
Cardiovascular Dynamics – Multiple Time
Scales, Oscillations and Noise

Aneta Stefanovska
� †, Andriy Bandrivskyy† and Peter V.E. McClintock†

�
Group of Nonlinear Dynamics and Synergetics, Faculty of Electrical Engineering,

University of Ljubljana, Ljubljana, Slovenia
†Department of Physics, Lancaster University, Lancaster, UK

Abstract. Modelling the cardiovascular system (CVS) presents a challenging and important prob-
lem. The CVS is a complex dynamical system that is vital to the function of the human organism,
and it reflects numerous different states of healthand disease. Its complexity lies in a combination
of oscillatory modes spanning a wide frequency scale that can synchronize for short episodes of
time, coupled with a strong stochastic contribution. Motivated by these properties, we discuss the
problem of characterising dynamics when there is a combination of oscillatory components in the
presence of strong noise and, in particular, where the characteristic frequencies and corresponding
amplitudes vary in time. We show that, where there are several noisy oscillatory modes, the slower
modes are difficult to characterise because the length of the recordedtime series is inevitably limited
in real measurements. We argue that, in the case of strong noise combined with a limited observation
time, such oscillatory dynamics with several modes may appear to manifest as a 1

�
f -like behaviour.

We also show that methods of time-frequency analysis can provide a basis for characterising noisy
oscillations, but that a straightforward characterisation of multi-scale oscillatory dynamics in the
presence of strong noise still remains an unsolved problem.

INTRODUCTION

Nature abounds with rhythms of diverse origin. The day and the night rhythmically ex-
change, influencing the rhythmicity of light- and temperature-dependent physiological
processes. But natural clocks seem to be adaptive. As the length and intensity of the day-
light change within a year, the basic frequencies of many natural rhythms are modulated
and thus vary in time.

One of the most vital rhythmical functionsfor humans, and for higher animals gener-
ally, is the beating of the heart. The heart is a part of the cardiovascular system (CVS)
which serves to keep the blood in continuous motion. The CVS rhythmically distributes
nutrients and oxygen to every cell and takes away the products of their metabolism. It
consists of the heart, lung, and a network of contractile vessels that are actively involved
in the regulation of blood pressure and blood flow. The flow of blood is regulated with
respect to the needs of each cell of the body, as well as to the spontaneous fluctuations
arising from naturally occurring perturbations to the CVS. Thus the heart frequency is
not constant, but varies within certain limits, adapting to the current state and needs of
the organism.

The CVS is an extremely complex system, and it reflects the different states of health
or disease. How best to parameterize CVSdynamics using appropriate cardiovascular
signals, measured noninvasively, has been a continuing challenge over the last twenty
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years. In spite of intensive research, an optimal characterization able unambiguously to
describe the dynamics of the CVS, and reliably to distinguish between its states, has yet
to be found. In particular, we would like to establish a way of detecting changes due to
diseases in their early stages, before symptoms become obvious. The characterization
involves two major questions –

1. How to define the appropriate level of complexity at which the system can best be
characterized and modelled?

2. What is the underlying dynamics thatbest characterize its properties?

The first problem involves understanding the structure and function of the CVS, i.e.
the underlying physiological background. Thesecond problem is usually approached
through the analysis of cardiovascular time series. The recent development of noninva-
sive sensors based on electrical, optical, and auditory detection of cardiovascular func-
tions, of powerful computers, and of methods of nonlinear and stochastic time series
analysis, has motivated huge interest in understanding the dynamics of the cardiovascu-
lar system. However, the complex fluctuations which we can observe and measure in the
blood flow, blood pressure and heart rate, are yet to be understood.

It has been established that signals, derived from the human CVS contain several os-
cillatory components [1, 2, 3, 4, 5, 6], independent of the measurement site and function.
On a time scale of around one minute, the dynamics of the blood distribution system can
be characterized by five oscillatory components with slowly varying frequencies and
amplitudes [7, 8, 9, 10]. The frequency and amplitude variations are reminiscent of phe-
nomena observed in coupled oscillators. Moreover, another phenomenon characteristic
of coupled oscillators was observed – the synchronization of two of the rhythms: the
cardiac and respiratory [11, 12, 13, 14, 15, 16]. One possibility, therefore, is to charac-
terize cardiovascular signals in terms of a model consisting of five coupled autonomous
noisy oscillators [17, 18].

The other approach comes from analyses of the statistical properties of heart rate
variability (HRV) [19, 20, 21, 22, 23], and considers the chaotic behaviour [24, 25],
scaling properties [26, 27, 28] and multifractal characteristics [23] detected in the HRV
signal. HRV was considered to result from 1� f dynamics and it was suggested that the
state of the system defines the scaling properties of the power spectrum of the HRV and
that the state can be classified in terms of the slope in the log-log representation of its
power spectrum.

Where, then, is the origin of the difference in these two approaches to CVS dynam-
ics? Is the dynamics primarily oscillatory – spanning multiple time scales, or is it mainly
stochastic, or is it a combination? Studies concerned with the stochastic nature of the
system are mainly based onanalyses of the HRV signal. Those concerned with its os-
cillatory nature are based on analyses of blood flow and blood pressure, as well as of
the HRV signal. They are motivated by the physiological importance of the local regu-
latory mechanisms for blood flow and blood pressure, which manifest as low frequency
oscillations (<0.05 Hz) apparently reflecting the vascular and endothelial immune and
cytotoxic reactions.

In this paper we illustrate problems that arise in the analysis of noisy time-varying os-
cillations from a finite data set, and we show that they may lead to differences in interpre-
tation. We first analyze two cardiovascular signals, HRV and blood flow, and then apply
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exactly thesame analysis to a model signal whose dynamics is completely known. For il-
lustration several methods of time series analysis are applied: discrete Fourier transform
(DFT), time averaged DFT, wavelet transform using the Morlet wavelet, time averaged
wavelet transform, and detrended fluctuation analysis (DFA).

TIME SERIES AND THEIR CHARACTERIZATION

Cardiovascular signals

In this section we present analyses of cardiovascular time series. A set of cardiovas-
cular signals, i.e. the electrical activity of the heart (ECG), respiratory movements of
the lung, blood pressure, and peripheral blood flow, was simultaneously recorded from
a healthy, relaxed subject for 30 minutes using the procedure described in [9]. In our
discussion we will consider, first, the HRV “signal” derived from the ECG as an esti-
mate of the instantaneous cardiac frequency defined between two successive R-peaks
and, secondly, the skin blood flow signal.The signals were sampled at 400 Hz for pre-
cise detection of R-peaks. After generation of the HRV, they were resampled to 10 Hz
for analysis. The resultant signals are presented in figures 1(a) and 2(a) respectively.
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FIGURE 1. (a) The HRV signal and its (b) DFT, (c) time-averaged DFT, (d) time-averaged wavelet
transform, (e) detrended fluctuation function and (f) its wavelet transform. The variations in (a) are in
seconds around the mean value (1 s) that was subtracted for the analyses shown below.
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FIGURE 2. (a) The skin blood flow signal and its (b) DFT, (c) time-averaged DFT,(d) time-averaged
wavelet transform, (e) detrended fluctuation function and (f) time-frequency projection of the wavelet
transform.

Spectral analysis reveals the presence oflow frequency components in both signals;
note that, by definition, the HRV signal cannot contain the (� 1 Hz) cardiac frequency it-
self. However, markedly different interpretations of the very low frequency components
are possible. One may think of oscillatory components which undergo strong complex
modulation by noise and from the rest of the system, or one can study the scaling proper-
ties of the power spectra which can be classified by theα coefficient given by detrended
fluctuation analysis (DFA) [21, 22]. As demonstrated in figures 1(e) and 2(e) both car-
diovascular signals manifest 1� f -like behavior.

Model time series

Let us now consider a Van-der-Pol oscillator using the same methods of analysis.
Figure 3(a) presents a time series obtained from one oscillator of the system

ẍi
� εi

�
1 � x2

i � ẋi
�

w2
i xi � Diξ

�
t � � (1)

wherexi is the coordinate of thei-th oscillator andξ
�
t � is white Gaussian noise of in-

tensityDi. The length of the time series, the integration time step and the characteristic
frequencies are all chosen to mach the statistical properties of the cardiovascular time
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series and the conditions under which they are analysed. Results are shown both in the
absence of noise (left) and with strong noise(right). In the absence of noise the system
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FIGURE 3. (a) A signal of one noise-free Van-der-Pol oscillator with frequency of 0.03 Hz (left), and
in presence of strong noise (right). (b) Phase portrait, (c) DFT, (d) time-averaged DFT, (e) time averaged
wavelet transform and (f) its wavelet transform and (g) detrended fluctuation function for noise-free (left)
and noisy oscillator (right).L in (g) is the window length.

(1) possesses a stable periodic orbit (limit cycle) and produces an almost harmonic sig-
nal for smallεi �

Strong noise applied to the oscillator results in significant variations of
its instantaneous amplitude and frequency, strikingly similar to the behaviour already
observed in cardiovascular signals. In the absence of noise the problem of characterising
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the dynamics of a single oscillator from time series is of course trivial. Each of the exist-
ing methods, either in phase space, or in the time, frequency, or time-frequency domains,
reconstructs its properties unambiguously. The addition of strong noise, however, trans-
forms this trivial problem into one that remains unsolved. Note that the phase portrait
of the single noisy oscillator can no longer be characterised by a circle and no obvious
origin can be determined. The DFA then results in a curve that may be interpreted as
1/ f -like, although the scaling interval(s) cannot easily be defined. A more precise char-
acterisation may be attempted by spectral methods, and by time-frequency analysis in
particular. Here, however, we face difficulties in frequency determination. The higher
the frequency is, the better we are able to define it, as there will be a larger number of
cycles within the observation period. For the slower oscillations, however, with fewer
complete cycles, the effect of noise is inevitably more pronounced. Note that the choice
of the window length represents a compromise between time and frequency localisation.
The actual window for the wavelet transform in our case was chosen to include 5 periods
of the corresponding frequency being estimated.
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FIGURE 4. (a) The model signal and its (b) DFT, (c) time averaged DFT, (d) time averaged wavelet
transform, (e) detrended fluctuation function and (f) its wavelet transform.

Now let us consider a more complex model with five noisy oscillators with char-
acteristic frequenciesfi �

�
1

�
0

�

26
�
0

�

1
�
0

�

03
�
0

�

018� Hz. The choices of the number of
oscillators, and their frequencies, were motivated by the idea that CVS can be modelled
as a system of five coupled oscillators, eachcorresponding to a different CVS activity
(cardio, respiratory, neurogenic, myogenic and metabolic) [9]. We scale the parameters
wi, εi andDi in order to get exactly the same oscillators but acting on different time
scales. So ifk is a scaling factor so thatwi � kw1, thenεi � kε1 Di � k2D1 �

The time
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series in figure 4(a) are obtained asx
� ∑i xi for parametersε1 �

0
�

4 andD1 �
1000

�

Note that all five oscillators (1) are identical, so that they produce identical time series
in a statistical sense, but scaled in time and in frequency. Note also that in reality the
cardiovascular oscillators are coupled. Inour model we use noise to introduce the effect
of couplings. In this way, although the model is complex, e.g. consists of five modes, we
are still able to treat it both analytically and numerically.

Spectral analyses using frequency and time-frequency methods are presented in fig-
ures 4(b)–4(e). Note that the wavelet transform has better statistical averaging (averag-
ing in time and frequency domain). However, as already noted, optimal resolution in
time and in frequency cannot be obtained simultaneously. The Morlet wavelet allows a
compromise with good frequency resolution in the low frequency (LF) domain and a
good time resolution in the high frequency (HF) domain. It allows the best estimation
of the lowest frequency peaks compared to the results obtained by DFT and time aver-
aged DFT. Yet, as can be seen from figure 4, the two spectral peaks lowest in frequency
are not well resolved in the spectra. That means that the available time of observation,
which is chosen to include about 30 realizationsof the slowest oscillation, is insufficient
for appropriate estimation of the LF oscillatory components due to poor statistical aver-
aging. Figure 4(e) gives the DFA function of the model signal in 4(a). Again it shows
1� f -like behavior with two different scaling regions. We note that DFA cannot provide
information about the underlying oscillatory dynamics.

CONCLUSION

We have discussed the problem of characterising oscillatory dynamics from time series
in the presence of strong noise, introducedin such a way as to produce time-variability
of the characteristic frequencies as observed for the cardiovascular oscillations. Using
model time series that mimic the main properties of the cardiovascular signals we show
that, when the noise is strong and the frequency variability is large, the underlying
dynamics cannot be determined unambiguously. Nonetheless, time-frequency methods
have the potential advantage over DFA andphase-space techniques that they can in
principle separate the different oscillatorycomponents, and can thus provide information
specific to particular physiological processes.

The time-variable characteristic oscillations can be taken as indicating of a non-
autonomous system. A time-frequency, or time-phase representation is therefore needed
for characterisation of the correspondingdynamics. The wavelet transform, as a time-
frequency method, enables the instantaneous frequencies to be traced as they evolve
in time. Where several oscillatory components are present, however, and because the
time of observation in reality is inevitably finite, we face difficulties in estimation of
the lower oscillation frequencies. The longer their period in comparison to the total
observation time, the more obtrusive thenoise becomes. The lower frequencies may
thus be misestimated as the result of poor statistical averaging. We note that the problem
of identifying characteristic frequencies in the presence of noise is widespread, because
biological systems are characterised by inherently noisy oscillatory dynamics.
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