The Rise of Consumer Health Wearables: Promises & Barriers.

Lukasz Piwek^{1*}, David A. Ellis², Sally Andrews³, and Adam Joinson¹

- 1 School of Management, University of Bath, UK
- 2 Department of Psychology, Lancaster University, UK

3 Division of Psychology, Nottingham Trent University, UK

* lukasz.piwek@uwe.ac.uk

Summary points

- Consumer wearables can provide patients with personalized health data, which could assist with self-diagnosis and behaviour change interventions.
- There are a number of concerns about the safety, reliability and security of using consumer wearables in healthcare.
- Practitioners and researchers should consider how these technological advances may impact healthcare in the 21st century.

Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g. thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of General Practitioners in the UK report that patients arrive with suggestions for treatment based on online search results [1]. However, consumer health wearables are predicted to become the next 'Dr Google'. One in six (15 %) consumers in the USA currently use wearable technology including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018 [2]. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors (Fig 1). Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclear.

Do wearables effect behaviour?

Healthy individuals

At present, wearables are more likely to be purchased by individuals who already lead a healthy lifestyle and want to quantify their progress [2]. The majority of wearable manufacturers (e.g. *Fitbit, Jawbone* and *Nike*) stress the potential of their devices to become "all-in-one" platform for improving physical performance and positive habit formation. Wearable manufacturers utilise a range of digital persuasive techniques and social influence strategies to increase user engagement including the *gamification* of activity with competitions and challenges, publication of visible feedback on

10

11

12

13

14

15

16

17

18

19

Figure 1. What can consumer wearables do? Heart rate can be measured with an oximeter built into a ring [3], muscle activity with an electromyographic sensor embedded into clothing [4], stress with an electodermal sensor incorporated into a wristband |5|, and physical activity or sleep patterns via an accelerometer in a watch [6,7]. In addition, a female's most fertile period can be identified with detailed body temperature tracking [8], while levels of mental attention can be monitored with a small number of non-gelled EEG electrodes [9]. Levels of social interaction (also known to affect general well-being) can be monitored using proximity detections to others with Bluetooth or Wi-Fi enabled devices [10]. Consumer wearables can deliver personalised, immediate and goal-oriented feedback based on specific tracking data obtained via sensors, and provide long lasting functionality without requiring continual recharging. Their small form factor makes them easier to wear continuously. While smartphones are still required to process the incoming data for most consumer wearables, it is conceivable that in the near future all processing functionality will be self contained. Fig 1 illustrates examples of available sensor technologies that can be used to track a variety of behaviours and physiological functions.

performance utilising social influence principles, or reinforcements in the form of virtual rewards for achievements. There is also a small, but growing, population of wearable users specifically interested in the concept of self-discovery via personal analytics - the Quantified Self (QS) movement [11]. A number of scientific and popular publications describe methods and techniques for using consumer wearables as 'self-hacking' devices - to improve sleep, manage stress, or increase productivity [12]. But do these interventions make people healthier?

Current empirical evidence is not supportive. Evidence for the effectiveness of QS methods comes from single-subject reports of users describing their experiences. Subjective reports like these cannot be treated as a reliable scientific evidence. Very few longitudinal, randomised controlled studies focus on the impact of wearable technology on healthy users' behaviour. One exception found that pedometers (and consultations) increased physical activity among older people [13]. It remains unclear how similar interventions may benefit younger adults who are regularly exposed to wearables that provide an ever increasing stream of behavioural and physiological feedback. Additionally, recent surveys showed that 32% of users stop wearing these devices after six months, and 50% after one year [14]. Many wearables suffer from being a "solution in search of a problem". In other words, they don't add functional value that is already expected from personal technology of that type, and they require too much effort, which breaks the seamless user experience [15]. Poor implementation of user experience principles [16] alongside the ad-hoc design of user interfaces stems in part from the rapid nature of development, which may also explain the lack of randomised trials. Those who market and develop consumer level devices may underestimate the distance between designing a product that appears to be associated with a healthy lifestyle and providing evidence to support this underlying assumption. This is not merely a bureaucratic limitation, as even the best experts are often unable to predict which novel interventions will show benefits when considered as part of a randomised trial [17].

Patients with a defined illness or co-morbidity

How useful are consumer wearables as a patient-driven, "secondary" diagnostic tool? For chronic conditions, wearables could effortlessly provide detailed longitudinal data that monitors patients' progress without the need to involve more sophisticated, uncomfortable and expensive alternatives. For instance, it is possible to identify the severity of depressive symptoms based on the number of conversations, amount of

24

25

26

27

28

29

30

31

32

33

34

35

37

30

40

41

42

43

44

45

46

47

48

50

51

52

53

54

physical activity, and sleep duration using a wearable wristband and smartphone app [18, 19]. Sleep appoea could be quickly diagnosed, and sleep quality improved, with a wearable measuring ECG, breathing volume, and snoring (through tissue vibration) instead of heavy polysomnograph [20]. Wearables could also feed into a broader system of "predictive preventive diagnosis". For example, a microanalysis of body movement data can be used to detect early symptoms of Parkinson's disease [21]. Wearables could provide a platform for at-home management of long-term chronic conditions. Stationary computerised solutions such as web-based services, electronic self-reports and feedback via e-mails already facilitate positive behaviour change for such medical issues as obesity [22], anxiety [23], panic disorders [24], PTSD [25] or asthma [26]. However, those stationary computerised solutions already appear out of date and are almost impossible to use by patients when they are away from their home computer. Despite their widespread use, these solutions result in a high level of patient attrition [27], which might be as a result of requiring patients to delay self-report until they are next able to use their home computer [28]. Wearables could address some of the limitations of other interventions by providing instant feedback and offer an individualistic approach while remaining practical [11, 15].

In spite of those promises, the actual use of consumer wearables within a clinical population remains limited. The potential applications described above are still in the early stages of development, have not been approved for medical use and have so far been explored predominantly within an academic research rather than real world context. Clinical studies to date that have a closer resemblance to consumer wearables involve: (1) pedometers and smartphone apps to tackle a sedentary lifestyle and obesity, and (2) home telemonitoring solutions for patients with pulmonary conditions, diabetes, hypertension, and cardiovascular diseases.

The use of pedometers has been associated with significant increases in physical activity and significant decreases in body mass index and blood pressure [29]. Smartphone apps have been shown to compliment interventions supporting weight loss [28, 30] and increase physical activity [31]. However, interventions involving pedometers and smartphone apps across clinical populations show no evidence of continued behavioural change beyond the duration of the original intervention [29]. There are also inconclusive results regarding home telemonitoring. Reviews illustrating the effects of telemonitoring on clinical outcomes (e.g. a decrease in emergency visits, hospital admissions, average hospital stay) are more favourable in pulmonary and cardiac patients than those suffering from diabetes and hypertension [32, 33]. However, a number of trials report no beneficial effect of self-monitoring on blood glucose [34] and several demonstrate negative outcomes including elevated levels of depression [35]. Aspects such as quality of life, acceptability, and cost benefits are infrequently or incompletely reported in telemonitoring trials [33, 36], and existing reviews of remote monitoring have frequently been criticised for their poor methodology [37].

Into the Cloud: Is wearable-generated data safe, reliable and secured?

This new technology raises additional questions concerning the impact on users' health and well-being. Currently, wearables exist within a 'grey area' regarding user safety. The potential issue of harm is largely absent from the current literature, but it is conceivable that people may become over reliant on automated systems that provide a false sense of security, or fuel a self-driven misdiagnosis [38, 39]. Patients could also suffer from negative consequences of excessive self-monitoring by finding it uncomfortable, intrusive, and unpleasant. For instance, several studies have observed that Type 2 diabetics who

57

58

59

60

61

62

63

64

65

66

67

68

69

self-monitored their own blood glucose concentration did not benefit from increased glycemic control, but rather found their disease more intrusive [35]. The interaction between a wearable device and a patient is likely to be complex and further research needs to consider these in more detail. For example, an individual's personality is likely to play a key role in determining the perceived usefulness of a given device [40].

The reliability and validity of wearable devices is also concerning. Devices are marketed under the premise that they will help improve general health and fitness, but the majority of manufactures provide no empirical evidence to support the effectiveness of their products. Recent comparisons between various wearables for tracking physical activity showed large variations in accuracy between different devices - with error margins of up to 25% [41,42]. This is a serious discrepancy and it echos problems witnessed in the medical apps market. For instance, a review in *JAMA Dermatology* showed that smartphone apps for melanoma detection have a 30% failure rate [43]. Lack of reliability is a serious obstacle that needs to be addressed long before a device could be considered for any medical application.

Finally, for patients and medical practitioners, the privacy and security of personal data generated by consumer wearables remains problematic. Users who buy wearable devices today often do not 'own' their data. Instead, data may be collected and stored by the manufacture who sells the device. Being provided with only a summary of results extracted from these data creates a rather odd paradox for the user - they own the device, but not the resulting data. Some manufactures charge users a monthly fee for access to their own raw data, which is regularly sold to third-party agencies. Other companies are also willing to share a users' location, age, sex, email, height, weight or 'anonymised' GPS-tracked activities [44,45]. However, 'anonymising' data via a simple distortion or removal of identifying features does not provide adequate levels of anonymity and is not sufficient to prevent identity fraud. Sophisticated algorithms can now cross-reference wearable-generated biometric data with other 'digital traces' of users' behaviour. 'Digital traces' of behaviour such as time of activity and user location can reveal a person's identity [46]. Research on 'digital traces' from other sources (e.g. social media) demonstrate that these can be alarmingly accurate when it comes to predicting personality [47] and risk taking behaviours [48]; two very individual and personal traits. Furthermore, some wearable devices are easy to hack as a result of various communication technologies that aid the transfer of data between wearables and smartphones [49]. This resonates with similar problems observed in wireless digital pacemakers and glucose pumps, which were vulnerable to cyber attacks in the past [50, 51]. While the consequences of hacks are reduced for non-invasive wearables, a well-coordinated cyber-attack could lead to patient health data being compromised, lost or distorted.

Moving Forward: What's to come for wearables in healthcare?

What can make affordable, wearable technology a real asset for healthcare? One option 146 is to create a simple regulatory framework that doesn't suppress innovation but helps 147 wearable devices become validated in the context of their health-oriented value. Such an 148 approach was recently discussed in The New England Journal of Medicine but in 149 relation to smartphone health apps' regulatory status in the US [52]. Authors pointed 150 towards a risk-based classification (e.g. administrative apps, health management apps, 151 medical apps) that "promotes innovation, protects patient safety, and avoids regulatory 152 duplication" [52, p.375]. As part of this model, the US Food and Drug Administration 153 jurisdiction covers higher-risk medical apps. The National Health Service in the UK 154

144 145

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

adopts similar pathway with their regulatory framework for mobile apps, which can be 155 classified as 'medical devices' by the Medicines and Healthcare Products Regulatory 156 Agency [53]. Applied to a health-oriented wearable device, such a solution could 157 persuade the private sector to provide open access to their data collection practices, 158 analysis methodologies and measurement concerns. This would address not only the 159 issue of wearables reliability, but also secondary concerns relating to data storage and 160 privacy. Apple has recently announced a development of a ResearchKit - an open-source 161 software framework to create smartphone apps and to use wearables for medical 162 research [54]. This is widely perceived as an attempt to accelerate and standardise 163 procedures for regulating Apple's apps alongside wearables as they apply to medical 164 research. We envision that other smartphone and wearable manufacturers will mirror 165 this approach, therefore making it easier for medical researchers to address issues of 166 reliability, safety and security of patient data. Combining such standardised solutions 167 created by manufacturers with the correct regulatory framework has the potential to 168 accelerate high quality, large-scale randomised controlled trials in order to deconstruct 169 complex causal interactions and better understand how to make wearables safer and 170 more useful if they are to be adopted in healthcare. 171

Another way to address data reliability and behavioural usability issues is to reach 172 the next level in decoding 'big data' from wearable devices. Right now, feedback 173 systems built around consumer health wearables are based on simple descriptive 174 statistics - for example, average weekly heart rate and level of activity. Simple summary 175 statistics appear almost trivial given the complex nature of the data that most 176 wearables collect. The same criticism can also be applied to the socio-demographic 177 information recorded by users'. The next step will be to move from unsophisticated 178 exploratory feedback, to intelligent and personalised explanatory feedback [55]. 179 Interactive computing systems that already exist in smartphones such as *Google Now*, 180 Apple Siri and Microsoft Cortana could be used to improve user experience and 181 interaction with wearable technology by making rich data outcomes and feedback more 182 accessible and intelligible [56]. Such systems will be further empowered by the 'Internet 183 of Things' (IoT) - a pervasive network of interconnected sensors embedded in everyday 184 spaces and objects that communicate with wearable technology and provide additional 185 layer of information for users or patients [57]. For example, the Withings system links 186 multiple devices together including a wearable fitness tracker and sleep sensor placed 187 under the mattress. A smart weight scale also records heart rate, body fat and air 188 quality providing even more information about a users daily health habits [58]. 189 However, successful applications of 'intelligent' computing and the use of multiple 190 consumer sensors requires a truly interdisciplinary approach in order to decode 191 'individual big data'. Computer and data scientists, who write such computational 192 algorithms, have to work closely with clinicians to accurately quantify various health 193 conditions and risk factors. Behavioural scientists and interface designers have to be on 194 board to facilitate and develop more personalised, intuitive and user-friendly systems of 195 behavioural engagement and feedback. Those whose expertise lies in the design, 196 manufacture and marketing of consumer wearables should be mindful of the limitations 197 that have plagued previous medical and psychological interventions. Specifically, the 198 assumption that the impact of a seemingly positive intervention can be assessed without 199 randomised controlled trials. 200

Conclusion

While many champion wearables as data-rich devices that will revolutionise 21st century medicine, it remains highly probable that, like many technological trends, these mass-marketed gadgets will drift into obscurity. However, given their continued 202

popularity, particularly amongst those who already maintain a watchful eye over their 205 lifestyle, health practitioners may need to prepare themselves for an increase in patients 206 who bring wearable data to their next consultation. This may generate additional 207 confusion and anxiety for both practitioner and patient. More worryingly, the margin of 208 error can be high when patients without medical training attempt to attribute 209 symptoms to a specific stream of data from devices that may themselves be unreliable. 210 Drawing a parallel with patient-obtained diagnoses via *Google*, less than 5% of surveyed 211 health care providers felt that any Internet self-diagnosis was helpful [1]. Alternatively, 212 if frameworks are in place allowing wearable devices to be integrated into health care 213 systems this could, in turn, kickstart the development of validation programmes that 214 would sit alongside appropriate training for healthcare professionals. This knowledge 215 and understanding could then be disseminated to patients as validated devices became 216 standardised providing both individual and aggregated data for patients, governments 217 and health care providers. Moving forward, practitioners and researchers should try to 218 work together and open a constructive dialogue on how to approach and accommodate 219 these technological advances in a way that ensures wearable technology may become a 220 valuable asset for healthcare in the 21st century. 221

References

- 1. Cello Health Insight. The Digital Health Debate; 2014. Available from: 223 http://cellohealthinsight.com/digital-health-debate/ [cited 04 Nov 224 2014]. 225 2. Juniper Research. Smart Wearable Devices. Fitness, Healthcare, Entertainment 226 & Enterprise 2013-2018.; 2013. Available from: 227 http://www.juniperresearch.com/reports/Smart_Wearable_Devices [cited] 228 30 Oct 2014]. 229 3. Yang BH, Rhee S. Development of the ring sensor for healthcare automation. 230 Robotics and Autonomous Systems. 2000;30(3):273–281.
- 4. Finni T, Hu M, Kettunen P, Vilavuo T, Cheng S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiological Measurement. 2007;28(11):1405-1419.
- 5. Sandulescu V, Andrews S, Ellis D, Bellotto N, Mozos O. Stress Detection Using 235 Wearable Physiological Sensors. In: Ferrández Vicente JM, Álvarez Sánchez JR, 236 de la Paz López F, Toledo-Moreo FJ, Adeli H, editors. Artificial Computation in 237 Biology and Medicine. vol. 9107 of Lecture Notes in Computer Science. Springer 238 International Publishing; 2015. p. 526–532. 239
- 6. Jean-Louis G, Kripke DF, Mason WJ, Elliott Ja, Youngstedt SD. Sleep 240 estimation from wrist movement quantified by different actigraphic modalities. 241 Journal of Neuroscience Methods. 2001;105(2):185–191. 242
- 7. Yang CC, Hsu YL. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors. 2010;10(8):7772–7788.
- 8. Rollason J, Outtrim J, Mathur R. A pilot study comparing the DuoFertility monitor with ultrasound in infertile women. International Journal of Women's Health. 2014;p. 657.
- 9. Poltavski DV. The Use of Single-Electrode Wireless EEG in Biobehavioral 248 Investigations. In: Rasooly A, Herold KE, editors. Mobile Health Technologies: 249 Methods in Molecular Biology. Springer New York; 2015. p. 375–390. 250

222

231

232

233

234

243

244

245

246

10.	Eagle N, Pentland AS, Lazer D. Inferring friendship network structure by using	251
	mobile phone data. PNAS. 2009;106(36):15274–15278.	252

- Swan M. Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. International journal of environmental research and public health. 2009;6(2):492–525.
- Swan M. Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks. 259 2012;1(3):217-253.
- Harris T, Kerry SM, Victor CR, Ekelund U, Woodcock A, Iliffe S, et al. A Primary Care Nurse-Delivered Walking Intervention in Older Adults: PACE (Pedometer Accelerometer Consultation Evaluation)-Lift Cluster Randomised Controlled Trial. PLOS Medicine. 2015;12(2):e1001783.
- Ledger D, Partners E, Scientist B, Manager P. Inside Wearables. How the Science of Human Behavior Change. Endevour Partners; 2014. Available from: http://endeavourpartners.net/white-papers/. 266
- 15. Fogg BJ. Persuasive technology. Communications of the ACM. 1999;42(5):26–29. 267
- Norman D. The Design of Everyday Things (revised and expanded edition). MIT Press; 2013.
- 17. Kumar a. Are experimental treatments for cancer in children superior to established treatments? Observational study of randomised controlled trials by the Children's Oncology Group. BMJ. 2005;331(7528):1295–0.
- Chen Z, Chen Y, Hu L, Wang S, Jiang X, Ma X, et al. ContextSense: 273 unobtrusive discovery of incremental social context using dynamic bluetooth data. 274 In: Proceedings of the 2014 ACM International Joint Conference on Pervasive 275 and Ubiquitous Computing Adjunct Publication - UbiComp '14 Adjunct. Seattle, 276 USA: ACM Press; 2014. p. 23–26. 277
- 19. McCall WV. A rest-activity biomarker to predict response to SSRIs in major depressive disorder. Journal of Psychiatric Research. 2015;64:19–22.
- 20. Harrington J, Schramm PJ, Davies CR, Lee-Chiong TL. An electrocardiogram-based analysis evaluating sleep quality in patients with obstructive sleep apnea. Sleep and Breathing. 2013;17(3):1071–1078.
- Arora S, Venkataraman V, Donohue S, Biglan KM, Dorsey ER, Little MA. High accuracy discrimination of Parkinson's disease participants from healthy controls using smartphones. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE; 2014. p. 3641–3644.
- 22. Neville LM, O'Hara B, Milat A. Computer-tailored physical activity behavior change interventions targeting adults: a systematic review. The international journal of behavioral nutrition and physical activity. 2009;6:30.
- 23. Christensen H, Griffiths KM, Jorm AF. Delivering interventions for depression by using the internet: randomised controlled trial. BMJ. 2004;328(7434):265.
- 24. Carlbring P, Westling BE, Ljungstrand P, Ekselius L, Andersson G. Treatment of panic disorder via the internet: A randomized trial of a self-help program.
 293 Behavior Therapy. 2001;32(4):751–764.

253

254

255

256

260

261

262

263

270

271

272

278

279

280

281

25.	Lange A, van de Ven JP, Schrieken B. Interapy: Treatment of Post-traumatic Stress via the Internet. Cognitive Behaviour Therapy. 2003;32(3):110–124.	295 296
26.	Bartholomew LK, Gold RS, Parcel GS, Czyzewski DI, Sockrider MM, Fernandez M, et al. Watch, Discover, Think, and Act: evaluation of computer-assisted instruction to improve asthma self-management in inner-city children. Patient Education and Counseling. 2000;39(2-3):269–280.	29 29 29 29 30
27.	Rosser BA, Vowles KE, Keogh E, Eccleston C, Mountain GA. Technologically-assisted behaviour change: a systematic review of studies of novel technologies for the management of chronic illness. Journal of telemedicine and telecare. 2009;15(7):327–38.	301 302 303 304
28.	Carter MC, Burley VJ, Nykjaer C, Cade JE. Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. Journal of medical Internet research. 2013;15(4):1–17.	305 306 307
29.	Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.	308 309 310
30.	Allen JK, Stephens J, Dennison Himmelfarb CR, Stewart KJ, Hauck S. Randomized controlled pilot study testing use of smartphone technology for obesity treatment. Journal of Obesity. 2013;2013:151597.	311 312 313
31.	Glynn LG, Hayes PS, Casey M, Glynn F, Alvarez-Iglesias A, Newell J, et al. Effectiveness of a smartphone application to promote physical activity in primary care: the SMART MOVE randomised controlled trial. The British journal of general practice. 2014;64(624):e384–91.	314 315 316 317
32.	Clark RA, Inglis SC, McAlister FA, Cleland JGF, Stewart S. Telemonitoring or structured telephone support programmes for patients with chronic heart failure: systematic review and meta-analysis. BMJ. 2007;334(7600):942–942.	318 319 320
33.	Pare G, Jaana M, Sicotte C. Systematic Review of Home Telemonitoring for Chronic Diseases: The Evidence Base. Journal of the American Medical Informatics Association. 2007;14(3):269–277.	321 322 323
34.	Farmer A, Wade A, Goyder E, Yudkin P, French D, Craven A, et al. Impact of self monitoring of blood glucose in the management of patients with non-insulin treated diabetes: open parallel group randomised trial. BMJ. 2007;335(7611):132–132.	324 329 320 320
35.	O'Kane MJ, Bunting B, Copeland M, Coates VE. Efficacy of self monitoring of blood glucose in patients with newly diagnosed type 2 diabetes (ESMON study): randomised controlled trial. BMJ. 2008;336(7654):1174–1177.	328 329 330
36.	Simon J, Gray A, Clarke P, Wade A, Neil A, Farmer A. Cost effectiveness of self monitoring of blood glucose in patients with non-insulin treated type 2 diabetes: economic evaluation of data from the DiGEM trial. BMJ. 2008;336(7654):1177–1180.	33: 33: 33: 33:
37.	Kitsiou S, Paré G, Jaana M. Systematic Reviews and Meta-Analyses of Home Telemonitoring Interventions for Patients With Chronic Diseases: A Critical Assessment of Their Methodological Quality. Journal of Medical Internet Research. 2013;15(7):e150.	33! 33(337 338

ć	38.	Krantz DS, Baum A, Wideman Mv. Assessment of Preferences for self-treatment and information in health care. Journal of personality and social psychology. 1980;39(5):977–90.	339 340 341
ļ	39.	Goyder C, McPherson A, Glasziou P. Diagnosis in general practice. Self diagnosis. BMJ. 2009;339:b4418.	342 343
4	40.	Ehrenberg A, Juckes S, White KM, Walsh SP. Personality and self-esteem as predictors of young people's technology use. Cyberpsychology & behavior. 2008;11(6):739–41.	344 345 346
4	41.	Lee JM, Kim Y, Welk GJ. Validity of consumer-based physical activity monitors. Medicine and science in sports and exercise. 2014;46(9):1840–8.	347 348
4	42.	Case, MA; Burwick, HA; Volpp, KG; Patel M. Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data. JAMA. 2015;313(6):10–11.	349 350 351
4	43.	Wolf JA, Moreau JF, Akilov O, Patton T, English JC, Ho J, et al. Diagnostic Inaccuracy of Smartphone Applications for Melanoma Detection. JAMA Dermatology. 2013;149(4):422.	352 353 354
4	44.	Venkataramanan M. My identity for sale. Wired. 2014;11:98–105.	355
4	45.	Strava Labs [homepage on the Internet]; c2009-14 [cited 30 Oct 2014]. Available from: http://labs.strava.com.	356 357
4	46.	de Montjoye YA, Hidalgo Ca, Verleysen M, Blondel VD. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports. 2013;3:1–5.	358 359
4	47.	Lambiotte BR, Kosinski M. Tracking the Digital Footprints of Personality. In: Proceedings of the IEEE. vol. 102; 2015. p. 1934–1939.	360 361
4	48.	Kosinski M, Stillwell D, Graepel T. Private traits and attributes are predictable from digital records of human behavior. PNAS. 2013;110(15):5802–5.	362 363
4	49.	Kirk S. The Wearables Revolution: Is Standardization a Help or a Hindrance?: Mainstream technology or just a passing phase? IEEE Consumer Electronics Magazine. 2014;3(4):45–50.	364 365 366
Ę	50.	Halperin D, Heydt-Benjamin TS, Fu K, Kohno T, Maisel WH. Security and Privacy for Implantable Medical Devices. IEEE Pervasive Computing. 2008;7(1):30–39.	367 368 369
Ę	51.	Maisel WH, Kohno T, Ph D. Improving the Security and Privacy of Implantable Medical Devices. The New England journal of medicine. 2010;362(13):1164–1166.	370 371
Ę	52.	Cortez NG, Cohen IG, Kesselheim AS. FDA Regulation of Mobile Health Technologies. The New England journal of medicine. 2014;371(4):372–379.	372 373
Ę	53.	McCartney M. How do we know whether medical apps work? BMJ. 2013;346:f1811.	374 375
Ę	54.	Apple ResearchKit [homepage on the Internet]; c2015 [cited 23 Mar 2015]. Available from: https://www.apple.com/researchkit/.	376 377
Ę	55.	Patel MS, Asch Da, Volpp KG. Wearable Devices as Facilitators , Not Drivers , of Health Behavior Change. JAMA. 2015;313:459–460.	378 379

56.	Topol, Eric J ; Steinhubl, Steven R ; Torkamani A. Digital Medical Tools and Sensors. JAMA. 2015;92037:17–18.	380 381
57.	Atzori L, Iera A, Morabito G. The Internet of Things: A survey. Computer Networks. 2010;54(15):2787–2805.	382 383
58.	Withings [homepage on the Internet]; c2008-15 [cited 8 Jul 2015]. Available from: http://www.withings.com/uk/.	384 385