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ABSTRACT

An application of the path-integral approach to an analysis of the fluctuations in complex dynamical systems
is discussed. It is shown that essentially the same ideas underly recent progress in the solutions of a number of
long-standing problems in complex dynamics. In particular, we consider the problems of prediction, control and
inference of chaotic dynamics perturbed by noise in the framework of path-integral approach.
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1. INTRODUCTION

Almost all systems, whether in nature or in technology, are noisy and nonlinear and, in general, their behaviour
can only be understood if the nonlinearity and noise are taken explicitly into account. Such studies are of wide
applicability to many branches of science and technology, where identical model equations often arise in diverse
contexts.

One of the ultimate goals of such studies is prediction and control of complex stochastic dynamics – the prob-
lem that was challenging researchers for decades. A particular challenging aspect of this problem is an analysis
of fluctuations in systems with complex geometrical structure of an attractor or/and attractor’s boundaries, such
as chaotic systems.

A traditional approach to the problem of prediction in the context of stochastic nonlinear dynamic would be
to calculate the probability of various events in such systems, including e.g. the probability of fluctuation-induced
transitions between coexisting states.1 As a result the dynamical information is usually lost and traditional
approach does not allow the development of methods of dynamical control. Moreover, in the actual experimental
situation the model is not usually known exactly from “first principles” and one is faced with the problem of
inferencing a parametric model from the measured time-series data.

Therefore, a few fundamental distinct problems can be formulated in the context of research of complex
dynamical systems:

• inference of the parametric dynamical model from the experimental time-series data;

• calculations of the probability distribution function;

• development of the methods of dynamical control.

These problems are usually considered in the context of distinct scientific disciplines, see e.g..2–4

We will show, however, that the problems of prediction, control, and inference of complex dynamical systems
can be addressed in a general framework of the path-integral approach to the analysis of the fluctuational
trajectories.5, 6 The unifying theme of this approach is the idea that the solution of all above mentioned problems
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in the limit of weak to moderate noise-intensities requires global minimization of similar probability density
functionals. An additional important advantage of this approach is that it allows to use similar calculations for
both maps and flows. A special care should be taken, however, in transformation from stochastic to dynamical
variables in each case.

The paper is organized as follows. In the Sec. 2 we introduce the probability density functional to have a
given fluctuational trajectory in dynamical flows and maps. In the Sec. 3 we apply the path-integral approach
to the analysis of the noise-induced escape from a chaotic attractor via fractal basin boundary. In the Sec. 4 we
demonstrate that the same approach can be used to solve the problem of energy-optimal control of migration
in chaotic attractor. Finally, in Sec. 5 we apply path-integral formulation to the solution of infer parameters of
chaotic system from the experimental time-series data.

2. PROBABILITY DENSITY FUNCTIONAL OF FLUCTUATIONAL
TRAJECTORIES

Consider a dissipative stochastic dynamical system described by L-dimensional map

xn+1 = f(xn) + σξn, 〈ξαnξβn′〉 = δnn′δαβ , (1)

where xn, ξn ∈ RL, and σ is a matrix that mixes white Gaussian noises ξn. Note that particular case f(xn) = xn+
hK(xn) corresponds to a prepoint Euler discretization scheme for Langevin systems of equations corresponding
to dissipative dynamical flow

ẋ = K(x) + σξ(t), (2)
〈ξα〉 = 0, 〈ξα(t)ξβ(s)〉 = δ(t − s)δαβ ,

where xn = x(tn), tn = nh, h = (tf − t0)/N with the initial and final times t0 and tf . In both cases x is a
L-dimensional vector of dynamical variables describing the systems (1) and (2). K(x) is a non-linear vector field
(which may depend explicitly on time), ξ(t) is a zero-mean Gaussian noise.

The form of the probability functional is determined by the properties of the dynamical noise ξ(t).6, 7 It
is clear from the eq. (1) that the probability ρ(xN , tf |x0, t0) of fluctuational path {xn} connecting attractor
SA with arbitrary point SB in its basin of attraction is deterministically related to the probability ρ[ξn] for the
random force to have corresponding random realization {ξn}. Taking into account that for white Gaussian noise
ξn at each time step are independent on each other the later probability is given by (cf.1, 8–11)

ρ[ξn]
N−1∏

n=0

dξn =
N∏

n=0

L∏

l=0

dξn√
2π

exp
(
−1

2
ξT
n,lξn,l

)
. (3)

Changing to dynamical variables we have the probability for the system (1) to have fluctuational trajectory {xn}
in the form

ρ[xn]
N−1∏

n=0

dxn =
1√

(2π)NL det (D)

N−1∏

n=0

dxn exp
(
−1

2
(xn+1 − f(xn))T D−1(xn+1 − f(xn))

)
, (4)

where D = σσT . In the transformation from (3) to (4) we have neglected the Jacobian of transformation
J(xn) = ∂(ξn1,ξn2,...ξnL)

∂(xn+1,1...xn+1,L) . This Jacobian is 1 for the maps. However, for the flows it is essential different from 1

as follows from the mid-point finite difference approximation of (2) xn+1 = xn +hK(x∗
n)+σ′zn where σ′ = σ

√
h

and x∗
n = (xn + xn+1)/2. It can be easily seen that in this case to the first order approximation in h the

Jacobian of transformation is J(x) ≈ 1 − h
2

∑L
l=0

∂Kl(xn)
∂xn,l

(cf.12–14). This term turns out to be unimportant in
the analysis of the large deviations of the system from the attractor in Sec. 3 and 4. The reason is that in this
case noise intensity is assumed to be very small as compared to the action integral taken along the fluctuational
trajectories. Or other words D tend to zero in (4) the corresponding term − 1

2 (xn+1−f(xn))T D−1(xn+1−f(xn)) is
exponentially larger then the term related to the prefactor. However, it was suggested in46, 47 that in the analysis



of the inference one does not assume necessarily the presence of large deviations and the prefactor term gives
the dominant contribution to the reconstruction of the system dynamics from the time-series data.

Finally the probability density functional F [x] over the trajectory xn of system (1) and of system (2) (in
Euler approximation) is given by the following equation

F [x] =
J(x)√

(2πh)NL det (D)
exp

(
− 1

2h

N−1∑

n=1

(xn+1 − f(xn))T D−1(xn+1 − f(xn))

)
, (5)

where J(x) = 1 and h = 1 for the maps (1) and J(x) ≈ 1− h
2

∑L
l=0

∂Kl(xn)
∂xn,l

and h is the time step of discretization
for the flows (2).

2.1. Extremal fluctuational paths

Suppose we are interested in calculation of the probability to find a dynamical system at any point in the basin
of attraction Ω of some attractor A. If the distance from the attractor is much larger then the square root of
largest eigenvalue of D we can assume that the noise is small and in this sense to analyze the probability of large
deviations from A.

As we have mentioned above in the analysis of large deviations the prefactor can be neglected and we can
proceed to obtain equations for the most probable fluctuational paths via analysis of the global minimum of the
energy functional for the system (1)

S =
1
2

N∑

n=1

ξT
n ξn, under condition xn+1 − f(xn) − σξn = 0, (6)

on a discrete time n = 0, ..., N , where x0 belongs to the attractor and xN is an arbitrary point in the basin of
its attraction. In a particular case of the escape from the basin of attraction xN belongs to the basin boundary.
The corresponding results for the flows can be obtained as a limiting case of f(xn) = xn + hK(xn) with h → 0.

Introducing Lagrangian multipliers λn we have to minimize11 effective functional

S∗ =
1
2

N∑

n=1

ξT
n ξn +

N∑

n=1

λT
n (xn+1 − f(xn) − σξn), (7)

with respect to independent variations of ξn, λn, and xn leading to 2L-dimensional map of the form11

{
xn+1 = f(xn) + σσT λn,

λn+1 = {f ′(xn+1)}−1
λn.

(8)

To obtain corresponding results for the flows we substitute Euler approximation f(xn) = xn + hK(xn) into (8).
Taking into account that σ goes into σ′ = σ

√
h we obtain

{
ẋ = K(x) + Dp,
ṗ = −K ′(x)p,

(9)

which are well-known15, 16 Hamilton’s equations for the flows in the extended phase space. Here we introduced
the notations for vanishingly small h: λn → p(t), xn → x(t), (λn+1 − λn)/h → ṗ, and (xn+1 − xn)/h → ẋ.

This clarifies physical meaning of the Lagrangian multipliers in (8) as quantities equivalent to momenta in
continuous equations and show the connection between eqs. (8) the Hamilton’s equations for the flows.

Trajectories of (8) and (9) found with appropriate boundary conditions cover densely the configuration spaces
of original systems (1) and (2). The global minimum of the energy functional (6) found by minimization over
all the trajectories arriving to a given point of the basin of attraction provide the solution of the problem of
predicting the probabilities of various states of the stochastic flows and maps.



2.2. Boundary conditions

To describe initial conditions we assume for simplicity that the attractor has a fixed point x0 of period one and
linearize eqs. (8) about this point to obtain

{
δxn+1 = f ′(x0)δxn + Dλn,

λn+1 =
{
f ′(x0)

}−1
λn.

or in matrix form
(

δxn+1

λn+1

)
=
(

A D
0 A−1

)(
δxn

λn

)
(10)

where A = f ′(x0). The unstable manifold of x0 is a two-dimensional hyperplane spanned by the two unstable
eigenvectors vu

1 and vu
2 of (10). The generic point on the unstable manifold is written as vn+1 = α1v

u
1 µn

1 +
α2v

u
2 µn

2 where α1,2 are complex coefficients and µ1 and µ2 are two multipliers corresponding to the unstable
eigendirections. Separating the δx and the λ components we obtain linear relationship between x and λ for a
2-dimensional map in the form

(
λx

λy

)
= M

(
x
y

)
, where M =

(
v1λx

v2λx

v1λy
v2λy

)(
v1x v2x

v1y v2y

)−1

. (11)

Similarly a substitution of Euler approximation f(xn) = xn + hK(xn) into (10) recovers a well-known result for
the linearized Hamiltonian equations for continuous systems (cf. e.g.6, 17, 18)

{
δẋ = K ′(x0)δx + Dp,
ṗ = −K ′(x0)p.

or in matrix form
(

δẋ
ṗ

)
=
(

B D
0 −B

)(
δx
p

)
(12)

where B = K ′(x0) and δx is small deviation of the coordinate from the fixed point attractor x0. The generic
point on the unstable manifold is written in this case as v(t) = α1v

u
1 expλ1t +α2v

u
2 expλ1t where α1,2 are complex

coefficients and λ1 and λ2 are two positive eigenvalues corresponding to the unstable eigenvectors vu
1 and vu

2 .
Accordingly the connection between the momenta and coordinates on the unstable manifold of the linearized
system can be written in the form similar to (11)

(
px

py

)
= M

(
x
y

)
, where M =

(
v1px

v2px

v1py
v2py

)(
v1x v2x

v1y v2y

)−1

. (13)

Equations (11) and (13) provides the choice of a proper initial conditions for the solution of the boundary
value problem for flows and maps. For the two-dimensional flows and three-dimensional maps considered in the
following chapters the corresponding unstable manifolds can be parameterized using two-parameter sets.

In particular, the activation processes in the systems (1) and (2) in the limit of small noise intensity is gov-
erned by the most probable escape path that drives the system from the point attractor x0 at t0 → −∞ to the
saddle orbit SB at tf → +∞.
The analysis of the stable manifold of an unstable (or saddle) structure is performed in a similar way.

2.3. Experimental investigation of the large deviations

One of the important points to bare in mind is that the optimal fluctuational paths can be measured directly in
the experiment as was suggested by Dykman et al.19 In this technique the dynamics of the system is followed
continuously. Several dynamical variables of the system and the random force (when available20) are recorded
simultaneously, and then the statistics of all actual trajectories along which the system moves in a particular
subspace of the coordinate space is analysed. The theory predicts and the experiment demonstrates19–25 that
so-called prehistory probability distribution of such trajectories moving the system from the equilibrium state to
the remote state are sharply peaked about the optimal fluctuational path.

It is clear that information about stochastic processes obtained in this way is much more detailed than that
obtained by the standard method of measuring stationary probability distributions. In our technique, not only
do we count rare events (i.e. arrivals of the system at a given point in configuration space), but we also learn how
each of these events comes about. The underlying mechanism is that, when the system is driven by a random



force, it will occasionally fluctuate to a given point in the attractor basin. In doing so in the limit where the noise
intensity tends to zero, the system will follow very closely the “deterministic” optimal fluctuational trajectories.

This technique has been mainly developed through the applications to the analysis of fluctuations in electronic
circuits23 and only recently it was extended to the investigations of the fluctuations in real physical systems. In
particular, in the work by Hales and co-authors25 the prehistory distribution was observed experimentally using
a semiconductor laser with optical feedback.

We emphasize that the possibility of experimental investigation of the probability density functional of large
deviations is an additional important advantage of the path-integral approach to the analysis of the fluctuations
in complex stochastic nonlinear systems, where neither stationary probability distribution nor the PDF (5) are
known theoretically. As we will show in the next two sections such experimental measurements can be very
helpful in the analysis of escape and control problems in chaotic systems in particular.

3. ESCAPE THROUGH A FRACTAL BOUNDARY

The mechanism of fluctuational escape from a chaotic attractor (CA) through a fractal basin boundary (FBB)
represents one of the most challenging unsolved problems in fluctuation theory.1, 8, 11, 26 The unpredictable and
highly complex stochastic behavior of such systems arises in part from the presence of limit sets of complex
geometrical structure, and in part from the fractality of the basin boundary.27, 28 For this reason, the central
question – whether or not there exists a generic mechanism for fluctuational transitions through the FBB – has
remained unanswered.

In this Section we show that a generic mechanism of fluctuational transition between co-existing CAs separated
by an FBB can be found using experimental analysis of the probability distribution of the fluctuational trajec-
tories described above. Such an analysis reveals a unique solution for the escape problem and the corresponding
boundary conditions both on the attractor and attractor boundaries and facilitates further investigations of the
noise-induced transitions in chaotic systems based on the path-integral approach.

To demonstrate the existence of this escape mechanism, we take as an example the two-dimensional map
introduced by Holmes.29 The properties of this map, including the structures both of its CA and of its locally
disconnected FBB, are generic for a wide class of maps and flow systems.30 This fact, taken with the results
of our investigations of escape in other systems, allows us to conclude that the escape mechanism we describe is
indeed a typical one. The Holmes map is

xn+1 = yn (14)
yn+1 = −b xn + d yn − y3

n + ξn,

where ξn is zero-mean, white, Gaussian noise of variance D. Due to symmetry, the noise-free system (14) with
b = 0.2 and 2.0 ≤ d ≤ 2.745 has pairs of co-existing attractors, the basins of which are separated by a boundary
that may be either smooth or fractal, depending on the choice of parameter values. We choose for our studies
b = 0.2 and d = 2.7, which corresponds to there being two co-existing CAs separated by a locally disconnected
FBB (see Fig. 1). The fractal dimension of the boundary has been determined numerically (dim = 1.84472) by
using the “uncertainty exponent” technique introduced in.31 The chaotic attractors in (14) appear as the result
of a period-doubling cascade and, for the parameters chosen, each of them consists of two disconnected parts.

We have modelled the system (14) numerically, exciting it with weak noise, and have collected trajectories
that include escape paths from one CA to the other, and also the corresponding realisations of noise that induced
these transitions. By ensemble averaging a few hundred such escape trajectories and noise realisations, we have
obtained the optimal escape path and the corresponding optimal force, which are shown in Fig. 1(b). The results
of this statistical analysis allow us both to determine the boundary conditions near the CA and the FBB, and
to demonstrate the uniqueness of the MPEP. It can be seen in particular that, in leaving the CA, the system
(14) falls into a small neighbourhood of the saddle point of period 1 (S1) located between its two disconnected
parts and having the multipliers ρ1 = 0.118975 and ρ2 = 1.681025. Its stable manifolds separate the parts of the
CA, while the unstable ones belong to the CA. The system makes a few iterations in the neighbourhood of S1
(small plateau in Fig. 1(b)) and then moves to the FBB in three steps, crossing it at a saddle point of period 3
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Figure 1. (a) The co-existing chaotic attractors (filled black regions) and their basins of attraction represented by grey
and white respectively. The accessible boundary saddle points of period 3 are shown by the small filled black circles labelled
S3. Their stable manifolds are shown as full black lines. The saddle points of period 1 are shown by the crosses labelled
S1. The saddle point at the origin is labelled O. (b) The most probable escape path (dashed line) connecting the CA
with the period-3 saddle cycle lying on the fractal boundary, obtained from the Monte-Carlo simulations with D = 10−5.
The optimal path found by the solution of the boundary-value problem is shown as a solid line. The x-coordinate of the
saddle point S1 is shown by the horizontal dashed line.

(S3) with multipliers ρ1 = 0.001016 and ρ2 = 7.875512. Calculations have shown that, for the chosen parameter
values, S3 lies within the FBB. Moreover, its stable manifold (solid black line in Fig. 1(a)) is dense in the FBB
and detaches the open neighborhood, including an attractor, from the FBB itself. This allows us to classify it
as an accessible boundary point.32

An analysis of the structure of escape paths inside the FBB has shown that the homoclinic saddle points
play a key role in its formation. In the system (14), we observe an infinite sequence of saddle-node bifurcations
of period 3, 4, 5, 6, 7..., which occur at parameter values d3 < d4 < d5 < d6 < d7... and are caused by tangencies
of the stable and unstable manifolds of the saddle point O at the origin. The homoclinic orbits appearing as
a result of these bifurcations were classified earlier as original saddles, and it was also shown that their stable
and unstable manifolds cross each other in a hierarchical sequence.32 To characterize this hierarchical relation
between original saddles, it is reasonable to introduce a parameter µ equal to the ratio | ln(ρ1(P )) | / ln(ρ2(P )),
where ρ1 and ρ2 are the multipliers of a saddle point P . Calculations have shown that, for the original saddles
of period 3, 4, 5, 6, 7, 8... in (14), the following hierarchical sequence of index µ values occurs: µ3 = 3.339, µ4 =
3.08, µ5 = 2.999, µ6 = 2.339, µ7 = 1.958, µ8 = 1.539. Moreover, the values of index µ corresponding to the
other homoclinic saddle cycles are close to zero. Correspondingly the probability of finding the system in their
neighbourhood tends to zero.

These results allows us to infer features of a fluctuational transition through a locally disconnected FBB that
are probably generic, as follows: (i) it always occurs through a unique accessible boundary point; and (ii) the
original saddles forming the homoclinic structure of the system play a key role in the formation of the paths
inside the FBB, the difference in their local stability defining the hierarchical relationship between them. Thus,
we may claim that complicated structure of escape trajectories, caused by the thin homoclinic structure and
their randomness, has in many respects a deterministic nature.

Having now understood the mechanism of escape, we can seek the MPEP according to the Hamiltonian
theory of fluctuations (see Sec. 2). The following area-preserving map is obtained in this case

xn+1 = yn

yn+1 = −b xn + d yn − y3
n + λy

n (15)



λx
n+1 = (d − 3x2

n+1)λx
n/b − λy

n/b

λy
n+1 = λx

n

Equations (15) are supplemented by the following boundary conditions

lim
n→−∞λy

n = 0, (x0
n, y0

n) ∈ S1, (x1
n, y1

n) ∈ S3. (16)

The MPEP is the minimum-energy heteroclinic trajectory connecting S1 to S3 in the phase space of (15). The
solution of this boundary value problem found by the method briefly outlined in the Sec. 2 is shown in Fig. 1(b).
It can be seen that, within the range shown by the vertical dotted lines in Fig. 1(b), the theoretical MPEP closely
coincides with the path obtained by statistical analysis of escape trajectories in the Monte Carlo simulations.
Note that no further action is required to bring the system to the other attractor once it has reached the accessible
orbit of the FBB, i.e. once it has reached the points numbered 8 in Fig. 1(b); correspondingly, the optimal force
measured in the numerical simulations (inset) falls back to zero.

In conclusion, we have demonstrated33 that the path-integral approach to the analysis of complex systems
can be used very effectively to reveal the mechanism by which noise-induced escape occurs through a locally
disconnected FBB. We want to emphasize that the revealed escape mechanism must be applicable to the broad
class of two dimensional maps and flows29, 30 exhibiting the same type of FBB.

4. CONTROL OF A CHAOTIC OSCILLATOR

In this section we demonstrate that the analysis of the optimal trajectories can be used to solve one of the
long-standing problem of control of chaos. We consider the motion of a periodically driven nonlinear oscillator

ẋ1 = f1 = x2, (17)
ẋ2 = f2 = −2Γx2 − ω2

0x1 − βx2
1 − γx3

1 − h cos(Ωt) + u(t),

Here u(t) is the control function. Parameters were chosen such (β2 < Γω2
0 , β2

Γω2
0

> 9
10 ,Γ = 0.025) that the chaotic

attractor coexists with the stable limit cycle (SC in Fig. 2(b)). The chaotic state appears via period-doubling
bifurcations and thus corresponds to a non-hyperbolic attractor. Its boundary of attraction ∂Ω is nonfractal and
is formed by the saddle cycle of period 1 (S1). For details about the phase diagram see.34 We have considered
the following energy-optimal control problem. The system (17) with unconstrained control function u(t) is to be
steered from the CA to the stable limit cycle in such a way that the energy (“cost”) functional R is minimized,
with t1 unspecified

R = inf
u∈U

∫ t1

t0

f0(x, t)dt, f0(x, t) =
1
2
u2(t). (18)

Here the control set U consists of functions (control signals) able to move the system from the CA to the SC.
The idea of the method is that the optimal control signal ū(t) can be identified with the optimal fluctuational
force35 that drives the system from the CA to the SC. Therefore the control function can be found as an optimal
force of the following

ẍ + 2Γẋ + ω2
0x + βx2 + γx3 + h cos(Ωt) = ξ(t), (19)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = 4ΓkTδ(t)

if the control signal u(t) in (17) is substituted with zero-mean white Gaussian noise ξ(t) in (19).

The interrelationship between the two problems is intuitively clear because, in thermal equilibrium (D =
4ΓkBT ), the probability of fluctuations is determined by the minimum work from the external source needed to
produce the corresponding change in the thermodynamic quantities ρ ∝ exp(−Rmin/kBT )36 and for the system
(17) Rmin is given by R in (18). On the other hand the same probability is given by the optimal realisation of
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Figure 2. The basin of attraction (shaded region) of the stable limit cycle SC (large filled circle) and that of the chaotic
attractor CA (white) in Poincaré cross-section with Ωt = 0.6π(mod2π), Ω = 0.95. The boundary S1 of the CA’s basin
of attraction, the saddle cycle of period 1, is shown by the black square. The saddle cycle of period 3 is shown by black
pluses. The intersections of the actual escape trajectory with the Poincaré cross-section are indicated by the small filled
circles.

the random force ξ(t) minimising integral in the probability density functional (5)( cf.37, 38). We therefore have
to solve the same variational problem in both cases.

The most probable escape path 〈qesc(t)〉 and the corresponding solution ũ(t) ≈ 〈ξesc(t)〉 of the energy-optimal
control problem can be found using our experimental method of statistical analysis of the distribution of escape
trajectories explained in Sec. 2.3 and 3. Note that the topological features of the prehistory distribution yield
direct insight into the control problem: where the prehistory distribution does not develop a well defined ridge
in the D → 0 limit, we may infer that control via a simple function is not achievable. In the present case, this
distribution turns out to be characterised by a narrow ridge, as the noise intensity is decreased, allowing us to
define an approximate solution ũ(t) for the control function (the exact solution is ū(t) = limD→0 ũ(t)), as an
ensemble average 〈ξesc(t)〉 of the realisations of the random force corresponding to the energy-optimal escape
path.

Once boundary conditions are specified one can solve the corresponding boundary value problem for the
system (19) numerically.34 The results of the numerical solution of the boundary value problem obtained by the
relaxational method are shown in Fig. 3(a) by the dotted lines and are in a good agreement with the solution
found from the analysis of fluctuational trajectories. To demonstrate that the optimal force ũ(t) found in the
experiment really does minimise the energy of the control function steering the system (17) from the CA to the
SC1 we set it to arbitrary initial conditions in the basin of attraction of the CA and let it evolve deterministically
until it passed through the initial part of the unstable manifold of S5. At this moment the deterministic control
function was switched on. For a given shape of the control function and/or initial conditions, its amplitude was
set to the threshold for switching of the system from chaotic to regular motion on SC1.

It was found that the system is very sensitive to small variations in the control function: any deviation
from the shape of ũ(t), or from the initial conditions found in the experiment, leads to a substantial increase
in the energy required to attain SC1. Some experimental results are shown in Fig. 3. It can be seen that the
energy of the control function is approximately twice larger if the optimal force is approximated by the sin
function modulated by a Gaussian u(t) = a1 sin(a2t) exp(−(t−a3)2a4), and it is respectively ∼ 4 and ∼ 20 times
larger if the optimal force is approximated by rectangular pulses or distorted with an arbitrary low-frequency
perturbation.

We have also performed experiments using an open-plus-closed-loop control technique39 and an adaptive
control algorithm40 to steer the system from the CA to the SC1. Although these methods are designed to
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Figure 3. (a)The most probable escape path (bottom solid curve) from S5 to the S1, found in the numerical simulations.
Single periods of the unstable saddle cycles of period 5, 3 and 1 are shown by open circles, squares and triangles respectively;
the stable limit cycle is shown by rombs. Parameters were h = 0.13, ωf ≈ 0.95, ω0 ≈ 0.597, D ≈ 0.01. Optimal force (top
curve) corresponding to the optimal path after filtration. (b) Energies of various control functions used in the numerical
experiments: 1 - optimal force found by statistical analysis of the fluctuational escape trajectories; 2 - approximation of
the optimal force by u(t) = a1 sin(a2t) exp(−(t − a3)

2a4) where ai are constants; 3 - approximation of the optimal force
by the rectangular pulses; 4 - arbitrary perturbation of the optimal force with a low-frequency perturbation; 5 - control
functions produced by the OPCL algorithm.

optimise the recovery time, rather than to minimise the energy of the control function, they are efficient in
entraining the system dynamics to the goal dynamics. So it is interesting to compare their performance with
that of the control function found in our experiment. The energy of the control functions (see Fig. 3(b)) obtained
by these methods is more than an order of magnitude larger then the energy of the optimal control function ũ(t)
found by our new technique.

The results of this section demonstrate41 that a novel technique for the energy optimal steering of a chaotic
system can be developed using the Hamiltonian formalism for the analysis of fluctuational trajectories in complex
nonlinear systems.

5. NONLINEAR DYNAMICAL INFERENCE OF A CHAOTIC SYSTEM

As we have mentioned in the introduction, in the actual experimental situation the model is not usually known
exactly from “first principles” and one is faced with the problem of inferencing a parametric model from the
measured time-series data. For a complex stochastic nonlinear system this problem does not have a general
solution.

Deterministic inference techniques3 consistently fail to yield accurate parameter estimates in the presence of
noise. The problem becomes even more complicated when both measurement noise as well as intrinsic dynamical
noise are present.42 A standard approach to this problem is often based on optimization of a certain cost
function (a likelihood function) at the values of the model parameters that best reconstruct the measurements.
It can be further generalized using a Bayesian formulation of the problem.42, 43 Existing techniques usually
employ numerical Monte Carlo techniques for complex optimization44 or multidimensional integration43 tasks.
Inference results from noisy observations are shown to be very sensitive to the specific choice of the likelihood
function.45 Consequently, the correct choice of the likelihood function is one of the central questions in the
inference of continuous-time noise-driven dynamical models considered here.

In this section we demonstrate, however, that the effective algorithm of nonlinear dynamical inference can
be developed using path-integral approach to the analysis of the fluctuational trajectories. Specifically, this



approach guarantees correct choice of the likelihood function that provides optimal compensation for the noise-
induced errors. For the full N-dimensional version of the algorithm and its application to an ensemble of coupled
oscillators see,46 an example of application of this algorithm to the real data of physiological experiment is
discussed in.47

Consider for the sake of simplicity a one-dimensional dynamical system subject to additive noise of the form

ẋ = K(x|c) + ξ(t), (20)
〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t),

where K(x|c) is the deterministic drift force, ξ(t) is the white zero-mean Gaussian noise and D is the noise
intensity. We assume that the unknown deterministic force can be represented in the form

K(x|c) =
M∑

k=1

ckfk(x), (21)

where fk(x) are known base functions, and c = {ck} is a set of unknown coefficients that have to be inferred
from experimental data.

Suppose that we can measure directly in the experiment the dynamical variable x(t) by sampling it on a time
lattice ti = tin + i h (i = 0, 1, . . . , N) with the step h = (tfn − tin)/N . Using path-integral approach outlined
in Sec. 2 conditional probability density function (PDF) L(x|c) of an observation x(t) for a given choice of the
model parameters c can we written as

L(x|c) = Pst(x(t0)|c)F [x], (22)

where Pst(x|c) is a stationary PDF of the system (20) given in (5). Thus all the information about our system
is now encapsulated in the likelihood function that relates observations to the dynamical process (20).

Suppose also that we can use a priory available information and an expert opinion about our system sum-
marized in a so-called prior PDF p(c).

Given a set of observation summarized in the likelihood function (22) one can improve an a priori estimate
of the model parameters taking advantage of the Bayes theorem

p(c|x) =
L(x|c)p(c)∫
L(x|c)p(c)dc

. (23)

Here p(c|x) is a so-called posterior PDF that contains the improved by observations information about the model
parameters. The integral in the denominator in (23) insures that the posterior PDF is normalized. Clearly,
Eq.(23) can be applied iteratively each time a new record of measurements is used: prior distribution in the
next iteration is just a posterior distribution from the previous iteration. For sufficiently large number N of
observations in x the posterior distribution p(c|x) becomes sharply peaked about certain parameter values c
corresponding to the most probable model of the system for a given measurement set.

Let us choose the prior p(c) in a Gaussian form

p(c) =

√
det A0

(2π)M
exp

[
−1

2
(c − c0)T A0(c − c0)

]
, (24)

where c0 is a vector with arbitrary initial values of parameters and A0 is a diagonal matrix with arbitrary values
of diagonal elements. In particular, small values of diagonal elements of A0 will reflect the fact that initial values
of the model parameters are not known. Now we can rewrite the likelihood in the form

L(x|c) = (2πDh)−N/2 exp
[
−R

D
−
(
γ − α

D

)
c − cT B

2D
c

]
,



where

αk =
∫ xN

x0

dx fk(x), xi = x(ti), Bk k′ = h
∑

i

fk(xi) fk′(xi),

γk =
h

2

∑

i

f ′
k(xi), R =

1
2h

∑

i

(xi+1 − xi)
2
.

Maximising the likelihood with respect to unknown model parameters we obtain the following algorithm of
inference

Ap+1 =
B

D
+ Ap, cp+1 = −A−1

p+1

(
γ − α

D
− cT

p A
)T

, (25)

where index p corresponds to prior parameters and index p + 1 corresponds to improved posterior parameters.
Noise intensity D for each block of data can be inferred as

D =
2
N

∑

i

(
R − αcp + cT

p

B

2
c

)
.

We now illustrate following47 the application of the algorithm to inferencing a paradigmatic example of complex
dynamical system – the Lorenz system. It has dynamical variables, x = {x1, x2, x3}, the vector field






ẋ = σ(x2 − x1),
ẏ = rx1 + x2 − x1x3,
z = x1x2 − bx3.

(26)

and noise correlation matrix 〈ξn(t)ξn′(t′)〉 = dnδn,n′ . The parameters in (26) are σ = 10, r = 28, b = 8
3 . We
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Figure 4. (a) Examples of convergence of the coefficient a31 corresponding to parameter r of the Lorenz system (26) for
the total length of the time record T = 560 and the following sets of parameters: line 1 {dn} = {0.01, 0.012, 0.014} time
step h = 0.002; line 2 {dn} = {100, 120, 140} and h = 0.00002. The insert shows dispersion 〈∆a2

31〉=〈a2
31〉 - 〈a31〉2 for the

same sets of parameters. The vertical dashed line shows the time-scale of the step-wise decrease in the variance. (b) The
comparison of the results of inference that take into account the prefactor term described in the text (black solid line)
with the generalized least square fit (dotted line). The correct value of the coefficient is shown by vertical dashed line. To
build distribution ρ(r) of the inferred values of the coefficient r we have used an ensemble of 1000 numerical experiments
using 90000 data points each. These results follow.47

sample a system trajectory x(t) and produce a “data record” {y(tk)} to be fed directly into the algorithm. As
an inferential framework, we introduce the following model of stochastic dynamics for x(t):

ẋn =
3∑

i=1

ani xi(t) +
3∑

i<j=1

bnij xi(t)xj(t) + ξn(t), (27)



n, i, j = 1, 2, 3, where M = {{ani}, {bnij}, {Dn}} is the vector of 18 unknown coefficients and 3 values of the
noise intensities. We note that for diagonal noise matrix as in the case of (27) the problem is reduced to 1D case
of inference described in this section. We were able to infer the accurate values of c,D for time step h varying
from 0.01 to 10−6 and noise intensities dn varying from 0 to 102. An example of convergence of the coefficients
is shown in Fig. 4 (see47 for further details).

We found a step-wise decrease in variances that occurs on a time scale of the period of oscillations τosc ≈ 0.6
(dashed line in the figure). The error of the inference is sensitive to the noise intensity, total time T and the time
step h. For example, for the parameters of the curve 1 in the Fig. 4 the relative error was 0.015%. The ratio
T/h has to be increased at least 250 times to achieve error less then 1% when the noise intensity is increased 104

times (curve 2 in the figure).

As show in47 it is important to keep the prefactor term in the probability density functional (5) to achieve
correct results of inference. We demonstrate this following46 by comparing the statistical analysis of the results
of inference of the coefficient r in the Lorenz equations preformed with and without prefactor term. As shown
in the Fig. 4(b) the absence of this term results in a systematic underestimation of the model coefficient, while
taking this term into account provides optimal compensation of the noise induced errors.

6. CONCLUSIONS

It is shown that novel effective techniques of prediction, control, and inference of complex dynamical systems can
be addressed in a general framework of the path-integral approach to the analysis of the fluctuational trajectories.
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