
LETTER TO THE EDITOR

Thermally activated escape of driven systems: the

activation energy

V.N. Smelyanskiy†, P V E McClintock‡, R Mannella||‡, D G

Luchinsky‡¶ and M I Dykman+

†Caelum Research Co., NASA Ames Research Center, MS 269-2, Moffett Field, CA

94035-1000, USA

‡Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
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Abstract.

Thermally activated escape in the presence of periodic external field is investigated

theoretically and through analog experiments and digital simulations. The observed

variation of the activation energy for escape with driving force parameters is accurately

described by the logarithmic susceptibility (LS). The frequency dispersion of the LS

is shown to differ markedly from the standard linear susceptibility. Experimental

data on the dispersion are in quantitative agreement with the theory. Switching

between different branches of the activation energy is demonstrated for a nonsinusoidal

(biharmonic) force.
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Thermally activated escape plays a fundamentally important role in a variety of

phenomena, ranging from diffusion in solids and on solid surfaces to chemical reactions.

It is therefore important to find ways of controlling escape rates. One possible approach

is through the application of an ac field, which can sometimes give rise to a very

strong response. The underlying mechanism is readily understood for low frequency

(adiabatically slow) driving, where the system remains in quasi-equilibrium under the

instantaneous value of the driving force. For a system in thermal equilibrium, the

probability of a large fluctuation is given by

W ∝ exp[−R/kT ]. (1)

We will be specifically interested in activated escape, in which case R is the activation

energy of escape. The driving force modulates the value of R quasistatically and, even

where the modulation amplitude A is small compared to R, it may still substantially

exceed kT , in which case W will be changed exponentially strongly. We emphasize that

the change of the activation energy is linear in the field amplitude in this case.

A different picture might be expected for higher field frequencies, where the driving

becomes nonadiabatic. One might suppose that any change in R would depend on the

intensity I of the driving field rather than just be linear in the field amplitude A ∝ I1/2,

i.e. that the field would give rise to an effective “heating” of the system. Such an effect

has indeed been discussed and observed for low field intensities [1, 2, 3, 4]. A complete

theoretical analysis is significantly more complicated in this case, since one may no

longer assume that the system is in thermal equilibrium, so that the activation energy

R in Eq. (1) may not be set equal to the height of the free-energy barrier. Numerical

results in relation to this problem have been obtained for different models: see Ref. [5]

and references therein.

For high-frequency driving, the quantity of primary interest is the period-averaged

escape rate W̄ . Recently it was suggested theoreticallly [6, 7] that, for high-frequency

driving ln W̄ should still be linear in the field amplitude A, i.e. that the activation energy

R in the equation (1) for W̄ should – quite counterintuitively – be linear in A. The

proportionality coefficient was called the logarithmic susceptibility (LS).

Just like the conventional linear susceptibility, the LS relates the response of the

system in the presence of external driving to the system dynamics in thermal equilibrium

in the absence of the driving field. Also, in common with the conventional susceptibility,

the LS should display frequency dispersion. This dispersion provides a means for

selective control of escape rates.

The goals of this Letter are to test the very idea of the LS, thereby providing a

solid experimental basis for understanding the effect of the ac field on escape rates, and

to develop a general theory of the frequency dispersion of the LS. The theory exploits

acausal character of the LS for escape. The measurements are done through analog

electronic experiments [8] and digital simulations [9] of the escape rate in a driven

system. Results of such experiments are reported below for a broad range of frequencies

and amplitudes of the driving field, as well as for a nonsinusoidal field. We provide
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detailed comparisons of the data with the theory. An additional important goal of the

paper is to show that, given the system, the LS can be measured directly by experiment.

This paves the way for using ac fields for selective control of escape rates (and also of

diffusion and nucleation [6, 7]), even where the dynamics of the system are not known

and have to be determined experimentally.

We consider fluctuations of an overdamped Brownian particle driven by a periodic

(but not necessarily sinusoidal) force F (t) and white Gaussian noise ξ(t),

q̇ = K(q, t) + ξ(t), K(q, t) = −U ′(q) + F (t), (2)

where 〈ξ(t)ξ(t′)〉 = 2Dδ(t−t′). The noise intensity D = kT if relaxation and fluctuations

are due to coupling to a thermal bath at temperature T .

The model (2) is used in many scientific contexts (see e.g. [10, 11, 12] and references

therein). We assume that the potential U(q) in (2) has a metastable minimum from

which the system can escape. For convenience, experimental data are obtained for a

potential with two wells, so that for F (t) = 0 the system is bistable and can switch

between the stable states due to fluctuations.

The idea underlying the theory of the LS [6, 7] is that, although the motion of

the fluctuating system is random, in a large rare fluctuation from a metastable state

to a remote state, or in a fluctuation resulting in escape, the system is most likely

to move along a particular trajectory known as the optimal, or most probable path

(see [13, 14, 15, 16, 17] and references therein). This path provides a minimum to the

functional

R[q] =
1

4

∫ ∞

−∞
dt [q̇ −K(q, t)]2 (3)

The minimum is taken over all instanton-type [18] trajectories which start for t → −∞

from the stable periodic state qa(t) of the dynamical system q̇ = K(q, t), and approach

as t → ∞ the unstable periodic state of this system qb(t).

In the absence of driving (F = 0) the variational problem has a simple solution

q(0)(t), which is given by the equation

q̇(0) = U ′(q) (4)

Clearly, the most probable escape path (4) is just the time-reversed path from the

unstable steady state at the top qb of the potential barrier U(q) down to the potential

minimum at qa [19, 20]. The value of R[q] in this case is equal U(qb)− U(qa).

If the periodic driving force F (t) =
∑

k Fk exp(ikωt) is comparatively weak, the

leading-order correction δR to the activation energy of escape can be evaluated along

the unperturbed most probable escape path q(0)(t)

δR = min
tc

δR(tc), δR(tc) =
∑

k

Fkχ̃(kω)e
ikωtc ,

χ̃(ω) = −
∫ ∞

−∞
dt q̇(0)(t)eiωt. (5)
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Here, χ̃(ω) is the LS for escape. It is given [6, 7] by the Fourier transform of the velocity

along the most probable escape path q(0)(t) in the absence of driving (F (t) = 0).

Eq. (5) can be understood in terms of the work that the field does on the system

as it moves along the optimal path. One may expect this work to be related to the

field-induced change in the activation energy R for the corresponding large fluctuation.

This change is linear in the field, provided that the field-induced change of the optimal

path itself remains small.

An important feature of Eq. (5) is the minimization over tc. It corresponds to

choosing the position of the center of the instantonic escape path q(0)(t − tc) so as to

maximize the work the field F (t) does on the system along it.

Unlike the standard linear susceptibility [21] which, on causality arguments, is

given by a Fourier integral over time from 0 to ∞, the LS χ̃(ω) is given by an

integral from −∞ to ∞. The analytic properties of χ̃(ω) therefore differ from those

of the standard susceptibility, and in particular their high-frequency asymptotics are

qualitatively different. The standard susceptibility for damped dynamical systems decays

as a power law for large ω (e.g., as 1/[U ′′(qa)− iω], for the model (2)). In contrast, from

(5), the LS decreases exponentially fast.

Asymptotic behavior of χ̃(ω) for large positive ω can be found by shifting the

contour of integration in (5) over t from the real axis to the upper half of the complex

t plane, as shown in Fig. 1. The function q̇(0)(t) (4) has poles or branching points at

Im t 6= 0, which correspond to the singularities of U ′(q) in the complex q-plane, i.e. for

Im q 6= 0. For large ω, the major contribution to χ̃(ω) is determined by the parts of the

integration contour in Fig. 1 near the singularity of q̇(0)(t) with the smallest value of Im

t = τp. Near the singular point one can change from integrating over t to integrating

over q, which gives for exp(ωτp) ≫ 1

χ̃(ω) = Me−|ω|τp , τp = min

∣

∣

∣

∣

Im
∫

dq/U ′(q)

∣

∣

∣

∣

. (6)

Here, the integral is taken from any point in the interval (qa, qb) to the (complex) position

qp of the appropriate singularity of U ′(q) corresponding to the singularity of q̇(0)(t− tc)

at Im t = τp. The prefactor M depends on the form of U(q) near qp. In particular, for

a polynomial potential (|qp| → ∞) with U(q) = Cqn/n for |q| → ∞, we have

|M | = 2π|ω/C|ν|ν|ν+1/ν!, ν = 1/(n− 2). (7)

This expression applies also for finite |qp|, with U(q) ≈ C/µ(q − qp)
µ for q → qp, if n in

(7) is replaced by −µ: note that |M | then decreases with increasing ω.

The notion of the LS applies not only to escape, but also to the probability of a

large fluctuation to any given state, in which case the integral over time in (5) is taken

to the moment of arrival in this state, and there is no minimization over tc [7]. The

analytic properties of this LS are similar to those of the standard linear susceptibility.

We have investigated the escape rate for a driven Duffing oscillator with the

potential U(q) = −q2/2 + q4/4. If the state occupied initially is qa = −1, we obtain
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from (5)

q̇(0)(t) = exp(2t)[1 + exp(2t)]−3/2. (8)

and therefore the LS

χ̃(ω) = −π−1/2Γ(
1− iω

2
)Γ(

2 + iω

2
). (9)

It follows from (9) that χ̃(0) = −1, and the LS decays monotonically with increasing

ω, with τp = π/2,M = −(1 + i)(πω)1/2 in (6). Already for ω > 0.7 the asymptotic

behavior of |χ̃(ω)| given by (6) becomes very close to the exact result Eq. (9) which is

shown with solid line in the inset of Fig. 2.

The period-averaged rate of escape from the stable state qa can be found

conveniently in experiment from measurements of the mean time 〈t〉 to reach a point

qe well behind the barrier top (so that the probability of returning to the vicinity of qa
is negligibly small). Our main quantity of interest is the field-dependent correction to

W̄ = 1/〈t〉. It is given by exp(−δR/D) for |δR| ≫ D [6, 7, 22]. For a sinusoidal driving

force, the correction to the activation energy of escape (5) is δR = −2|F1χ̃(ω)|.

To test these predictions, we have built an analog electronic model [8] of (2) for the

double-well Duffing potential. We drive it with zero-mean quasi-white Gaussian noise

from a shift-register noise generator, digitize the response q(t), and analyse it with a

digital data processor. We have also carried out a complementary digital simulation,

using a high-speed pseudo-random generator [9].

The analogue and digital measurements of R involved noise intensities 0.028 < D <

0.036 and 0.020 < D < 0.028 respectively; the lowest (real time [8]) driving frequency

used was 460 Hz. The results are plotted in Fig. 2. The major observation is that, as

predicted, R is indeed linear in the force amplitude (R = 1/4 for F = 0). The slope yields

the absolute value of the LS. Its frequency dependence, a fundamental characteristic of

the original equilibrium system, is compared with the theoretical predictions in the inset

of Fig. 2.

The results demonstrate that the variation of the activation energy with field can be

well described analytically, for a wide range of parameter values, in terms of the LS. We

note however a small deviation from the theory at small amplitudes of the external drive,

and the consequent systematic shift of the experimental and numerical points above the

theory (solid line). This deviation arises as a result of the finite noise intensities used

in the experiment, and the fact that the D → 0 limit of the theory breaks down for

amplitudes F of the external driving for which |χF |/D is small; it can be accounted for

by an extension [22] of the theory taking account of changes in the prefactor.

We now discuss some of the new effects that are to be expected [6] when the driving

field is non-sinusoidal. They are related to the minimization over tc in (5), which is what

makes the logarithm of the escape rate a nonanalytic function of F (t) in the D → 0

limit. We can apply the theory (5) to describe the dependence of the activation energy

on field parameters. In particular, we seek experimentally the switching between escape

paths that is predicted [6] for a simple form of nonsinusoidal driving: the biharmonic
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field. We took F (t) = 0.1 cos(1.2t) + 0.3 cos(2.4t + φ0) and investigated the effect of

altering the phase difference φ0 between the two sinusoidal components. For a field

of this kind, δR(tc) (5) may have two local minima; but the activation energy will of

course correspond to its absolute minimum. Thus, as φ0 is changed, the escape path will

switch from being determined by one local minimum to being determined by the other,

analogous to a first order phase transition in which δR and tc play the roles of the free

energy and the order parameter, respectively.

This phenomenon can be demonstrated experimentally by direct observation of the

two different escape paths∗ providing the two local minima of δR(tc). Within a critical

range of φ0, the two escape paths should coexist and be observable experimentally: by

variation of the phase difference near its critical value within this range, one should

observe switching between the two different escape paths. The effect is clearly evident

in the analogue data of Fig. 3(a) and (b): a small change in φ0 is sufficient to switch

the predominant escape path from φ ≃ 1 in (a) to φ ≃ 5 in (b).

It follows from the above analysis that the absolute value of the logarithmic

susceptibility can be recovered from measurements of the correction δR to the escape

activation energy at different frequencies of a sinusoidal driving field. The phase of

the LS arg χ̃(ω) can be found by measuring δR for a driving field with more than one

harmonic. In particular, for biharmonic driving with period 2π/ω, we see from Eq. (5)

that δR depends on the phase of LS in terms of the factor Θ(ω) = 2 arg χ̃(ω)−arg χ̃(2ω).

The solution of this functional equation for arg χ̃(ω), with the boundary condition

argχ(0) = 0, has the form

arg χ̃(ω) = ωtc +
∞
∑

k=0

2−k−1Θ(2kω). (10)

This expression relates arg χ̃(ω) to the values of Θ at the subharmonics 2−kω of the

frequency ω (due to analyticity of χ(ω) at ω → 0, the function Θ(ω) is quadratic in ω

for ω → 0, and therefore the series (10) converges).

In conclusion, we have shown experimentally that thermally activated escape under

nonequilibrium conditions can be understood in terms of the logarithmic susceptibility,

and that the latter is a physically observable quantity: the field-induced change of

the activation energy for escape is linear in the field amplitude [6, 7] even where

the frequency of the field exceeds the reciprocal relaxation time of the system

and substantially exceeds the escape rate. The LS relates the probability of large

fluctuations in the presence of an external field to the relaxational dynamics in thermal

equilibrium. We have shown that the LS for escape displays frequency dispersion which

is qualitatively different from that of the conventional linear susceptibility. We have

also verified experimentally the predicted [6] switching between different branches of

the activation energy as a function of the field parameters for biharmonic driving:

adjustment of its phase (alone) is sufficient to select the escape path.

∗ Coexistence of different escape paths in nonequilibrium systems has been widely discussed. See e.g.

[23, 24, 25] for theory, and [20, 26] for theory and experimental tests.
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Figure captions

t
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Figure 1. Contour of integration over time in (5) for the analysis of the behavior of

the logarithmic susceptibility χ̃(ω) for large positive ω; τp is the smallest imaginary

value of t where q̇(0)(t) has a singularity.
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Figure 2. The dependence of the activation energy R on the amplitude A of the

harmonic driving force F (t) = A cos(1.2t) as determined by electronic experiment

(open circles), numerical simulations (filled circles) and analytic calculation (solid line)

based on (5); the dash-dot line is a guide to the eye. Inset: the absolute value of the LS

of the system |χ̃(ω)| (5) measured (open and filled squares for experiment and numerical

simulation, respectively) and calculated (full curve) as a function of frequency ω.
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Figure 3. Distributions of the phase φ at which escape paths from the attractor at

q = −1 cross a line at q = −0.5, measured in the analogue electronic experiment for

two phase differences of the biharmonic driving force close to the critical value: (a)

φ0 = 3.04; and (b) φ0 = 4.04. It is evident that, wihin the critical range, a tiny change

in φ0 is sufficient to cause switching of the dominant escape path.


