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Abstract

The spectrum of electromagnetic fields satisfying perfectly conducting boundary conditions in a segment

of a straight beam pipe with a circular cross-section is discussed as a function of various source models.

These include charged bunches that move along the axis of the pipe with constant speed for which an exact

solution to the initial-boundary value problem for Maxwell’s equations in the beam pipe is derived. In the

ultra-relativistic limit all longitudinal components of the fields tend to zero and the spectral content of the

transverse fields and average total electromagnetic energy crossing any section of the beam pipe are directly

related to certain properties of the ultra-relativistic source. It is shown that for axially symmetric ultra-

relativistic bunches interference effects occur analogous to those that occur due to CSR in cyclic machines

despite the fact that in this limit the source is not accelerating. The results offer an analytic description

of the fields showing how enhanced spectral behaviour depends on the geometry of the source, its location

in the beam pipe and the details of the stochastic distribution of the source structure. The results are

illustrated for different situations associated with the motion of on-axis ultra-relativistic bunches. The

field energy spectra associated with a source containing N identically charged ultra-relativistic pulses, each

with individual longitudinal gaussian profiles distributed according to a uniform probability distribution

with compact support, is compared with that generated by charged bunches containing a distribution with

2n + 1 peaks in a region with compact support (modeling micro-bunches). These results are of relevance

for the experimental determination of properties of the longitudinal charge distribution of short relativistic

electron bunches with micro-structure in straight segments of a beam pipe, from observation of the associated

electromagnetic energy spectra.
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1 Introduction

Modeling the behaviour of charged particles in a modern accelerator is a critical component in its design. Due

to the inherent non-linear nature of the dynamics of charged bunches in external electromagnetic fields such

modeling generally necessitates numerical computation. With current hardware such computations often require

further stringent approximations on the equations of motion in order to extract viable information. To date

the most sophisticated Maxwell-Vlasov solvers are unable to effectively model electromagnetic interference in

3 spatial dimensions. Approximations often neglect the effects of confining boundaries and wakes, radiation

reaction forces, detailed stochastic properties of the beam and possible quantum effects. However, in certain

limits analytic information can be deduced from the fundamental equations of motion for the coupled particle

field system. If the motion is prescribed the problem reduces to solving Maxwell’s equations for convected

sources. Nevertheless finding solutions satisfying boundary condition appropriate to an accelerator is in general

a non-trivial exercise.

Since Fourier analysis is a linear operation the spectral content of the electromagnetic energy in the fields

produced by charged particles in prescribed motion in free space has been exhaustively investigated over many

decades, particularly for collections of particles in uniform circular motion [1, 2]. The effects of the superposition

of retarded free-space solutions to Maxwell’s equations with distributed currents on the spectral content of their

radiation fields gave rise to the notion of coherent synchrotron radiation (CSR) in which enhanced radiation

in some frequency domain can occur, depending quadratically on the total number of point particles in an

accelerating bunch [3]. In a synchrotron CSR criteria are generally inferred from the motion of collections of

charged particles distributed on segments of a circular arc and interference associated with the phases of the

radiation components of the fields. It is generally assumed that the effects of confining boundaries in a such a

machine do not significantly alter the criteria for CSR from those that arise for relativistic sources in free space.

However analytic efforts to determine such criteria taking account of boundary conditions and stochastic effects

inevitably demand further approximations [4, 5]. In general the presence of boundaries introduces additional

scales into the problem of calculating the electromagnetic fields produced by the sources. The manner in which

such scales affect the subsequent criteria for coherence depends on solving Maxwell’s equations subject to the

appropriate boundary conditions. Since the role of CSR is a fundamental ingredient in the design of new light

sources and a general knowledge of the spectral content of the fields produced by ultra-relativistic bunches

is important for the operation new electro-optic diagnostic tools [6] it is of interest to explore new analytic

approximations schemes that can complement the numerical simulations of particle-field interactions.

In this note we consider solving Maxwell’s equations for model sources in a straight beam pipe. By exploiting

the properties of particular mode functions we ensure at the outset that all fields satisfy perfectly conducting

boundary conditions in a straight beam pipe with a circular cross-section and an exact solution to the initial-

boundary value problem for Maxwell’s equations in the beam pipe is derived. Although in principle our approach
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can accommodate sources in arbitrary motion attention will be restricted to those that move along the axis of the

pipe with constant speed. In conventional terminology the fields associated with such sources are “bound”rather

that “radiative”. In the ultra-relativistic limit all longitudinal components of the fields tend to zero and the

spectral content of the transverse fields and average total electromagnetic energy crossing any section of the

beam pipe are directly related to the properties of the ultra-relativistic source. Thus a measurement of the

former offers a direct method of estimating properties of the latter. However the detailed structure of the

spectral content depends on the source structure. In particular we demonstrate that for bunches with axially

symmetric charge distributions in ultra-relativistic motion along the pipe axis interference effects occur with

properties that are analogous to those that occur due to CSR in cyclic machines, despite the fact that in this

limit the source is not accelerating. Furthermore it is possible to study analytically how such enhanced spectral

behaviour depends on the geometry of the source, the radius of the beam pipe and details of the stochastic

distribution of structure within the source.

Section 2 establishes the formalism for solving Maxwell’s equations for fields inside a perfectly conducting

cylindrical beam pipe in terms of complex Dirichlet and Neumann eigen-modes of the 2-dimensional scalar

Laplacian operator. An exact solution to the initial-boundary value problem is exhibited and this is used to

explore fields associated with ultra-relativistic bunches. Section 3 develops the model in terms of an axially

symmetric ultra-relativistic source and offers a compact formula for the spectral distribution of electromagnetic

energy that crosses any section of the beam. Section 4 discusses the effects on the spectra produced by different

types of stochastic source distribution.

2 Electromagnetic Field Solutions

The electromagnetic fields e and h in a beam pipe in the presence of sources with charge density ρ and electric

current density J satisfy the Maxwell system:

∇× e + µ0 ∂th = 0 (1)

∇× h− µ0Y
2 ∂te− J = 0 (2)

∇ · h = 0 (3)

µ0Y
2∇ · e− ρ = 0 (4)

where the admittance Y = 1/(µ0c) with c being the speed of light in vacuo. All vectors will be referred to a

local ortho-normal frame {êr, êz, êθ} defining a cylindrical coordinate system {r, θ, z} with the axis of the beam

pipe along the z−axis.

3



A transverse circular section of this pipe of radius a is denoted D with boundary ∂D. In the following we

exploit the properties of a complex Dirichlet mode set {ΦN}. This is a collection of complex eigen-functions

of the 2-dimensional (transverse) Laplacian operator ∆̂ on D that vanishes on ∂D. This boundary condition

determines the associated (positive non-zero real) eigenvalues β2
N . The label N here consists of an ordered pair

of real numbers. Thus

∆̂ΦN − β2
NΦN = 0, (5)

with ΦN |∂D = 0 and

∆̂ = −1
r

∂

∂r

(
r

∂

∂r

)
− 1

r2

∂2

∂θ2
(6)

With an overbar indicating complex conjugation these modes are normalised to satisfy

∫

D
ΦM ΦN r dr dθ = N 2

N δNM , (7)

An explicit form for ΦN is for n ∈ Z

ΦN (r, θ) = Jn

(
xq(n)

r

a

)
einθ, (8)

where Jn(x) is the n-th order Bessel function and the numbers {xq(n)} are defined by Jn(xq(n)) = 0 and

N := {n, q(n)}. The eigenvalues are given by {βN = xq(n)/a} and N 2
N = πa2J2

n+1(xq(n)).

In a similar manner a Neumann mode set {ΨN} is a collection of eigen-functions of the Laplacian operator

∆̂ on D such that ∂ΨN

∂r vanishes on ∂D. This alternative boundary condition determines the associated (positive

non-zero real) eigenvalues α2
N where again the label N consists of an ordered pair of real numbers:

∆̂ΨN − α2
NΨN = 0, (9)

with ∂ΨN

∂r |∂D = 0. These modes are normalized to satisfy

∫

D
ΨM ΨN r dr dθ = M2

N δNM . (10)

An explicit form for ΨM is for m ∈ Z

ΨM (r, θ) = Jm

(
x′p(m)

r

a

)
eimθ, (11)

where the numbers {x′p(m)} are defined by J ′m(x′p(m)) = 0 and M := {m, p(m)}. The eigenvalues are given by

{αM = x′p(m)/a} and M2
M = πa2J2

m+1(x
′
p(m)).

The electromagnetic fields in the interior of the cylindrical beam pipe satisfying perfectly conducting bound-

ary conditions at r = a can now be expanded [7, 8, 9] as:
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e(t, z, r, θ) =
∑

N

V E
N (t, z)∇ΦN (r, θ) +

∑

M

V H
M (t, z) êz ×∇ΨM (r, θ) +

∑

N

γE
N (t, z)ΦN (r, θ) êz (12)

h(t, z, r, θ) =
∑

N

IE
N (t, z) êz ×∇ΦN (r, θ) +

∑

M

IH
M (t, z)∇ΨM (r, θ) +

∑

M

γH
M (t, z)ΨM (r, θ) êz (13)

The fields are assumed to be generated by an external RF source that accelerates charged bunches to near

the speed of light. In a straight beam pipe such a source can be modeled by an arbitrary smooth convective

charge density ρ and a current with ortho-normal components Jr = Jθ = 0, Jz(z − vt, r, θ) = v ρ(z − vt, r, θ)

with constant v close to the speed of light. The equations for γH
N and γE

N that follow from Maxwell’s equations

and (12), (13) for these sources are:

γ̈H
N − c2γH′′

N + c2α2
NγH

N = 0 (14)

γ̈E
N − c2γE′′

N + c2β2
NγE

N = −c2µ0

N 2
N

(c2 − v2)ρ′N (15)

where

ρN :=
∫

D
ρ ΦN r dr dθ. (16)

In terms of γH
N and γE

N and the projected convective sources

V E
N =

1
β2

N

(
γE′

N − 1
N 2

Nµ0Y 2
ρN

)
, (17)

V H
N =

µ0

α2
N

γ̇H
N , (18)

IE
N = − 1

β2
N

(
µ0Y

2γ̇E
N +

v

N 2
N

ρN

)
, (19)

IH
N =

1
α2

N

γH′
N . (20)

Finding the fields e and h is now reduced to solving an initial-value problem for the decoupled fields γH
N , γE

N .

For some real constant σ > 0 and source g(t, z) each is a solution to the generic (hyperbolic) partial differential

equation

f̈ − c2f ′′ + c2σ2f = g. (21)

The general causal solution f(t, z) with prescribed values of f(0, z) and ḟ(0, z), is (see e.g. [10])

f(t, z) = Hσ[f init](t, z) + Iσ[g](t, z), (22)
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where

Hσ[f init](t, z) :=
1
2

{
f(0, z − ct) + f(0, z + ct)

}

+
1
2c

∫ z+ct

z−ct

dζ ḟ(0, ζ)J0(σ
√

c2t2 − (z − ζ)2)

−ctσ

2

∫ z+ct

z−ct

dζ f(0, ζ)
J1(σ

√
c2t2 − (z − ζ)2 )√

c2t2 − (z − ζ)2
, (23)

and

Iσ[g](t, z) :=
1
2c

∫ t

0

dt′
∫ z+c(t−t′)

z−c(t−t′)
dζ g(t′, ζ)J0(σ

√
c2(t− t′)2 − (z − ζ)2), (24)

The functions f(0, z), ḟ(0, z) constitute the initial t = 0 Cauchy data in this solution and determine the Hσ

contribution above.

For a bunch with total charge Q moving with speed v we assume here that ρ can be written

ρ(z − vt, r, θ) = Qρ⊥(r, θ)ρ‖(z − vt), (25)

where v is given (v ≤ c) and ρ⊥(r, θ), ρ‖(z − vt) are arbitrary smooth functions subject to

∫

D
ρ⊥(r, θ) r dr dθ = 1,

∫ ∞

−∞
dz ρ‖(z − vt) = 1, (26)

With these sources the causal solutions to (14) and (15) for γH
N and γE

N are given by:

γH
N (t, z) = HαN

[γHinit
N ](t, z),

γE
N (t, z) = HβN

[γEinit
N ](t, z)− µ0c

2

N 2
N

(c2 − v2)IβN
[ρ′N ](t, z), (27)

where ρN is given by (16) and

ρ ′N (t, z) = Q ρ‖′(z − vt)
∫

D
ρ⊥(r, θ)ΦN r dr dθ. (28)

It is worth stressing that given the source (25) equations (27) and (28) provide analytic expressions from

which the fields (12) and (13) can be constructed as mode sums. From these one can construct electromagnetic

power flow from the Poynting vector and its Fourier transform using well established numerical techniques. In

the ultra-relativistic limit, v → c, the second term in γE
N (t, z) tends to zero and for on-axis sources this offers a

route to further analytic reduction in the next section.
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3 Spectral Energy Distributions

When the transverse distribution depends only on r, expressions for the electromagnetic fields associated with

the sources simplify. The source under consideration is axially symmetric if

ρ⊥(r, θ) = R(r), (29)

where R(r) is a smooth function satisfying

∫ a

0

dr rR(r) =
1
2π

. (30)

Then for axially symmetric bunches

ρ ′N (t, z) = 2πQtotδn,0ρ
‖′(z − vt)

∫ a

0

dr rR(r)J0

(
xq(0)

r

a

)
. (31)

From these formulae the instantaneous real electromagnetic power crossing any section of the beam pipe is

obtained by integrating the component S = (e× h) · ez of the Poynting vector field over the cross-section D at

an arbitrary point with coordinate z

P(t, z) :=
∫

D
S(t, z, r, θ) r dr dθ (32)

With the aid of the orthogonality properties of the Dirichlet and Neumann modes this becomes

P = <
{ ∑

N

β2
NN 2

NV E
N IE

N −
∑

M

α2
MM2

MV H
M IH

M

}
, (33)

where < takes the real part of its argument. From (33), (17), (18), (19), and (20) this power flux can be

explicitly expressed in terms of the source projections ρN and the field projections γH
M and γE

N

P = <
{ ∑

N

(
v|ρN |2

N 2
Nβ2

Nµ0Y 2
+

γ̇E
N

β2
N

ρN − vγE′
N

β2
N

ρN

−µ0Y
2

β2
N

N 2
NγE′

N γ̇E
N

)
− µ0

∑

M

M2
M

α2
M

γ̇H
MγH′

M

}
. (34)

Equation (34) is the main general result of the analysis of fields produced by uniformly moving sources in a

straight beam pipe. It expresses the instantaneous Poynting flux crossing D in terms of a mode sum over mode

projections ρN of an axially-symmetric convective source with constant speed v and the longitudinal mode fields

γE
N and γH

N given by (27). For sources with v < c or sources that move off-axis such a summation must be

performed numerically. However as noted above, for an ultra-relativistic source the fields are concentrated in

the vicinity of the source and in the axially symmetric situation with bunches moving along the axis of the

pipe one can effect a simplification. This permits a ready estimate of the power spectrum of the field pulse as
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it traverses D and it is this power spectrum that can, in principle, be detected by an advanced electro-optic

detector and used to explore the distribution of charge in the pulse source.

We recall that in a cyclic machine with time-periodic fields of period T (such as a synchrotron) the fields

associated with the sources can be expanded in a Fourier series:

ên(z, r, θ) =
1
T

∫ T

0

e(t, z, r, θ) exp(iΩt) dt (35)

ĥn(z, r, θ) =
1
T

∫ T

0

h(t, z, r, θ) exp(iΩt) dt (36)

where Ω = 2π/T , and the mean (time-averaged) power crossing any area D at z is

< P > (z) =
∞∑

n=−∞
< Pn > (z) (37)

where

< Pn > (z) =
∫

D
(ên(z, r, θ)× ¯̂hn(z, r, θ)) · êz)r dr dθ (38)

However in a straight beam pipe the fields associated with the sources are not periodic in time. The sources

are however localized in space so the total electromagnetic energy U crossing any section D at z is well-defined:

U(z) =
∫ ∞

−∞
P(t, z) dt =

∫ ∞

−∞

(
dU
dω

(ω, z)
)

dω (39)

where
dU
dω

(ω, z) =
∫

D

(
ê(ω, z, r, θ)× ¯̂h(ω, z, r, θ) · ez

)
r dr dθ (40)

in terms of the Fourier transforms:

ê(ω, z, r, θ) =
1√
2π

∫ ∞

−∞
e(t, z, r, θ) exp(iωt) dt (41)

ĥ(ω, z, r, θ) =
1√
2π

∫ ∞

−∞
h(t, z, r, θ) exp(iωt) dt (42)

Clearly
∫ ω2

ω1

dU
dω (ω, z) dω is the total electromagnetic energy crossing D at the station z of the beam pipe in

the wave band ω1 to ω2 and is experimentally accessible with suitable detector diagnostics. Measurement of

the spectral content of such energy associated with charged electrons bunches of a few picoseconds in length is

experimentally challenging. However new electro-optic techniques are being sought [6] that may use this content

to deduce valuable information about the longitudinal charge distribution of such pulses.

In the ultra-relativistic limit the fields e and h have components that lie solely in the transverse sections

of the pipe and are concentrated in space where the sources are concentrated. For an ultra-relativistic bunch
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composed of an axially symmetric charge distribution with total charge Q moving along the beam pipe axis,

one calculates from (40)

dU
dω

= K(a)|ρ̂‖(ω, z)|2 (43)

where all the dependence of the pipe radius is contained in the constant

K(a) =
c

ε0
Q2

∑

M

| ∫DR(r)ΦM (r, θ) r dr dθ|2
|2πβM

∫ a

0
J2

0 (βM r) r dr)|2 (44)

In this source symmetric situation the “shielding” role of the pipe boundary is different from that played

by “shielding” on CSR in a synchrotron [4].

In general one expects the source to require a stochastic description since its origin is fundamentally stochas-

tic. This requires the introduction of stochastic variables and their associated probability distribution in order

to calculate the expectation values of dU
dω . However it is of interest first to note the deterministic structure of

dU
dω that arises from a well-defined finite train of N charged ultra-relativistic pulses where each pulse has the

same longitudinal profile f in ρ‖. Denote the longitudinal charge distribution ρ‖ of such a train by F with

F (z − ct) = F0

N∑

j=1

f(z − c(t− Tj)) (45)

for some real constant F0.

If f̂(ω) is the Fourier transform of f(t) then the Fourier transform of
∑N

j=1 f(t + τj) with respect to t is

f̂(ω)
∑N

j=1 exp(−iωτj) and

|f̂(ω)
N∑

j=1

exp(−iωτj)|2 = |f̂(ω)|2

N + 2

N∑

j=1

N∑

k=1

cos ω(τk − τj)


 (46)

Hence for a train of such equidistant pulses with spatial separations cT0 > 0

dU
dω

(ω) = K(a)F 2
0 |f̂ |2(ω) L(ω) (47)

where L(ω) = 1−cos(ωT0N )
1−cos(ωT0)

and dU
dω is independent of z.

The function L is bounded (0 ≤ L(ω) ≤ N 2) with maxima at ω = ωj ≡ 2πj
T0

but the detailed behaviour of

dU
dω (ω) depends on the single pulse structure defined by f . Thus if

f(z − c(t− Tj)) = exp

(
−

(
z − c(t− Tj)

σz

)2
)

(48)

describes the structure of the j − th pulse in the train with Tj = j T0 one finds

dU
dω

(ω) = K(a)F 2
0

πσ2
z

c2
W(ω) (49)
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where

W(ω) = exp

(
−

(
ωσz√

2c

)2
)

1− cos(ωT0N )
1− cos(ωT0)

(50)

The modulation of L by |f̂ |2 means that the maxima of L |f̂ |2 are shifted from ω = ωj . For typical charged

bunches described by the above Gaussian form for f the shift is unlikely to be experimentally detectable.

However the points where ω = ωj determine the first order contact points of the curve dU
dω (ω) with the envelope

curve

E+(ω) ≡ K(a)F 2
0 |f̂ |2(ω)N 2 (51)

i.e.

Lim
ω→ωj

(
E+(ω)
dU
dω (ω)

)
= 1 (52)

Lim
ω→ωj

(
(E+)′(ω)
(dU

dω )′(ω)

)
= 1 (53)

The general features of the spectrum of dU
dω for the choice of Gaussian fj are sketched in figure 1. It should

be stressed that the electromagnetic fields generated by the non-stochastic source under consideration are fully

“coherent”. The maxima in dU
dω are produced by constructive interference of the fields associated with the

regular structure in the train that is maintained during its ultra-relativistic motion. The spacing of adjacent

maxima of dU
dω (ω) produced by typical ultra-relativistic bunches in an accelerator differ imperceptibly from the

spacing 2π
T0

of adjacent points where dU
dω is tangent to E+. Thus the longitudinal spatial separation cT0 of the

maxima in this idealized bunch containing a structure with N equidistant peaks is immediately visible in the

electromagnetic energy spectrum.

x
0 100 200 300

W
(x

)

0

5

10

15

20

25

Electromagnetic Energy Spectrum

z
0 2 4 6 8 10 12

L
(z

)

0

0.2

0.4

0.6

0.8

1.0

Longitudinal Source Profile

Figure 1: The rescaled electromagnetic energy spectrum with x = T0Nω:
W (x ) = W( x

T0 N ) associated with the longitudinal source profile

L(z) ≡ F (z)
F0

=
∑N

j=1 exp

(
−

(
z−c jT0

σz

)2
)

. For purposes of visualization σz = 1
20cT0, N = 5, T0 = 1, c = 1.

The upper dotted curve denotes the envelope E+(x)
(F 2

0 K(a))
.
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4 Stochastic Effects

To see the effects of randomization on these interference maxima a simple stochastic model of a charged bunch

containing N identifiable random variables will be adopted. Instead of fixing the separation of the N peaks

in ρ‖ they will be distributed according to some probability measure PN . We choose as random variables

T1, T2, . . . TN and assume that

PN (T1, T2, . . . TN ) = ΠNj=1 P (Tj) (54)

where P (T ) is a probability distribution for a single random variable T . The expectation value of any

function O of T1, T2, . . . TN will be denoted EPN (O) where

EPN (O) =
∫

RN
O(T1, T2, . . . TN )PN (T1, T2, . . . TN ) dT1 dT2 . . . dTN (55)

In particular it follows from (46) that the expectation value of the spectral energy distribution is

EPN

(
dU
dω

(ω)
)

= K(a)F 2
0 |f̂ |2(ω) EPN (L(ω)) (56)

where

EPN (L(ω)) = N + (N 2 −N ) |
∫ ∞

−∞
P (T ) eiωT dT |2 (57)

The magnitude of (N 2 − N ) times the modulus squared of the Fourier transform of P (T ) in this expression

relative to N determines the nature of the expectation value of the spectral energy as a function of ω. This

expectation value is now bounded above and below by two distinct envelopes that vary with ω. Within these

envelopes one may in general classify local maxima as major and minor (see figure 3). The width of the first

local dominant maxima in the ω spectrum of the expectation value is directly related to the overall scale of the

spatial size of the bunch source as determined by the probability distribution P (T ) while the separation between

adjacent local major maxima in dU
dω is determined by the structure of P (T ). These features are illustrated below

where one notes that the bounding envelopes have single maxima at ω = 0 in the ratio N 2 : N . For large N
this is then close to the ratio of the first few ratios of (local maxima : local minima) of dU

dω . Following tradition

it is natural to refer to fields that contribute to the first few major local maxima of dU
dω as exhibiting “stochastic

coherence”. The relation between the non-zero frequency at which the first local minimum of dU
dω occurs (or the

frequency beyond which dU
dω lies close to the lower bounding envelope) and the spatial distribution of charge in

ρ‖ is a stochastic one depending on the structure of P (T ). These general features are illustrated as follows.

• If N identical pulses in ρ‖, each with the above longitudinal Gaussian profile f , are, for some constant Γ,

independently distributed according to PN with:

P (T ) =
1
Γ

for − Γ
2
≤ T ≤ Γ

2
(58)
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and zero elsewhere then

EPN

(
dU
dω

(ω)
)

= K(a)F 2
0 |f̂ |2(ω)

(
N + (N 2 −N )

(
sin(ωΓ/2)

ωΓ/2

)2
)

. (59)

The bounding envelopes (see figure 2) are the curves E−(ω) = K(a)F 2
0 N |f̂ |2(ω) and E+(ω) = K(a)F 2

0 N 2 |f̂ |2(ω):

E−(ω) ≤ EPN

(
dU
dω

(ω)
)
≤ E+(ω) (60)

It is natural to designate the Fourier components of fields as “stochastically incoherent”if they contribute

to the expectation EPN
(

dU
dω (ω)

)
in the vicinity of the lower bounding envelope E−(ω). This expectation

value first touches E−(ω) at approximately ω = 2π
Γ and Γ determines the average spatial length of ρ‖.

x
0 10 20 30 40

W
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)

0

20

40

60

80

100

Electromagnetic Energy Spectrum

T
K0.5 0.0 0.5 1.0

P(
T

)

0.0

0.2

0.4

0.6

0.8

1.0

Probability Distribution

Figure 2: The rescaled electromagnetic energy spectrum with x = Γω:
W (x ) = EPN

(
dU
dω

(
x
Γ

))
/(F 2

0 K (a)) associated with the longitudinal probability distribution
P (T ) = 1/Γ for −Γ/2 ≤ T ≤ Γ/2. For purposes of visualization σz = 1

20cΓ, Γ = 1, c = 1, N = 10. The upper

dotted curve denotes the envelope E+(x)
(F 2

0 K(a))
and the lower one the envelope E−(x)

(F 2
0 K(a))

.

• If, for some integer n and constant κ, N identical pulses in ρ‖, each with the above longitudinal Gaussian

profile f , are independently distributed according to PN with:

P (T ) =
1

(2n + 1)κ
√

π

n∑

j=−n

exp

(
−

(
T − jτ

κ

)2
)

for −∞ ≤ T ≤ ∞ (61)

then

EPN

(
dU
dω

(ω)
)

= K(a)F 2
0 |f̂ |2(ω)

(
N + (N 2 −N )

1
(2n + 1)2

exp

(
−

(
ωκ√

2

)2
)

1− cos(ωτ(2n + 1))
1− cos(ωτ)

)

(62)

Such a distribution P (T ) offers a means to model the electromagnetic energy associated with a bunch

containing N constituents with 2n+1 micro-bunches [11] distributed stochastically among them according

12



to equally spaced Gaussian distributions with parameters κ and τ .

In this case the bounding envelopes (see figure 3) are the curves

E−(ω) = K(a)F 2
0 N |f̂ |2(ω), (63)

E+(ω) = K(a)F 2
0 |f̂ |2(ω)

(
N − (N 2 −N ) exp(−ω2κ2

2
)
)

(64)

and

E−(ω) ≤ EPN

(
dU
dω

(ω)
)
≤ E+(ω) (65)

For ω 6= 0 the envelope E+(ω) here lies below the envelope E+(ω) for the previous distribution in figure

2. Hence the overall effect of the micro-structure introduced in this P (T ) is to suppress the magnitude of

the j > 0 local major maxima near ω = 2πj
τ in the expectation values of dU

dω .
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0
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0.6

0.8
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Figure 3: The rescaled electromagnetic energy spectrum with x = κω: W (x ) = EPN
(
dU
dω

(
x
κ

))
/(F 2

0 K (a))
associated with the probability distribution
P (T ) = ((2n + 1)κ

√
π)−1 ∑n

j=−n exp
(−(T − jτ)2κ−2

)
.

For purposes of visualization σz = 2
5cκ, τ = 30κ(n − 1)−1 , N = 10, n = 2, κ = 1, c = 1. The upper dotted

curve denotes the envelope E+(x)
(F 2

0 K(a))
and the lower one the envelope E−(x)

(F 2
0 K(a))

.

5 Conclusions

Electromagnetic energy spectra associated with distributions of charge in uniform ultra-relativistic motion in a

perfectly conducting straight cylindrical beam pipe have been calculated based on a number of detailed models.

The electromagnetic fields have been calculated ab-initio by solving analytically the initial-boundary value

problem for Maxwell’s equations in the beam pipe. The effects of the pipe geometry and the source proper

charge distribution on the field structure have been explored for different stochastic models. The salient features

of the spectral distributions have been compared with analogous properties in a cyclic machine. Further aspects

of such dynamically enhanced field effects can be found in [12]. We feel that these results have relevance to

13



current experimental techniques for measuring the longitudinal charge distribution of ultra-relativistic electron

bunches with micro-structure using electro-optic techniques from observation of their associated electromagnetic

energy spectra.
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