QDs [22]. The relation between the injected current 

and wavelength shift can be written as [21]: 

Δ𝐸𝐵 ∝ 𝐼1/3 (2)  

where ΔEB is the transition energy shift caused by band-bending, and I is the injected current.  

Another possible reason that can cause a blue shift of the SE peak is the charging of QDs. In type II 

structures, since electrons and holes are spatially separated, the repulsive Coulomb force between 

carriers of the same type (the injected holes in our case) is much greater than the attractive Coulomb 

force between electrons and holes [23,24]. The strong interaction between the two holes in GHH state 

inside the QD can decrease the hole confinement energy, resulting in a blue shift of the SE peak. A 

single QD can be modelled as a cylindrical capacitor as sketched in Figure 6b. The relation between 

the transition energy shift arising from this charging effect and injected current can be obtained as: 

Δ𝐸𝐶 ∝ 𝐼1/2 (3)  

where ΔEC is the transition energy shift caused by charging, and I is the injected current. 
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Figure 6. (a) Illustration of the band-bending effects caused by the electric field in type II 

nanostructures. (b) Illustration of the simple capacitor model for a QD associated with 

charging effects. 

Comparing Equations (2) and (3), it is evident that the energy shifts caused by these two 

mechanisms have different dependence on the injected current. A logarithmic plot of the measured SE 

peak shift against the current is shown in Figure 7. The slope of the linear fit (blue line) in this plot was 

0.53, which confirms that the QD charging effect is responsible for the blue shift of the SE peak. 

 

Figure 7. Logarithmic plot of the SE peak shift (ΔE) at different injected currents (I). The 

blue line is a linear fit between ln(ΔE) and ln(I). The slope = 0.53. 

3.3. Non-Radiative current 

With increasing temperature, the threshold current density Jth of the laser diodes increased rapidly. 

However, compared to previous reports the measured maximum working temperature (Tmax) was 

improved from 60 K to 120 K, because of improved waveguide design and cladding layer material 

quality. The relationship between Jth and temperature was plotted in Figure 8, where the characteristic 

temperature, T0 was estimated to be 101 K when the temperature was below 50 K. For the temperature 

range between 50 K and 120 K, the value of T0 dropped to 48 K. Possible contributions towards the 

increase of Jth and decrease of T0 include: the leakage current, Auger recombination and Shockley-

Read-Hall (SRH) recombination. The total current density Jtot can be expressed as [25]: 

𝐽𝑡𝑜𝑡(𝑇) = 𝐽𝑙𝑒𝑎𝑘 + 𝐽𝑟𝑎𝑑 + 𝐽𝑆𝐻𝑅 + 𝐽𝐴𝑢𝑔𝑒𝑟 = 𝐽𝑙𝑒𝑎𝑘 + 𝐽𝑟𝑎𝑑 + 𝑒𝑑𝑒𝑓𝑓(𝐴𝑛 + 𝐶𝑛3) (4)  
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where Jleak, Jrad, JSRH and JAuger are the leakage current, radiative current, SRH current and Auger 

current, respectively. The terms An and Cn3 represent contributions from SRH and Auger 

recombination, where n is the threshold carrier density and deff is the effective width of the active 

region. The relation between temperature and Jleak was taken from [26]. In ideal QD lasers, Jrad should 

be temperature independent [6,27]. The calculated JSRH, JAuger and Jleak were plotted in Figure 8, where 

we have used representative values of the respective coefficients taken from the literature [26,28]. The 

Jtot (black curve) was then fitted to the experimental data Jexp by adjusting the constant value of Jrad. 

 

Figure 8. Measured threshold current density (red dots) of the In(As)Sb QD laser at 

different temperatures. Calculated Jleak (green curve), JSRH (orange curve), JAuger (pink 

curve), Jrad (blue line) and Jtot (black curve) are also presented.  

It is evident that for T < 40 K, the contributions from all three non-radiative mechanisms were 

negligible compared with the experimental data (Jexp), thus the high Jth in the low T region can only be 

attributed to radiative recombination. The Jrad was fixed at 2.5 kA/cm2 to make a reasonable fit between Jtot 

and Jexp. This plot also implies that Jleak is the dominant non-radiative component above 50 K. In fact, 

according to this calculation, at 120 K only 17% of the total current contributed towards radiative 

recombination, while leakage current consumed 67% of the total current. Within Jleak, the hole leakage 

was the dominating factor, since there was no valence band offset between the waveguide and  

n-cladding. The threshold current density at 4 K is rather high and requires explanation. According to 

Figure 8, the main contribution to the threshold current at this temperature is radiative. Because there 

is a distribution of QD size and composition, only a small fraction of QDs achieve threshold at the 

same injection level, and a large part of the radiative current is essentially wasted. Figure 4 confirms 

that QD of different sizes give coherent emission at different injection levels, with the larger QD being 

the first to reach threshold. We can speculate that only ~1%–10% of the QD are lasing together at each 

temperature.  

4. Conclusions 

We investigated the gain and characteristic temperature dependence of type II In(As)Sb/InAs QDs 

for use in mid-infrared laser diodes. The devices emitted at around 3.1 µm and operated up to 120 K. 

The transition energy dependences on QD size and composition were calculated. The charging effect 
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in the QDs was identified as the main reason for the blue shift in the spontaneous  

electro-luminescence. Different non-radiative recombination mechanisms were compared, and it was 

found that the leakage current was the major factor for the increase of Jth with temperature, though the 

Jrad needed to obtain lasing threshold was also quite high. In order to improve the Tmax and reduce Jth, 

the Jleak should be effectively suppressed, probably by inserting a hole blocking layer in the laser 

structure. The Jrad also needs to be reduced, which can only be achieved by increasing the modal gain 

of the QDs and carefully controlling the size distribution of the QDs. 
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