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Abstract—We consider binary systematic network codes and
investigate their capability of decoding a source message either
in full or in part. We carry out a probability analysis, derive
closed-form expressions for the decoding probability and show
that systematic network coding outperforms conventional net-
work coding. We also develop an algorithm based on Gaussian
elimination that allows progressive decoding of source packets.
Simulation results show that the proposed decoding algorithm
can achieve the theoretical optimal performance. Furthermore,
we demonstrate that systematic network codes equipped with the
proposed algorithm are good candidates for progressive packet
recovery owing to their overall decoding delay characteristics.

Keywords—Network coding, Gaussian elimination, decoding
probability, rank-deficient decoding.

I. INTRODUCTION

Network coding (NC), originally proposed in [1], has the
potential to significantly improve network reliability by mixing
packets at a source node or at intermediate network nodes prior
to transmission. The classical implementation of NC, which
is often referred to as straightforward NC [2], randomly com-
bines source packets using finite field arithmetic. As the size of
the field increases, the likelihood of the transmitted packets be-
ing linearly independent also increases. However, the decoding
process at the receiver is computationally expensive, especially
if the field size is large. Furthermore, straightforward NC
incurs a substantial decoding delay because source packets
can be recovered at the receiver only if the received network-
coded packets are at least as many as the source packets.

Heide et al. [3] proposed the adoption of binary sys-
tematic NC, which operates over a finite field of only two
elements, as a means of reducing the decoding complexity
of straightforward NC. A source node using systematic NC
first transmits the original source packets and then broadcasts
linear combinations of the source packets. The reduction
in decoding complexity at the receiver decreases energy
consumption and makes systematic NC suitable for energy-
constrained devices, such as mobile phones and laptops.
Lucani et al. [4] developed a Markov chain model to show
that the decoding process of systematic NC in time division
duplexing channels requires considerably fewer operations, on
average, than that of straightforward NC. Barros et al. [5] and
Prior and Rodrigues [6] observed that opting for systematic
NC as opposed to straightforward NC reduces decoding delay
without sacrificing throughput. Therefore, systematic network
codes exhibit desirable characteristics for multimedia broad-
casting and streaming applications. More recently, Saxena and

Vázquez-Castro [7] discussed the advantages of systematic NC
for transmission over satellite links.

As in [3], we also consider binary systematic network codes
and investigate their potential in delivering services, such as
multimedia and streaming, which often require the progressive
recovery of source packets and the gradual refinement of the
source message. Our objective is to prove that systematic NC
not only exhibits a lower decoding complexity than straight-
forward NC, as shown in [4], but also a better performance, as
observed in [5] from simulations. Even though our focus is on
binary systematic NC, our analysis can be easily extended to
finite fields of larger size. In addition, we develop a decoding
algorithm and propose a framework, which helps us study the
performance of systematic NC in terms of the probability of
recovering a source message either in part or in full.

The rest of the paper has been organised as follows.
Section II analyses the performance of systematic NC and
introduces metrics for evaluating its capability of progressively
recovering source messages. Section III proposes a modifica-
tion to the Gaussian elimination algorithm that allows source
packets to be progressively decoded. Section IV discusses the
computational cost and accuracy of the proposed decoding
algorithm, validates the derived theoretical expressions and
contrasts the performance of systematic NC with that of
benchmark transmission schemes. The main contributions of
the paper are summarised in Section V.

II. BINARY SYSTEMATIC NETWORK CODING

Let us consider a source node, which segments a message
s = [ si ]Ki=1 into K source packets and encodes them using a
systematic NC encoder. The encoder generates and transmits
N packets, which comprise K systematic packets followed by
N −K coded packets. The systematic packets are identical
to the source packets, while the coded packets are obtained
by linearly combining source packets. The n-th transmitted
packet, denoted by tn, can be expressed as follows

tn =


sn if n ≤ K

K∑
i=1

gn,i si if K < n ≤ N
(1)

where gn,i is a binary coefficient chosen uniformly at random
from the elements of the finite field GF(2). We can also
express tn in matrix notation as tn = G[n ] · sᵀ, where
G[n ] = [ gn,i ]Ki=1 is the coding vector associated with tn.



Note that when n ≤ K, in line with the definition of binary
systematic NC, we set gn,i = 1 if i = n, else gn,i = 0.

In the remainder of this section, we investigate the theo-
retical performance of systematic NC and derive analytical
expressions for the probability of decoding the entire source
message or a fraction of the source message. We also present
performance metrics and benchmarks for the evaluation of
systematic NC for progressive packet recovery.

A. Probability of Decoding the Entire Source Message

As previously mentioned, a source node using systematic
NC transmits N packets, of which K are systematic and
the remaining N −K are coded. Assume that a receiver
successfully recovers r packets, of which h are systematic and
r − h are coded. The coding vectors of the r received packets
are stacked to form the r ×K decoding matrix G.

Let fK(r,N) denote the probability of decoding the K
source packets given that r packets have been received. We
understand that fK(r,N) is non-zero only if K ≤ r ≤ N . The
value of r also determines the smallest allowable value of h.
For instance, if K ≤ N < 2K, the N −K transmitted coded
packets are fewer than the K transmitted systematic packets;
given that r ≥ K packets are received, the number of received
systematic packets h should be at least r−(N−K). Other-
wise, if N ≥ 2K, the smallest value of h can be zero. There-
fore, h is defined in the range max (0, r−N+K) ≤ h ≤ K.
Having defined the parameters of the system model and their
interdependencies, we can now proceed with the derivation of
an analytical expression for fK(r,N).

Lemma 1. For N ≥ K transmitted packets, the probability
of a receiver decoding all of the K source packets, given that
K ≤ r ≤ N packets have been successfully received, is

fK(r,N)=

(
N−K
r−K

)
+

K−1∑
h=hmin

(
K
h

)(
N−K
r−h

)K−h−1∏
j=0

(
1− 2−r+h+j

)
(
N
r

) (2)

where hmin = max (0, r−N+K).

Proof. The decoding probability fK(r,N) can be decomposed
into the sum of the following probabilities

fK(r,N) = P{h=K} +

K−1∑
h=hmin

P{h<K} wK−h(r − h). (3)

The term P{h = K} represents the probability of recovering
the K source packets directly from the K successfully received
systematic packets. This is the case when r −K out of the
N −K coded packets have been successfully delivered to the
receiver along with the K systematic packets. Considering that
r out of the N transmitted packets have been received, we can
deduce that P{h = K} is given by

P{h=K} =

(
N−K
r−K

)(
N
r

) . (4)

The sum of products in (3) considers the probability of recov-
ering h < K systematic packets and decoding the remaining

K − h source packets from the r − h received coded packets.
More specifically, the probability P{h < K} of receiving h
out of the K systematic packets and r − h out of the N −K
coded packets is equal to

P{h < K} =

(
K
h

)(
N−K
r−h

)(
N
r

) . (5)

On the other hand, the probability of having K − h linearly
independent coded packets among the r − h received ones
can be obtained from the literature of straightforward NC, for
example [8]. We find that

wK−h(r − h) =

K−h−1∏
j=0

(
1− 2−(r−h)+j

)
. (6)

Substituting (4), (5) and (6) into (3) gives (2).

Proposition 1. The probability of a receiver decoding all of
the K source packets, after the transmission of N ≥ K packets
over a channel characterized by a packet erasure probability p,
can be expressed as follows

PK(N) =

N∑
r=K

(
N
r

)
(1− p)

r
pN−rfK(r,N). (7)

Proof. The proof follows from Lemma 1. The conditional
probability fK(r,N) has been weighted by the probability
of successfully receiving r out of N transmitted packets and
averaged over all valid values of r.

A variant of expression (7) has also been obtained in [9].
Based on the derived closed-form expressions (2) and (7), the
performance of systematic network codes can be contrasted
to that of straightforward network codes and give rise to the
following proposition.

Proposition 2. Systematic network codes exhibit a higher
probability of decoding all of the K packets of a source
message than straightforward network codes.

Proof. For the same number of received packets r, the prob-
ability of decoding all of the K source packets is fK(r,N)
for systematic NC and wK(r) for straightforward NC, where
wK(r) =

∏K−1
j=0

(
1− 2−r+j

)
as per (6). If we show that the

relationship fK(r,N) ≥ wK(r) holds for all valid values of
N , we can infer that the decoding probability of systematic NC
is higher than that of straightforward NC. Dividing fK(r,N)
by wK(r) gives

fK(r,N)

wK(r)
=
(
N
r

)−1[(N−K
r−K

)
A +

K−1∑
h=hmin

(
K
h

)(
N−K
r−h

)
Bh

]
(8)

where

A=

K−1∏
j=0

2r−j

2r−j − 1
and Bh =


1, for h = 0

h−1∏
j=0

2r−j

2r−j − 1
, for h > 0.

(9)



Note that A > 1 and Bh ≥ 1 for all valid values of r, that is,
K ≤ r ≤ N . Therefore, the right-hand side of (8) can become
a lower bound on the ratio fK(r,N)/wK(r) if coefficients A
and Bh are removed. More specifically, we can obtain

fK(r,N)

wK(r)
>
(
N
r

)−1 K∑
h=hmin

(
K
h

)(
N−K
r−h

)
(10)

if the binomial coefficient
(
N−K
r−K

)
in (8) is included into the

sum and the upper limit of the sum is updated accordingly.
We distinguish the following two cases for the value of N :
• N ≥ 2K: In this case, hmin = 0. Invoking a special

instance of the Chu-Vandermonde identity [10, p. 41],
we can reduce the sum at the right-hand side of (10) to

K∑
h=0

(
K
h

)(
N−K
r−h

)
=
(
N
r

)
. (11)

• K≤N<2K: As previously explained, hmin =r−N+K.
Setting h′=N−K−r+h, expressing the sum in (10)
in terms of h′, exploiting the properties of binomial
coefficients and using the widely-known Vandermonde’s
convolution [11, p. 29] gives

K∑
h=r−N+K

(
K
h

)(
N−K
r−h

)
=

N−r∑
h′=0

(
K

N−r−h′

)(
N−K
h′

)
=
(

N
N−r

)
=
(
N
r

)
.

(12)

If we combine identities (11) and (12) with inequality (10), we
obtain fK(r,N)/wK(r) > 1 for all valid values of N , which
concludes the proof. We note that the ratio fK(r,N)/wK(r)
approaches 1 as the value of N −K increases.

Remark. Even though this paper is concerned with binary
systematic NC, i.e. the elements of matrix G are selected
uniformly at random from GF(2), the same reasoning can be
employed to obtain PK(N) when operations are performed
over GF(q) for q ≥ 2. The probability fK(r,N) of decoding
the entire source message, given that r packets have been
received, can be written as

fK(r,N)=

(
N−K
r−K

)
+

K−1∑
h=hmin

(
K
h

)(
N−K
r−h

)K−h−1∏
j=0

(
1−q−r+h+j

)
(
N
r

) . (13)

Both Propositions 1 and 2 hold for q ≥ 2. Substituting (13)
into (7) gives the general expression for PK(N).

B. Probability of Decoding a Fraction of the Source Message

In Section II-A, we focused on deriving the probability
of decoding the K source packets when N ≥ K packets
have been transmitted. Of equal interest is the probability of
recovering at least M < K source packets when N ≥ M
packets have been transmitted. To the best of our knowledge,
a closed-form expression for this probability, denoted hereafter
as PK,M (N), has not been obtained for straightforward NC.
However, a good approximation, which follows readily from
Proposition 1, can be computed for the case of systematic NC.

Corollary 1. The probability of recovering at least M < K
source packets, when N ≥M packets have been transmitted
over a channel with packet erasure probability p, can be
approximated by

PK,M (N) ≈
Nmin∑
r=M

(
Nmin

r

)
(1− p)

r
pNmin−r (14)

where Nmin = min (K,N).

Proof. The number of transmitted systematic packets is either
N if N < K, or K if N ≥ K. In general, min (K,N) system-
atic packets are sent over the packet erasure channel, for any
value of N . If we wish to recover at least M < min (K,N)
source packets and the erasure probability p is small, M or
more received packets will most likely be systematic and, thus,
linearly independent. As a result, the probability of decoding at
least M source packets reduces to the probability of recovering
at least M systematic packets, given by (14).

We remark that the assumption of a low value of p is
reasonable when the physical layer employs error correcting
codes that improve the channel conditions as “seen” by higher
network layers, where NC is usually applied. For example, the
Long Term Evolution Advanced (LTE-A) framework considers
an erasure probability of p = 0.1 [12].

C. Performance Metrics and Benchmarks

In order to assess the performance of systematic NC and
explore its capability to progressively decode a source mes-
sage, we will compare it with ordered uncoded (OU) trans-
mission [13] and straightforward NC. In OU transmission, the
K source packets are periodically repeated. The transmitted
packet at time step n = i + mK can be expressed as
ti+mK = si for i = 1, . . . ,K and m ≥ 0. We note that
transmission is uncoded in the sense that transmitted packets
are not linear combinations of the source packets. By contrast,
the n-th transmitted packet in straightforward NC is given by
tn =

∑K
i=1 gn,i si for n > 0, implying that all transmitted

packets are linear combinations of the source packets.
Probabilities PK,M (N) and PK(N) will be used to contrast

the performance of systematic NC, straightforward NC and
OU transmission. In order to create links between the two
decoding probabilities, we introduce the following parameters:

• P̂ is a predetermined target probability of packet recovery
that a transmission scheme has to attain. Probabilities
PK,M (N1) and PK(N2) can be set equal to P̂ in order
to determine the number of transmitted packets N1 and
N2 that are required for the partial or full recovery of the
source message, respectively.

• N̂ signifies the minimum number of transmitted packets
required by the receiver to recover at least M source
packets with a probability of at least P̂ .

• ∆N denotes the minimum number of additional packets
that should be transmitted so that the receiver recovers
the K source packets with a probability of at least P̂ .



A performance comparison of the investigated schemes will
be carried out in Section IV. Prior to that, we discuss decoding
algorithms for NC schemes and propose a decoding process
that allows progressive decoding of source packets in the
following section.

III. PROGRESSIVE DECODING

If the objective of the decoding algorithm is the recovery
of the K source packets after the reception of at least K
transmitted packets, Gaussian Elimination (GE) could be used
especially when the value of K is small. The GE algorithm
transforms the decoding matrix G into row-echelon form. The
rank of the transformed matrix, which is equal to the rank of
the original decoding matrix, can be obtained by inspecting
the number of non-zero rows within the echelon form. If the
rank is K, that is, if G is a full-rank matrix, the K source
packets can be successfully recovered.

GE and schemes based on Belief Propagation (BP) [14]
experience a large spike in computation when K transmit-
ted packets are received. On-the-Fly Gaussian Elimination
(OFGE) [15] manages to mitigate the decoding delay and
computational complexity of GE by invoking an optimized tri-
angulation process every time a packet is received. The OFGE
decoder spreads computation out over each packet arrival and
the decoding matrix G is already in partial triangular form by
the time the K-th transmitted packet is received.

Both GE and OFGE have been designed to perform full-rank
decoding. As a result, if the rank of G is less than K, that is,
if the decoding matrix is rank-deficient, some source packets
might still be decodable but GE or OFGE will not necessarily
identify them. A modified version of OFGE, which we refer
to as OFGE for Progressive Decoding (OFGE-PD), was pre-
sented in [13]. Similarly to OFGE, OFGE-PD also comprises a
triangulation stage and a back-substitution stage. An additional
stage, called the XORing phase, enables OFGE-PD to decode
source packets from rank-deficient decoding matrices at the
expense of increased computational complexity.

We revisited the original GE algorithm and we amalga-
mated the OFGE principle of initiating the decoding process
whenever a packet is received. A sketch of the proposed
algorithm, referred to as Gaussian Elimination for Progressive
Decoding (GE-PD), is presented in Algorithm 1. To facilitate
the description of GE-PD, we introduced function Degree,
which determines the number of non-zero elements in a
row vector; function Diag, which generates a row vector
containing the elements of the main diagonal of a matrix;
function LeftmostOne, which returns the position of the
first non-zero entry in a row vector; and function Swap,
which swaps two rows in a matrix. The decoding matrix G
is initially set equal to the K × K zero matrix. Recall that
G[n ] represents the n-th row of G, while G[ i ][ j ] denotes
the entry of G in the i-th row and j-th column (equivalent to
gi,j). We note that, depending on the adopted programming
language, the code can be further optimized and the execution
speed of GE-PD improved.

Algorithm 1 Gaussian Elimination for Progressive Decoding
1: Receive new 1×K coding vector R
2: Set entries in R that correspond to decoded packets to 0
3: if (Degree(R) > 0) then
4: G[K + 1 ]← R
5: for i = 1 to K do
6: one in diag ← TRUE
7: if (G[ i ][ i ] = 0) then
8: one in diag ← FALSE, j ← i + 1
9: repeat

10: if LeftmostOne(G[ j ]) = i then
11: Swap(G[ i ],G[ j ])
12: one in diag ← TRUE
13: end if
14: j ← j + 1
15: until ( j > K + 1 ) or one in diag
16: end if
17: if one in diag then
18: for j = 1 to (K + 1) do
19: if ( j 6= i ) and (G[ j ][ i ] = 1) then
20: G[ j ]← G[ j ]⊕G[ i ]
21: end if
22: end for
23: end if
24: end for
25: G← BackSubstitution(G, K)
26: G← Top K rows of G
27: end if

Function BackSubstitution(G, K)
1: for i = K to 1 step −1 do
2: if Degree(G[ i ]) = 1 then
3: j = LeftmostOne(G[ i ])
4: for k = 1 to K do
5: if k 6= i then G[ k ][ j ]← 0
6: end for
7: end if
8: end for
9: return G

As line 2 in Algorithm 1 indicates, whenever a new coding
vector R is received, it is updated so that any previously de-
coded source packets are not considered again in the decoding
process. If the updated row-vector R still contains non-zero
entries, it is appended to the bottom of the decoding matrix
G (lines 3-4). Lines 6-16 rearrange the rows of G in an
effort to transform it into an upper triangular matrix. Lines 17-
23 aim to transform G into row-echelon form by ensuring
that each non-zero element on the main diagonal of G is
the only non-zero element in that column. Finally, function
BackSubstitution is called in line 25 to establish which
source packets are decodable. The efficiency and accuracy of
GE-PD are investigated in the following section.

IV. RESULTS AND DISCUSSION

This section compares the proposed GE-PD with OFGE-PD,
OFGE and GE in terms of computational cost and capability
of progressively recovering source packets. The decoding
algorithm that achieves the best accuracy but requires the
least computational time is identified. It is then used to obtain
simulation results, which are compared to theoretical predic-
tions in order to validate the derived analytical expressions
for systematic NC. The performance of systematic NC is then
contrasted to that of straightforward NC and OU transmission,
and the suitability of each scheme for progressive packet
recovery is discussed.
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Fig. 1. Computational cost of the decoding schemes for different numbers
of source packets (K = 1, . . . , 30).

A. Assessment of GE-PD

Fig. 1 compares the computational cost of the considered
decoding schemes. Recall that GE-PD and OFGE-PD are
modified versions of GE and OFGE, respectively, which have
been adapted to recover source packets from rank-deficient
decoding matrices, as described in Section III. The computa-
tional cost has been expressed in terms of the time required for
a decoder to recover the full sequence of K source packets
when straightforward NC is applied and channel conditions
are perfect, i.e. p = 0. The plotted results were obtained on
a simulation platform equipped with an Intel Core i7-3770
processor and 8 GB of RAM. As expected [15], Fig. 1 shows
that OFGE yields substantial computational savings over the
conventional GE. However, the inclusion of progressive de-
coding capabilities in OFGE adds noticeable overhead to the
decoding process. We observe that the computational cost of
the resultant OFGE-PD increases rapidly for large values of
K. On the other hand, GE-PD is not only more efficient than
the original GE but also executes faster than OFGE.

Straightforward NC for K = 20 source packets and perfect
channel conditions were also assumed for the performance
assessment of the four decoding schemes. Fig. 2 depicts the
probability of each scheme recovering at least half (M = 10)
or all (M = 20) of the source packets when N packets have
been transmitted. As we see, OFGE is not optimized for
recovering a fraction of the source message in contrast to
OFGE-PD, which requires a smaller number of transmitted
packets to recover half of the source message but at a higher
computational cost. A fact worthy of attention is that the
decoding accuracy of GE is matched by that of GE-PD, which
exhibits a computational cost as low as that of OFGE. For this
reason, the proposed GE-PD was the decoding algorithm of
choice for the simulation of the considered NC-based schemes.

B. Performance Validation of Systematic NC

In order to validate the derived analytical expressions for
the decoding probability of systematic NC, a comparison
between theoretical and simulation results was carried out.
We considered a source message comprising K = 40 packets,

17 18 19 20 21 22 23 24 25 26 27 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ec

o
d

in
g

 P
ro

b
ab

il
it

y

N

 

 

OFGE-PD M = 10

OFGE-PD M = 20

OFGE M = 10

OFGE M = 20

GE-PD M = 10

GE-PD M = 20

GE M = 10

GE M = 20

Fig. 2. Performance comparison of the decoding schemes for K = 20.
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Fig. 3. Performance validation of systematic NC for K = 40, different values
of p and (a) partial recovery (M = 20) or (b) full recovery (M = 40) of the
source packets.

which are encoded using a systematic NC and transmitted over
a packet erasure channel with p = {0.1, 0.15, 0.3}.

Fig. 3a shows that expression (14) for PK,M (N) accu-
rately predicts the probability of decoding at least half of
the source message (M = 20). Similarly, expression (7) for
PK(N) matches the simulated results for decoding the entire
source message (M = 40), as reported in Fig. 3b. The excel-
lent agreement between theory and simulation establishes the
validity of the theoretical analysis. It also demonstrates that
the proposed GE-PD is both efficient and accurate, considering
that the number of decoded source packets matches the one
predicted by the theoretical model.

C. Evaluation of Systematic NC for Progressive Decoding

Fig. 4 shows the probability that a receiver employing sys-
tematic NC recovers at least half (M = K/2) or all (M = K)
of the source packets, when N packets have been transmitted.
The performance of systematic NC is contrasted with that
of OU transmission and straightforward NC, referred to here
as SF NC for brevity. Two scenarios have been considered;
Fig. 4a depicts the performance of the three transmission
schemes when K = 20, while Fig. 4b presents plots for
the case of K = 40. In both scenarios, the packet erasure
probability has been set to p = 0.1.



We observe in Fig. 4a that OU transmission allows the
recovery of at least half of the source message for a small value
of N . However recovery of the whole source message requires
a large number of transmitted packets. For example, for a
target probability of P̂ = 0.7, a system using OU transmission
can retrieve M = 10 source packets if just N̂ = 11 packets
are transmitted. On the other hand, recovery of all M = 20
source packets requires the transmission of at least 39 packets.
In other words, ∆N = 39− 11 = 28 packets need to be
transmitted, on average, to allow recovery of the whole source
message, when half of the message has already been retrieved.
As we see in Fig. 4b, a larger value of K will markedly
increase the value of ∆N .

By contrast, SF NC incurs a significant delay in recovering
at least half of the source message but only a few extra
transmitted packets are required to obtain the entire message.
We observe in Fig. 4a that if P̂ = 0.7 then N̂ = 24 packets
are needed to reconstruct half of the message, while the
transmission of only ∆N = 1 additional packet is sufficient
for the decoding of the entire message.

As is apparent from Fig. 4a and Fig. 4b, systematic NC
combines the best performance characteristics of both OU
transmission and SF NC. We observe that the value of N̂
for recovering at least half of the source packets is as small
as that of OU transmission, while the required number of
transmitted packets for retrieving all of the source packets is
smaller than or similar to that of SF FC. The latter observation
confirms Proposition 2. Consequently, systematic NC is the
most appropriate of the considered transmission schemes for
progressive packet decoding, as it exhibits a high probability
of either partially or fully decoding the source message.

V. CONCLUSIONS

In this paper, we considered systematic random linear net-
work coding, obtained theoretical expressions that accurately
describe its decoding probability and proved that systematic
network codes exhibit a higher probability of decoding the
entirety of a source message than straightforward network
coding. We also proposed Gaussian elimination for Progressive
Decoding (GE-FD), which aims to recover source packets
as soon as one or more transmitted packets are successfully
delivered to a receiver. We demonstrated that GE-PD per-
forms similarly to the optimal theoretical decoder in terms
of decoding probability and also exhibits low computational
cost. Furthermore, we established that the decoding delay
characteristics of systematic network coding for both partial
and full recovery of source messages are notably better than
those of straightforward network coding.
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