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Abstract. Decentralised recommenders have been proposed to deliver
privacy-preserving, personalised and highly scalable on-line recommen-
dations. Current implementations tend, however, to rely on a hard-wired
similarity metric that cannot adapt. This constitutes a strong limitation
in the face of evolving needs. In this paper, we propose a framework
to develop dynamically adaptive decentralised recommendation systems.
Our proposal supports a decentralised form of adaptation, in which in-
dividual nodes can independently select, and update their own recom-
mendation algorithm, while still collectively contributing to the overall
system’s mission.
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1 Introduction

With the growth of the modern web, recommendation has emerged as a key ser-
vice to help users navigate today’s on-line content. Designing highly scalable and
privacy-preserving recommenders is hard, and one promising approach consists
in exploiting fully decentralised mechanisms such as gossip [21, 5], or DHTs [29].
These decentralised recommenders, however, have so far used a mostly homoge-
neous design. They typically rely on one similarity metric [30] to self-organise
large numbers of users in implicit communities and offer powerful means to com-
pute personalised recommendations. Figuring out the right similarity metric that
best fits the needs of a large collection of users is, however, highly challenging.

To address this challenge, we explore, in this paper, how dynamic adapta-
tion can be applied to large-scale decentralised recommenders by allowing each
individual node to choose autonomously between different similarity metrics.
Extending on earlier works in the field [19, 12], we propose several adaptation
variants, and show how small changes in adaptation decisions can drastically im-
pact a recommender’s overall performance, while demonstrating the feasibility
of decentralised self-adaptation in peer-to-peer recommender systems.
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In the following, we motivate and present our work (Sec. 2 and 3), evaluate it
(Sec. 4 and 5), before discussing related work (Sec. 6), and concluding (Sec. 7).

2 Background
Modern on-line recommenders [20, 11, 28, 22, 9] remain, in their vast majority,
based around centralised designs. Centralisation comes, however, with two crit-
ical drawbacks. It first raises the spectre of a big-brother society, in which a few
powerful players are able to analyse large swaths of personal data under little
oversight. It also leads to a data siloing effect. A user’s personal information
becomes scattered across many competing services, which makes it very difficult
for users themselves to exploit their data without intermediaries [31].

These crucial limitations have motivated research on decentralised recom-
mendation systems [5, 7, 4, 25], in particular based on implicit interest-based
overlays [30]. These overlays organise users (represented by their machines, also
called nodes) into implicit communities to compute recommendations in a fully
decentralised manner.

2.1 Interest-based Implicit Overlays

More precisely, these overlays seek to connect users4 with their k most similar
other users (where k is small) according to a predefined similarity metric. The
resulting k-nearest-neighbour graph or knn is used to deliver personalised rec-
ommendations in a scalable on-line manner. For instance, in Figure 1, Alice has
been found to be most similar to Frank, Ellie, and Bob, based on their browsing
histories; and Bob to Carl, Dave, and Alice.

Although Bob and Alice have been detected to be very similar, their browsing
histories are not identical: Bob has not visited Le Monde, but has read the
New York Times, which Alice has not. The system can use this information to
recommend the New York Times to Alice, and reciprocally recommend Le Monde
to Bob, thus providing a form of decentralised collaborative filtering [13].

Gossip algorithms based on asynchronous rounds [10, 30] turn out to be par-
ticularly useful in building such interest-based overlays. Users typically start
with a random neighbourhood, provided by a random peer sampling service [17].

4 In the following we will use user and node interchangeably.



They then repeatedly exchange information with their neighbours, in order to
improve their neighbourhood in terms of similarity. This greedy sampling pro-
cedure is usually complemented by considering a few random peers (returned by
a decentralised peer sampling service [17]) to escape local minima.

For instance, in Figure 2, Alice is interested in hearts, and is currently con-
nected to Frank, and to Ellie. After exchanging her neighbour list with Bob, she
finds out about Carl, who appears to be a better neighbour than Ellie. As such,
Alice replaces Ellie with Carl in her neighbourhood.

2.2 Self-Adaptive Implicit Overlays

The overall performance of a service using a knn overlay critically depends on the
similarity metric it uses. Unfortunately, deciding at design time which similarity
metric will work best is highly challenging. The same metric might not work
equally well for all users [19]. Further, user behaviour might evolve over time,
thereby rendering a good initial static choice sub-efficient.

Instead of selecting a static metrics at design time, as most decentralised rec-
ommenders do [5, 3, 4], we propose to investigate whether each node can identify
an optimal metric dynamically, during the recommendation process. Adapting
a node’s similarity metric is, however, difficult for at least three reasons. First,
nodes only possess a limited view of the whole system (their neighbourhood) to
make adaptation decisions. Second, there is a circular dependency between the
information available to nodes for adaptation decisions and the actual decision
taken. A node must rely on its neighbourhood to decide whether to switch to
a new metric. But this neighbourhood depends on the actual metric being used
by the node, adding further instability to the adaptation. Finally, because of the
decentralised nature of these systems, nodes should adapt independently of each
other, in order to limit synchronisation and maximise scalability.

3 Decentralised Adaptation
We assume a peer-to-peer system in which each node p possesses a set of items,
items(p), and maintains a set of k neighbours (k = 10 in our evaluation). p’s
neighbours are noted Γ (p), and by extension, Γ 2(p) are p’s neighbours’ neigh-
bours. Each node p is associated with a similarity metric, noted p.sim, which
takes two sets of items and returns a similarity value.

The main loop of our algorithm (dubbed Similitude) is shown in Alg. 1
(when executed by node p). Ignoring line 3 for the moment, lines 2-4 implement
the greedy knn mechanism presented in Section 2. At line 4, argtopk selects
the k nodes of cand (the candidate nodes that may become p’s new neighbours)
that maximise the similarity expression p.sim

(
items(p), items(q)

)
.

Recommendations are generated at lines 5-6 from the set itΓ of items of all
users in p’s neighbourhood (noted items

(
Γ (p)

)
). Recommendations are ranked

using the function score at line 8, with the similarity score of the user(s) they
are sourced from. Recommendations suggested by multiple users take the sum of
all relevant scores. The top m recommendations from itΓ (line 6) are suggested
to the user (or all of them if there are less than m).



Algorithm 1 Similitude
1: in every round do
2: cand← Γ (p) ∪ Γ 2(p) ∪ 1 random node
3: adaptsim(cand)

4: Γ (p)←
argtop

k

q∈cand

(
p.sim

(
items(p), items(q)

))
5: itΓ ← items

(
Γ (p)

)
\ items(p)

6: rec←
argtop

m

i∈itΓ

(
score

(
i, p.sim, items(p), Γ (p)

))
7: end round

8: function score(i, sim, items, Γ )

9: return
∑

q∈Γ |i∈items(q)

sim(items, items(q))

10: end function

Algorithm 2 Adaptsim
1: function adaptsim(cand)
2: top_sims←

argmax
s∈SIM

(
avg4

(
eval_sim(s, cand)

))
3: if p.sim 6∈ top_sims then
4: p.sim← random element from top_sims
5: end if
6: end function

7: function eval_sim(s, cand)
8: hiddenf ← proportion f of items(p)
9: visiblef ← items(p) \ hiddenf

10: Γf ← argtop
k

q∈cand

(
s
(
visiblef , items(q)

))
11: itf ← items

(
Γf
)
\ visiblef

12: recf ←
argtop

m

i∈itf

(
score(i, s, visiblef , Γf )

)
13: return S =

|recf ∩ hiddenf |
|recf |

14: end function

3.1 Dynamic Adaptation of Similarity

The adaptation mechanism we propose (adaptsim) is called at line 3 of Alg. 1,
and is shown in Alg. 2. A node p estimates the potential of each available metric
(s ∈ SIM , line 2) using the function eval_sim(s). In eval_sim(s), p hides
a fraction f of its own items (lines 8-9) and creates a ‘temporary potential
neighbourhood’ Γf for each similarity metric available (line 10, f = 20% in our
evaluation). From each temporary neighbourhood, p generates a set of recom-
mendations (lines 11-12) and evaluates them against the fraction f of internally
hidden items, resulting in a score S for each similarity s (its precision (Figure 5)).

This evaluation is repeated four times and averaged to yield a set of the
highest-achieving metrics (top_sims) (note that multiple metrics may achieve
the same score). If the current metric-in-use p.sim is not in top_sims, p switches
to a random metric from top_sims (lines 3-4).

After selecting a new metric, a node suspends the metric-selection process
for two rounds during which it only refines its neighbours. This cool-off period
allows the newly selected metric to start building a stable neighbourhood thereby
limiting oscillation and instability.

3.2 Enhancements to Adaptation Process

We now extend the basic adaptation mechanism presented in Section 3.1 with
three additional modifiers that seek to improve the benefit estimation, and limit
instability and bias: detCurrAlgo, incPrevRounds and incSimNodes.



detCurrAlgo (short for “detriment current algorithm”) slightly detracts from
the score of the current metric in use. This modifier tries to compensate for the
fact that metrics will always perform better in neighbourhoods they have built
up themselves. In our implementation, the score of the current metric in use is
reduced by 10%.

incPrevRounds (short for “incorporate previous rounds”) takes into consid-
eration the scores Sr−i obtained by a metric in previous rounds to compute a
metric’s actual score in round r, S?r (Figure 3). In doing so, it aims at reduc-
ing the bias towards the current environment, thereby creating a more stable
network with respect to metric switching.

incSimNodes (short for “incorporate similar nodes”) prompts a node to refer
to the metric choice of the most similar nodes it is aware of in the system. This is
based on the knowledge that similar metrics are preferable for nodes with similar
profiles, and thus if one node has discovered a metric which it finds to produce
highly effective results, this could be of significant interest to other similar nodes.
The modifier works by building up an additional score for each metric, based on
the number of nodes using the same metric in the neighbourhood. This additional
score is then balanced with the average of the different metrics’ score (Figure 4).

4 Evaluation Approach

We validate our adaptation strategies by simulation. In this section, we describe
our evaluation protocol; we then present our results in Section 5.

4.1 Data Sets

We evaluate Similitude on two datasets: Twitter, and MovieLens. The former
contains the feed subscriptions of 5,000 similarly-geolocated Twitter users, ran-
domly selected from the larger dataset presented in [8]5. Each user has a profile
containing each of her Twitter subscriptions, i.e., each subscribed feed counts
as a positive rating. The MovieLens dataset [1] contains 1 million movie ratings
from 6038 users, each consisting of an integer value from 1 to 5. We count values
3 and above as positive ratings. We pre-process each dataset by first removing
the items with less than 20 positive ratings because they are of little interest
to the recommendation process. Then, we discard the users with less than five
remaining ratings. After pre-processing, the Twitter dataset contains 4569 users
with a mean of 105 ratings per user, while the MovieLens dataset contains 6017
users with a mean of 68 ratings per user.

4.2 Evaluation Metrics

We evaluate recommendation quality using precision and recall (Figure 5). Pre-
cision measures the ability to return few incorrect recommendations, while recall
5 An anonymised version of this dataset is available at http://ftaiani.ouvaton.org/
ressources/onlyBayLocsAnonymised_21_Oct_2011.tgz
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Fig. 3. Incorporating previous rounds
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Fig. 4. Incorporating similar nodes

Precision(ui ∈ users) = |reci∩hiddeni|
|reci|

Recall(ui ∈ users) = |reci∩hiddeni|
|hiddeni|

Fig. 5. Precision and recall

Overlap(ui, uj) = |itemsi ∩ itemsj |
Big(ui, uj) = |itemsj |

OverBig(ui, uj) = Overlap(ui, uj) +Big(ui, uj)

FrereJacc(ui, uj) =
Overlap(ui,uj)

|itemsi|+|itemsj |

Fig. 6. The four similarity metrics used

measures the ability to return many correct recommendations. In addition, we
evaluate specific aspects of our protocol. First, we count how many nodes reach
their optimal similarity metrics—we define more precisely what we understand
by optimal in Section 4.5. Finally, we observe the level of instability within the
system, by recording the number of nodes that switch metric during each round.

4.3 Simulator and Cross Validation

We measure recommendation quality using a cross-validation approach. We split
the profile of each user into a visible item set containing 80% of its items, and
a hidden item set containing the remaining 20%. We use the visible item set to
construct the similarity-based overlay and as a data source to generate recom-
mendations as described in Section 3. We then consider a recommendation as
successful if the hidden item set contains a corresponding item.

In terms of protocol parameters, we randomly associate each node with an
initial neighbourhood of 10 nodes, as well as with a randomly selected similarity
metric to start the refinement process. At each round, the protocol provides each
node with a number of suggestions equal to the average number of items per user.
We use these suggestions to compute precision and recall. Each simulation runs
for 100 rounds; we repeat each run 10 times and average the results. Finally, we
use two rounds of cool-off by default.

4.4 Similarity Metrics

We consider four similarity metrics: Overlap, Big , OverBig and, FrereJacc [19],
shown in Figure 6. These metrics are sufficiently different to represent distinct
similarity choices for each node, and offer a representative adaptation scenario.

Overlap counts the items shared by a user and its neighbour. As such, it
tends to favour users with a large number of items. Big simply counts the num-
ber of items of the neighbour, presuming that the greater the number of items
available, the more likely a match is to be found in the list. This likewise favours
users with a larger number of items. OverBig works by combining Big and
Overlap—thereby discrediting the least similar high-item users. Finally Frere-
Jacc normalises the overlap of items by dividing it by the total number of items



of the two users; it therefore provides improved results for users with fewer items.
FrereJacc6 consists of a variant of the well-known Jaccard similarity metric.

It is important to note that the actual set of metrics is not our main fo-
cus. Rather, we are interested in the adaptation process, and seek to improve
recommendations by adjusting the similarity metrics of individual nodes.

4.5 Static Metric Allocations

We compare our approach to six static (i.e., non-adaptive) system configurations,
which serve as baselines for our evaluation. In the first four, we statically allocate
the same metric to all nodes from the set of metrics in Figure 6 (Overlap, Big ,
OverBig , and FrereJacc). These baselines are static and homogeneous.

The fifth (HeterRand) and sixth (HeterOpt) baselines attempt to capture
two extreme cases of heterogeneous allocation. HeterRand randomly associates
each node with one of the four above metrics. This configuration corresponds
to a system that has no a-priori knowledge regarding optimal metrics, and that
does not use dynamic adaptation. HeterOpt associates each node with its opti-
mal similarity metric. To identify this optimal metric, we first run the first four
baseline configurations (static and homogeneous metrics). For each node, Het-
erOpt selects one of the metrics for which the node obtains the highest average
precision. HeterOpt thus corresponds to a situation in which each node is able
to perfectly guess which similarity metric works best for itself.

5 Experimental Results

5.1 Static Baseline

We first determine the set of optimal metrics for each node in both datasets
as described in Section 4.5. To estimate variability, we repeat each experiment
twice, and compare the two sets of results node by node. 43.75% of the nodes
report the same optimal metrics across both runs. Of those that do not, 35.43%
list optimal metrics that overlap across the two runs. In total, 79.18% of nodes’
optimal metrics match either perfectly or partially across runs. Figure 7 depicts
the distribution obtained in the first run for both datasets.

5.2 Basic Similitude

We first test the basic Similitude with no modifiers, and a cool-off period of
two rounds. Figures 8 and 9 present precision and recall (marked Similitude
(basic)). Figure 10 depicts the number of users selecting one of the optimal
metrics, while Figure 11 shows the switching activity of users.

These results show that Similitude allows nodes to both find their optimal
metric and switch to it. Compared to a static random allocation of metrics
(HeterRand), Similitude improves precision by 47.22%, and recall by 33.75%.
A majority of nodes (59.55%) reach their optimal metrics, but 17.43% remain
unstable and keep switching metrics throughout the experiment.
6 FrereJacc was erroneously labeled as Jaccard in the proceedings version.
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5.3 Effects of the Modifiers

detCurrAlgo has a negative effect on every aspect: precision, recall, number of
nodes on optimal metrics, and stability (Figures 8 through 11). Precision and
recall decrease by 5.08% and 6.93% respectively compared to basic Similitude.
At the same time, the final number of nodes on their optimal metrics decreases
by 6.02%, and unstable nodes increase by 35.29%.

This shows that, although reducing the current metric’s score might intu-
itively make sense because active metrics tend to shape a node’s neighbourhood
to their advantage, this modifier ends up disrupting the whole adaptation pro-
cess. We believe this result depends on the distribution of optimal metrics (Fig-
ure 7). Since one metric is optimal for a majority of nodes, reducing its score
only causes less optimal metrics to take over. It would be interesting to see how
this modifier behaves on a dataset with a more balanced distribution of optimal
metrics than the two we consider here.

incPrevRounds, unlike detCurrAlgo, increases precision by 12.57% and re-
call by 24.75% with respect to basic Similitude, while improving stability by
55.92%. The number of nodes reaching an optimal metric improves by 18.81%.

As expected, incPrevRounds greatly improves the stability of the system; it
even enhances every evaluation metric we use. The large reduction in the number
of unstable nodes, and the small increase in that of nodes reaching their optimal
metrics suggest that incPrevRounds causes nodes to settle on a metric faster,



whether or not that metric is optimal. One possible explanation is that, if one
metric performs especially well in a round with a particular set of neighbours,
all future rounds will be affected by the score of this round.

incSimNodes, like incPrevRounds, improves basic Similitude on every aspect.
Precision increases by 11.91%, recall by 16.88%, the number of nodes on their
optimal metrics by 16.53%, and that of unstable nodes decreases by 49.26%.

With this modifier, most of the nodes switch to the same similarity metric
(FrereJacc). Since incSimNodes tends to boost the most used metric in each
node’s neighbourhood, it ends up boosting the most used metric in the system,
creating a snowball effect. Given that FrereJacc is the optimal metric for most
of the nodes, it is the one that benefits the most from incSimNodes.

Even if completely different by design, both incPrevRounds and incSimNodes
have very similar results when tested with Twitter. This observation cannot be
generalised as the results are not the same with MovieLens (Figures 15 and 16).

All modifiers activates all three modifiers with the hope of combining their ef-
fects. Results show that this improves precision and recall by 29.11% and 43.99%
respectively. The number of nodes on optimal metrics also increases by 32.51%.
Moreover none of the nodes switch metrics after the first 25 rounds.

Activating all the modifiers causes most nodes to employ the metric that is
optimal for most nodes in Figure 7, in this case FrereJacc. This explains why no
node switches metrics and why the number of nodes reaching optimal metrics
(70.15%) is very close to the number of nodes with FrereJacc as an optimal
metric (75.31%). The difference gets even thinner without cool-off (Section 5.5):
73.43% of the nodes use their optimal metrics.

5.4 Weighting the Modifiers

We balance the effect of the two additive modifiers (incPrevRounds and inc-
SimNodes) by associating each of them with a multiplicative weight. A value of
0 yields the basic Similitude, a value of 1 applies the full effect of the modifier,
while a value of 0.5 halves its effect. We use a default weight of 0.5 for both of
them because they perform best with this value when operating together.

Figure 12 shows the precision and recall of incPrevRounds and incSimNodes
with their respective weights ranging from 0 (basic Similitude) to 1, with a 0.1
step. incPrevRounds peaks at a weight of 0.5 even when operating alone, while
incSimNodes peaks at 0.7, but it still performs very well at 0.5.

5.5 Varying the Cool-Off Period

As described in Section 3.1, the cool-off mechanism seeks to prevent nodes from
settling too easily on a particular metric. To assess the sensitivity of this param-
eter, Figures 13 and 14 compare the results of Similitude with all the modifiers,
when the cool-off period varies from 0 (no cool-off) to 5 rounds.

Disabling cool-off results in a slight increase in precision (5.45%) and in recall
(7.23%) when compared to 2 rounds of cool-off. Optimal metrics are reached by
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3.73% more nodes, and much faster, attaining up to 73.43% nodes. Removing
cool-off reduces a metric’s ability to optimise a neighbourhood to its advantage,
as there is only a single round of clustering before the metric is tested again.
While cool-off can offer additional stability in adaptive systems, the stability
provided by the modifiers appears to be sufficient in our model. Cool-off, instead,
leads metrics to over-settle, and produces a negative effect.

5.6 MovieLens Results

Figures 15 and 16 show the effect of Similitude on precision and recall with
the different modifiers using the MovieLens dataset. The results are similar to
those obtained with Twitter (Figures 8 and 9).

As with the Twitter dataset, basic Similitude outperforms HeterRand in
precision by 24.52% and in recall by 21.02%. By the end of the simulations,
59.95% of the nodes reach an optimal metric and 15.73% still switch metrics.

The behaviour of the modifiers compared to basic Similitude is also sim-
ilar. detCurrAlgo degrades precision by 7.58%, recall by 9.86%, the number of
nodes on optimal metrics by 7.07%, and the number of nodes switching met-
rics by 33.40%. incPrevRounds improves precision by 21.02%, recall by 31.19%,
the number of nodes on optimal metrics by 20.52%, and the number of nodes
switching metrics by 62.08%. incSimNodes improves precision by 15.75%, recall
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Fig. 16. Recall (MovieLens)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

o
n

Rounds of clustering

FrereJacc
Overlap

Big
OverBig

HeterOpt
HeterRand

Similitude (optimised)

Fig. 17. Similitude against static solu-
tions (Twitter)
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Fig. 18. Similitude against static solu-
tions (MovieLens)

by 17.38%, the number of nodes on optimal metrics by 15.12%, and the number
of nodes switching metrics by 28.61%.

All modifiers improves precision by 29.11%, recall by 43.99%, the number of
nodes on optimal metrics by 32.51%, and there are no nodes switching metrics
after the first 25 rounds. As with the Twitter dataset, activating all the modifiers
makes all the nodes use the similarity metric which is optimal for the majority of
the system: FrereJacc. The number of nodes reaching optimal metrics (79.44%)
and the number of nodes with FrereJacc as optimal metric (81.40%) are almost
identical. Without cool-off, Similitude even reaches 80.57% nodes on an optimal
metric, getting even closer to that last number.

5.7 Complete System

We now compare the results of the best Similitude variant (all the modifiers
and 0 cool-off, noted Similitude (optimised)) with the six static configurations
we introduced in Section 4.5.

For the Twitter dataset, Figure 17 shows that our adaptive system out-
performs the static random allocation of metrics by 73.06% in precision, and
overcomes all but one static homogeneous metrics, FrereJacc, which is on par
with Similitude (optimised). For the MovieLens dataset, Figure 18 shows very
similar results where Similitude (optimised) has a higher precision than Het-
erRand by 65.85%, is on par with FrereJacc, and has a slightly lower precision



than HeterOpt (−2.6%). Selecting FrereJacc statically would however require
knowing that this metric performs best, which may not be possible in evolv-
ing systems (in which FrereJacc might be replaced by another metric as users’
behaviours change).

5.8 Discussion

Similitude (optimised) enables a vast majority of the nodes (73.43% for Twit-
ter, 80.57% for MovieLens) to eventually switch to an optimal metric, which
corresponds to the number of nodes having FrereJacc as their optimal metric
(Figure 7). By looking at these number, we can say that our system has the abil-
ity to discover which metric is the best suited for the system without needing
prior evaluation. While this already constitutes a very good result, there remains
a difference between Similitude and HeterOpt (the optimal allocation of metrics
to nodes), which represents the upper bound that a dynamically adaptive system
might be able to reach. Although achieving the performance of a perfect system
might prove unrealistic, we are currently exploring potential improvements.

First, incSimNodes could be reworked in order to have a more balanced
behaviour to avoid making the whole system use only one similarity metric, even
if it is the most suited one for the majority of the nodes. Next, we observe that
nodes appear to optimise their neighbourhood depending on their current metric,
as opposed to basing their metric choice on their neighbourhood. This may lead
to local optima because metrics perform notably better in neighbourhoods they
have themselves refined. Our initial attempt at avoiding such local optima with
the detCurrAlgo proved unsuccessful, but further investigation could result in
rewarding future work. For example, we are considering decoupling the choice
of the metric from the choice of the neighbourhood. Nodes may compare the
performance of metrics using randomly selected neighbourhoods, and then move
to the clustering process only using the best-performing metric.

Finally, it would be interesting to see how detCurrAlgo, incSimNodes and
more generally Similitude behave on a dataset with a more balanced distribu-
tion of optimal metrics since their effects and results highly depend on it.

6 Related Work

Several efforts have recently concentrated on decentralised recommenders [14, 24,
2, 6, 27] to investigate their advantages in terms of scalability and privacy. Ear-
lier approaches exploit DHTs in the context of recommendation. For example,
PipeCF [14] and PocketLens [24] propose Chord-based CF systems to decen-
tralise the recommendation process on a P2P infrastructure. Yet, more recent
solutions have focused on using randomised and gossip-based protocols [5, 18, 4].

Recognised as a fundamental tool for information dissemination [16, 23], Gos-
sip protocols exhibit innate scalability and resilience to failures. As they copy
information over many links, gossip protocols generally exhibit high failure re-
silience. Yet, their probabilistic nature also makes them particularly suited to
applications involving uncertain data, like recommendation.



Olsson’s Yenta [26] was one of the first systems to employ gossip protocols
in the context of recommendation. This theoretical work enhances decentralised
recommendation by taking trust between users into account. Gossple [5] uses
a similar theory to enhance navigation through query expansion and was later
extended to news recommendation [7]. Finally, in [15], Hegedűs et al. present
a gossip-based learning algorithm that carries out ‘random walks’ through a
network to monitor concept drift and adapt to change in P2P data-mining.

7 Conclusion

We have presented Similitude, a decentralised overlay-based recommender that
is able to adapt at runtime the similarity used by individual nodes. Similitude
demonstrates the viability of decentralised adaptation for very large distributed
systems, and shows it can compete against static schemes.

Although promising, our results shows there is still room for improvement.
In particular, we would like to see how a dataset with a more balanced distri-
bution of optimal metrics affects Similitude and its modifiers. We also think
that the detCurrAlgo and incSimNodes modifiers could benefit from further im-
provements, and thus bring the performance of Similitude closer to that of a
static optimal-metric allocation.
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