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Summary points

• Consumer wearables can provide patients with personalized health data, which
could assist with self-diagnosis and behaviour change interventions.

• There are a number of concerns about the safety, reliability and security of using
consumer wearables in healthcare.

• Practitioners and researchers should consider how these technological advances may
impact healthcare in the 21st century.

Will consumer wearable technology ever be adopted or accepted by the medical 1

community? Patients and practitioners regularly use digital technology (e.g. 2

thermometers and glucose monitors) to identify and discuss symptoms. In addition, a 3

third of General Practitioners in the UK report that patients arrive with suggestions for 4

treatment based on online search results [1]. However, consumer health wearables are 5

predicted to become the next ‘Dr Google’. One in six (15 %) consumers in the USA 6

currently use wearable technology including smartwatches or fitness bands. While 19 7

million fitness devices are likely to be sold this year, that number is predicted to grow 8

to 110 million in 2018 [2]. As the line between consumer health wearables and medical 9

devices begins to blur, it is now possible for a single wearable device to monitor a range 10

of medical risk factors (Fig 1). Potentially, these devices could give patients direct 11

access to personal analytics that can contribute to their health, facilitate preventive care 12

and aid in the management of ongoing illness. However, how this new wearable 13

technology might best serve medicine remains unclear. 14

Do wearables effect behaviour? 15

Healthy individuals 16

At present, wearables are more likely to be purchased by individuals who already lead a 17

healthy lifestyle and want to quantify their progress [2]. The majority of wearable 18

manufacturers (e.g. Fitbit, Jawbone and Nike) stress the potential of their devices to 19

become “all-in-one” platform for improving physical performance and positive habit 20

formation. Wearable manufacturers utilise a range of digital persuasive techniques and 21

social influence strategies to increase user engagement including the gamification of 22

activity with competitions and challenges, publication of visible feedback on 23
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Figure 1. What can consumer wearables do? Heart rate can be measured with an
oximeter built into a ring [3], muscle activity with an electromyographic sensor
embedded into clothing [4], stress with an electodermal sensor incorporated into a
wristband [5], and physical activity or sleep patterns via an accelerometer in a
watch [6, 7]. In addition, a female’s most fertile period can be identified with detailed
body temperature tracking [8], while levels of mental attention can be monitored with a
small number of non-gelled EEG electrodes [9]. Levels of social interaction (also known
to affect general well-being) can be monitored using proximity detections to others with
Bluetooth or Wi-Fi enabled devices [10]. Consumer wearables can deliver personalised,
immediate and goal-oriented feedback based on specific tracking data obtained via
sensors, and provide long lasting functionality without requiring continual recharging.
Their small form factor makes them easier to wear continuously. While smartphones are
still required to process the incoming data for most consumer wearables, it is
conceivable that in the near future all processing functionality will be self contained.
Fig 1 illustrates examples of available sensor technologies that can be used to track a
variety of behaviours and physiological functions.

performance utilising social influence principles, or reinforcements in the form of virtual 24

rewards for achievements. There is also a small, but growing, population of wearable 25

users specifically interested in the concept of self-discovery via personal analytics - the 26

Quantified Self (QS) movement [11]. A number of scientific and popular publications 27

describe methods and techniques for using consumer wearables as ‘self-hacking’ devices - 28

to improve sleep, manage stress, or increase productivity [12]. But do these 29

interventions make people healthier? 30

Current empirical evidence is not supportive. Evidence for the effectiveness of QS 31

methods comes from single-subject reports of users describing their experiences. 32

Subjective reports like these cannot be treated as a reliable scientific evidence. Very few 33

longitudinal, randomised controlled studies focus on the impact of wearable technology 34

on healthy users’ behaviour. One exception found that pedometers (and consultations) 35

increased physical activity among older people [13]. It remains unclear how similar 36

interventions may benefit younger adults who are regularly exposed to wearables that 37

provide an ever increasing stream of behavioural and physiological feedback. 38

Additionally, recent surveys showed that 32% of users stop wearing these devices after 39

six months, and 50% after one year [14]. Many wearables suffer from being a “solution 40

in search of a problem”. In other words, they don’t add functional value that is already 41

expected from personal technology of that type, and they require too much effort, which 42

breaks the seamless user experience [15]. Poor implementation of user experience 43

principles [16] alongside the ad-hoc design of user interfaces stems in part from the 44

rapid nature of development, which may also explain the lack of randomised trials. 45

Those who market and develop consumer level devices may underestimate the distance 46

between designing a product that appears to be associated with a healthy lifestyle and 47

providing evidence to support this underlying assumption. This is not merely a 48

bureaucratic limitation, as even the best experts are often unable to predict which novel 49

interventions will show benefits when considered as part of a randomised trial [17]. 50

Patients with a defined illness or co-morbidity 51

How useful are consumer wearables as a patient-driven, “secondary” diagnostic tool? 52

For chronic conditions, wearables could effortlessly provide detailed longitudinal data 53

that monitors patients’ progress without the need to involve more sophisticated, 54

uncomfortable and expensive alternatives. For instance, it is possible to identify the 55

severity of depressive symptoms based on the number of conversations, amount of 56
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physical activity, and sleep duration using a wearable wristband and smartphone 57

app [18,19]. Sleep apnoea could be quickly diagnosed, and sleep quality improved, with 58

a wearable measuring ECG, breathing volume, and snoring (through tissue vibration) 59

instead of heavy polysomnograph [20]. Wearables could also feed into a broader system 60

of “predictive preventive diagnosis”. For example, a microanalysis of body movement 61

data can be used to detect early symptoms of Parkinson’s disease [21]. Wearables could 62

provide a platform for at-home management of long-term chronic conditions. Stationary 63

computerised solutions such as web-based services, electronic self-reports and feedback 64

via e-mails already facilitate positive behaviour change for such medical issues as 65

obesity [22], anxiety [23], panic disorders [24], PTSD [25] or asthma [26]. However, 66

those stationary computerised solutions already appear out of date and are almost 67

impossible to use by patients when they are away from their home computer. Despite 68

their widespread use, these solutions result in a high level of patient attrition [27], which 69

might be as a result of requiring patients to delay self-report until they are next able to 70

use their home computer [28]. Wearables could address some of the limitations of other 71

interventions by providing instant feedback and offer an individualistic approach while 72

remaining practical [11, 15]. 73

In spite of those promises, the actual use of consumer wearables within a clinical 74

population remains limited. The potential applications described above are still in the 75

early stages of development, have not been approved for medical use and have so far 76

been explored predominantly within an academic research rather than real world 77

context. Clinical studies to date that have a closer resemblance to consumer wearables 78

involve: (1) pedometers and smartphone apps to tackle a sedentary lifestyle and obesity, 79

and (2) home telemonitoring solutions for patients with pulmonary conditions, diabetes, 80

hypertension, and cardiovascular diseases. 81

The use of pedometers has been associated with significant increases in physical 82

activity and significant decreases in body mass index and blood pressure [29]. 83

Smartphone apps have been shown to compliment interventions supporting weight 84

loss [28,30] and increase physical activity [31]. However, interventions involving 85

pedometers and smartphone apps across clinical populations show no evidence of 86

continued behavioural change beyond the duration of the original intervention [29]. 87

There are also inconclusive results regarding home telemonitoring. Reviews illustrating 88

the effects of telemonitoring on clinical outcomes (e.g. a decrease in emergency visits, 89

hospital admissions, average hospital stay) are more favourable in pulmonary and 90

cardiac patients than those suffering from diabetes and hypertension [32,33]. However, 91

a number of trials report no beneficial effect of self-monitoring on blood glucose [34] and 92

several demonstrate negative outcomes including elevated levels of depression [35]. 93

Aspects such as quality of life, acceptability, and cost benefits are infrequently or 94

incompletely reported in telemonitoring trials [33,36], and existing reviews of remote 95

monitoring have frequently been criticised for their poor methodology [37]. 96

Into the Cloud: Is wearable-generated data safe, 97

reliable and secured? 98

This new technology raises additional questions concerning the impact on users’ health 99

and well-being. Currently, wearables exist within a ‘grey area’ regarding user safety. The 100

potential issue of harm is largely absent from the current literature, but it is conceivable 101

that people may become over reliant on automated systems that provide a false sense of 102

security, or fuel a self-driven misdiagnosis [38,39]. Patients could also suffer from 103

negative consequences of excessive self-monitoring by finding it uncomfortable, intrusive, 104

and unpleasant. For instance, several studies have observed that Type 2 diabetics who 105
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self-monitored their own blood glucose concentration did not benefit from increased 106

glycemic control, but rather found their disease more intrusive [35]. The interaction 107

between a wearable device and a patient is likely to be complex and further research 108

needs to consider these in more detail. For example, an individual’s personality is likely 109

to play a key role in determining the perceived usefulness of a given device [40]. 110

The reliability and validity of wearable devices is also concerning. Devices are 111

marketed under the premise that they will help improve general health and fitness, but 112

the majority of manufactures provide no empirical evidence to support the effectiveness 113

of their products. Recent comparisons between various wearables for tracking physical 114

activity showed large variations in accuracy between different devices - with error 115

margins of up to 25% [41,42]. This is a serious discrepancy and it echos problems 116

witnessed in the medical apps market. For instance, a review in JAMA Dermatology 117

showed that smartphone apps for melanoma detection have a 30% failure rate [43]. Lack 118

of reliability is a serious obstacle that needs to be addressed long before a device could 119

be considered for any medical application. 120

Finally, for patients and medical practitioners, the privacy and security of personal 121

data generated by consumer wearables remains problematic. Users who buy wearable 122

devices today often do not ‘own’ their data. Instead, data may be collected and stored 123

by the manufacture who sells the device. Being provided with only a summary of results 124

extracted from these data creates a rather odd paradox for the user - they own the 125

device, but not the resulting data. Some manufactures charge users a monthly fee for 126

access to their own raw data, which is regularly sold to third-party agencies. Other 127

companies are also willing to share a users’ location, age, sex, email, height, weight or 128

‘anonymised’ GPS-tracked activities [44,45]. However, ‘anonymising’ data via a simple 129

distortion or removal of identifying features does not provide adequate levels of 130

anonymity and is not sufficient to prevent identity fraud. Sophisticated algorithms can 131

now cross-reference wearable-generated biometric data with other ‘digital traces’ of 132

users’ behaviour. ‘Digital traces’ of behaviour such as time of activity and user location 133

can reveal a person’s identity [46]. Research on ‘digital traces’ from other sources (e.g. 134

social media) demonstrate that these can be alarmingly accurate when it comes to 135

predicting personality [47] and risk taking behaviours [48]; two very individual and 136

personal traits. Furthermore, some wearable devices are easy to hack as a result of 137

various communication technologies that aid the transfer of data between wearables and 138

smartphones [49]. This resonates with similar problems observed in wireless digital 139

pacemakers and glucose pumps, which were vulnerable to cyber attacks in the 140

past [50, 51]. While the consequences of hacks are reduced for non-invasive wearables, a 141

well-coordinated cyber-attack could lead to patient health data being compromised, lost 142

or distorted. 143

Moving Forward: What’s to come for wearables in 144

healthcare? 145

What can make affordable, wearable technology a real asset for healthcare? One option 146

is to create a simple regulatory framework that doesn’t suppress innovation but helps 147

wearable devices become validated in the context of their health-oriented value. Such an 148

approach was recently discussed in The New England Journal of Medicine but in 149

relation to smartphone health apps’ regulatory status in the US [52]. Authors pointed 150

towards a risk-based classification (e.g. administrative apps, health management apps, 151

medical apps) that “promotes innovation, protects patient safety, and avoids regulatory 152

duplication” [52, p.375]. As part of this model, the US Food and Drug Administration 153

jurisdiction covers higher-risk medical apps. The National Health Service in the UK 154
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adopts similar pathway with their regulatory framework for mobile apps, which can be 155

classified as ‘medical devices’ by the Medicines and Healthcare Products Regulatory 156

Agency [53]. Applied to a health-oriented wearable device, such a solution could 157

persuade the private sector to provide open access to their data collection practices, 158

analysis methodologies and measurement concerns. This would address not only the 159

issue of wearables reliability, but also secondary concerns relating to data storage and 160

privacy. Apple has recently announced a development of a ResearchKit - an open-source 161

software framework to create smartphone apps and to use wearables for medical 162

research [54]. This is widely perceived as an attempt to accelerate and standardise 163

procedures for regulating Apple’s apps alongside wearables as they apply to medical 164

research. We envision that other smartphone and wearable manufacturers will mirror 165

this approach, therefore making it easier for medical researchers to address issues of 166

reliability, safety and security of patient data. Combining such standardised solutions 167

created by manufacturers with the correct regulatory framework has the potential to 168

accelerate high quality, large-scale randomised controlled trials in order to deconstruct 169

complex causal interactions and better understand how to make wearables safer and 170

more useful if they are to be adopted in healthcare. 171

Another way to address data reliability and behavioural usability issues is to reach 172

the next level in decoding ‘big data’ from wearable devices. Right now, feedback 173

systems built around consumer health wearables are based on simple descriptive 174

statistics - for example, average weekly heart rate and level of activity. Simple summary 175

statistics appear almost trivial given the complex nature of the data that most 176

wearables collect. The same criticism can also be applied to the socio-demographic 177

information recorded by users’. The next step will be to move from unsophisticated 178

exploratory feedback, to intelligent and personalised explanatory feedback [55]. 179

Interactive computing systems that already exist in smartphones such as Google Now, 180

Apple Siri and Microsoft Cortana could be used to improve user experience and 181

interaction with wearable technology by making rich data outcomes and feedback more 182

accessible and intelligible [56]. Such systems will be further empowered by the ‘Internet 183

of Things’ (IoT) - a pervasive network of interconnected sensors embedded in everyday 184

spaces and objects that communicate with wearable technology and provide additional 185

layer of information for users or patients [57]. For example, the Withings system links 186

multiple devices together including a wearable fitness tracker and sleep sensor placed 187

under the mattress. A smart weight scale also records heart rate, body fat and air 188

quality providing even more information about a users daily health habits [58]. 189

However, successful applications of ‘intelligent’ computing and the use of multiple 190

consumer sensors requires a truly interdisciplinary approach in order to decode 191

‘individual big data’. Computer and data scientists, who write such computational 192

algorithms, have to work closely with clinicians to accurately quantify various health 193

conditions and risk factors. Behavioural scientists and interface designers have to be on 194

board to facilitate and develop more personalised, intuitive and user-friendly systems of 195

behavioural engagement and feedback. Those whose expertise lies in the design, 196

manufacture and marketing of consumer wearables should be mindful of the limitations 197

that have plagued previous medical and psychological interventions. Specifically, the 198

assumption that the impact of a seemingly positive intervention can be assessed without 199

randomised controlled trials. 200

Conclusion 201

While many champion wearables as data-rich devices that will revolutionise 21st century 202

medicine, it remains highly probable that, like many technological trends, these 203

mass-marketed gadgets will drift into obscurity. However, given their continued 204
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popularity, particularly amongst those who already maintain a watchful eye over their 205

lifestyle, health practitioners may need to prepare themselves for an increase in patients 206

who bring wearable data to their next consultation. This may generate additional 207

confusion and anxiety for both practitioner and patient. More worryingly, the margin of 208

error can be high when patients without medical training attempt to attribute 209

symptoms to a specific stream of data from devices that may themselves be unreliable. 210

Drawing a parallel with patient-obtained diagnoses via Google, less than 5% of surveyed 211

health care providers felt that any Internet self-diagnosis was helpful [1]. Alternatively, 212

if frameworks are in place allowing wearable devices to be integrated into health care 213

systems this could, in turn, kickstart the development of validation programmes that 214

would sit alongside appropriate training for healthcare professionals. This knowledge 215

and understanding could then be disseminated to patients as validated devices became 216

standardised providing both individual and aggregated data for patients, governments 217

and health care providers. Moving forward, practitioners and researchers should try to 218

work together and open a constructive dialogue on how to approach and accommodate 219

these technological advances in a way that ensures wearable technology may become a 220

valuable asset for healthcare in the 21st century. 221
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