
Edge Flow
Gruffydd Morris, Plamen Angelov

Data Science Group, School of Computing and Communications
Lancaster University

Lancaster, LA1 4WA, UK
g.morris2@lancaster.ac.uk
p.angelov@lancaster.ac.uk

Abstract—Herein is a new data driven method to novelty
detection and object definition in dynamic video streams that
indiscriminately detects both static and moving objects in the
scene. Using a modified version of recursive density estimation
to reliably detect texture edges and a Sobel filtering process
to extract gradient edges, detection of object textures can be
done accurately and in real-time. In this paper we demonstrate
the capabilities of the algorithm in video scenarios, and show
that each object texture in the scene is reliably detected. We
are able to show clearly the capability of the algorithm to be
robust in occlusion scenarios; working in real-time, and defining
clear objects where other techniques would attribute such small
detections to noise.

I. INTRODUCTION

The world of computer vision and camera surveillance is
growing at an alarming rate. The number of mobile video
cameras on earth is set to outnumber the human population by
the end of 2014. Analysing the video streams from the cameras
has become a hotbed of research, with many approaches
already existing for the static camera platform [1]. A video
stream taken from a moving camera is much harder to analyse
due to the lack of reference points, and the inability to
directly compare consecutive frames (the scene has moved,
therefore the content of the scene frame to frame is always
changing). Currently, for dynamic / moving cameras there are
two prominent solutions, motion estimation and optical flow.
I wish you the best of success.

mds
January 11, 2007

A. Motion Estimation

This is a near real-time approach and attempts to simplify
the problem of no static reference points by warping and
overlapping two or more consecutive frames together [2, 3].
This has the effect of creating an area of static imagery, much
like the static / fixed camera platforms. Traditional background
subtraction can then be applied to the stream and moving
or dynamic objects can be extracted from the scene. The
main drawbacks of this approach are that the warping and
overlapping of frames is not perfect and therefore artificial
noise is introduced into the scene, reducing the robustness
of the overall technique. Also, as the precision of warping
and overlapping is improved, the computational processing
required increases making the approach less attractive. On a
Windows based PC , the frames processing time is between

200 and 600 ms per frame, depending on the precision of the
warping used.

B. Optical Flow

Optical flow is a non-real-time approach that calculates the
vectors of motion of each pixel between consecutive frames
[4, 5]. The flow vectors indicate the relative motion of each
novelty in the scene. The technique is good at detecting
moving objects in the scene, although the processing time
between each frame is between 2 - 3 seconds per frame on
the same hardware mentioned earlier. The main reason for the
large processing time is that it needs to calculate the optical
flow of each individual pixel, and there are over 300,000
in a 640x480 frame. Furthermore, if the motion or change
between scenes is sufficiently large, the optical flow accuracy
is reduced. An approach to optical flow using stereo cameras
to mitigate this problem has been developed, and this can
facilitate a much more accurate detection of moving objects
in a scene albeit at a cost of processing due to the calculation
of disparity between cameras that is required.

Given the drawbacks of the above techniques, and that
optimizing them can only go so far brute force is the only
answer to make both approaches truly real-time. Therefore
a step change is required; a new way of thinking about
the problem is needed. The basis of the proposed method
originates from the way humans look at a scene and interpret
their surroundings[6]. The detection of an object by people is
done by contrasting textures. Looking out of a window you
will see a myriad of various objects in the scene ranging from
trees, to fields to buildings and cars. The human brain has
evolved to detect sudden motion in a scene, and prioritizes
such objects. This is part of the fight or flight instinct. In
our modern world, many objects of interest and importance
are static and unchanging for lengthy periods of time. An
analyst looking at a video stream with a mix of the moving
and static objects would find it difficult to focus solely on the
important static object. The method presented here isolates and
highlights all object textures within a scene, static or dynamic,
and extracts key information about each individual objects.
Later, the detected objects can be filtered depending on the
type, size, motion and other characteristics of the object the
analyst is looking for.



II. PROPOSED METHOD

The method set out here is revolutionary and novel in its
approach to the moving camera problem. The novelty that is
presented here is that it detects all objects in a scene. All
existing techniques assume that foreground objects of interest
must be moving or changing in some way and can only
detect such objects. This method allows both moving and static
(unchanging) objects to be detected. This is a significant step
forward, paving the way for detections of small minor objects
as well as the large moving parts of a scene. Also, the method
doesnt make any prior assumptions about the scene, and is a
wholly data driven approach. The latter statement is critical,
what other techniques dismiss as noise or unimportant, this
technique extracts and highlights it as an object texture. The
point being, information is lost if something is dismissed at the
detection phase which could be filtered at a later stage. Key
objects or people can easily disappear into the background if
the detection algorithm dismisses small or noise-like novelties
early on. This can later be filtered out based on the object
parameters the analyst is looking for (type, size, motion,
texture etc. of the detected object).

Figure 1 illustrates the components of the proposed method:

Fig. 1: Edge flow components, and in green, the output at each
component stage

1) Windowed Background Subtraction: The first component
of edge flow utilizes a novel approach to existing background
subtraction algorithms by using a non-thresholded, windowed
approach that yields grayscale edge definitions between n
frames. In this case, we define window as n consecutive frames
that are used in generating the background subtraction output.
The background subtraction algorithm used in this work is
a modified implementation of Recursive Density Estimation
(RDE) [7]. The original equation for density calculation in
this work can be seen in equation 1, with the recursive update
formulas in 2 and 3. Finally the thresholding method which
is usually used with RDE is shown in equations 4 and 5. The
equations are obtained from [8].

(1)

(2)

(3)

(4)

(5)

In the Edge Flow implementation of RDE, the threshold
calculation is removed from the algorithm. The purpose of
this is that we now see density change detections across the
entire scene, not just when the density reaches a threshold.
The motivation behind this is that the density of a particular
pixel changes over time depending on the movement of a
texture object between consecutive frames. The leading edge
of the texture object that is moving will yield a sharp density
change because the edge indicates a contrast change, and as
this moves over a different texture object the distance in colour
space between the moving texture and the texture object being
overlapped is significant. In subsequent frames, the leading
edge will have a sharp density change, because it is always at
the point of significant change; the pixels where the leading
edge was in the previous frame will have a reduced density
change but still important. This reduced density is due to
the body of the moving object texture now being in-place of
the leading edge. Thus over 3 frames the mean colour of the
pixel is 1/3 original, 2/3 moving object texture. Over four
or five frames there is a gradual density change up to the
leading edge of the object texture (current frame), and then
a sharp drop to the original texture not being overlapped. If
the densities were allowed to build up over an infinite number
of frames, eventually the entire scene will average out to a
small range of densities and given long enough to a single
density across the scene. This is where the requirement for a
windowed approach is needed, whereby the contribution to the
density from n frames ago is removed. This ensures that edges
within the scene are consistently represented with a gradient
of densities and a limited averaging of the densities (in a very
cluttered scene with many object textures, it is , unavoidable to
have some density overlap). The modifications to the standard
RDE has the effect of this is that each edge that is moving



Fig. 2: RDE applied to moving camera to define object texture
edges

relative to the camera platform will be detected. Thus in
a moving camera scenario all edges in the scene will be
detected (apart from those which are precisely in synchronous
movement with the camera). To avoid any edges being missed
(ones that are synchronous with the camera movement), the
camera should move in an asynchronous manner. In summary
the two modifications to the original implementation of RDE:

1) 1. Removal of the threshold applied to densities. This
yields the densities across the entire scene as opposed to
just high density detections. This is important in order
to show edge gradients, and thus the edge flow over
consecutive frames.

2) 2. Windowed recursive density estimation over n frames.
Equation 5 and 6 show the updated versions of the re-
cursive functions (2 and 3) to accommodate the window
function.

(6)

(7)

Figure 2 illustrates the effect of applying Windowed RDE
with no threshold to a moving camera scenario.

2) Gradient Estimator: The second component of Edge
Flow is to isolate the magnitudes of the gradients of each edge
detected in the previous stage. The direction and relative speed
can be associated with the edge gradients a sharper gradient
indicates a higher relative speed, with the sharper gradient
being the leading edge of the object texture. To establish the
gradients of each edge, a Sobel operator is applied to the
resultant edges in both the x and y plane. Figure 3 shows
the different Sobel operators applied to the frames. The size
of the Sobel operator (illustrated is a 3x3) determines the
area of surrounding pixels that influence the gradient value
of the current pixel. A small Sobel operator only looks at the
immediate surrounding area of a pixel, thus the output is more
sensitive to large local changes in pixel value. A large Sobel
operator (say 7x7), on the other hand, smooths the influence
of large local changes and takes into account the wider area

Fig. 3: X and Y Sobel filters

Fig. 4: Left, gradient values assigned for and x-plane Sobel
filter. Right, gradient values assigned based on a y-plane Sobel
filter

around the pixel. Given that we are interested in detecting the
large local changes a small Sobel operator (3x3 or 5x5) is
appropriate for the edge gradient detection.

The Sobel filters are applied separately to the frame in
question, and each filter yields a separate output. The x filter
applied to the frame applies a gradient value to the pixel
based on changes in the x-plane; changes in pixel value going
horizontally across the image. If there is a positive gradient,
this indicates a gradient going from low values to high values,
and similarly a negative value indicates a gradient going from
high values to low values. In the case of this application,
because non-edges of object textures (background) are defined
as white and edges of object detections are a gray value
between white and black, positive gradients indicate transition
from a leading edge of an object texture and negative gradient
values indicate transition towards a leading edge of an object
texture. The y filter does the same except it applies the gradient
value based on changes in the y-plane; changes in the pixel
value going vertically across the image. Figure 4 illustrates
how the gradient values are assigned.

The Sobel filters, in both cases, are applied from top-left
to bottom right. Thus the first encountered edge of a texture
object will always be negative, and the final edge of the
texture object will be positive. The absolute value of the Sobel
filter output indicates the magnitude of the gradient at the
pixel a large value (positive or negative) indicates a large
change which typically indicates the leading edge of a texture
object. A smaller value typically indicates the historical path
of the leading edge of the texture object. The approach is
novel through combining the first two components, and the
processing speed surpasses any available algorithm for novelty
detection in a moving camera scene. The processing of a
640x480 video frame is done at a real-time speed of 40 frames
per second (25ms per frame) on a Windows based PC1.

3) Contiguous Clustering: At this stage we have two out-
puts from our initial frame input the x-plane and y-plane Sobel
filter gradients for each of the edges in the scene. In order
to revert back to a single output, and extract texture objects



Fig. 5: Result of a Sobel filter in the y-plane applied to RDE
image. The gradient values have been coloured for visual effect
blue indicates large gradient changes, whilst green is a smaller
gradient value. Yellow indicates areas of no edge gradients
(and therefore no edges the texture of an object).

from the scene, a third component of Edge Flow needs to
be applied. This stage applies a custom form of clustering,
dubbed Contiguous Clustering; we group each contiguous
edge defined by a gradient together. This form of clustering is
robust and combined with the first two components is resistant
to occlusion. Should an object texture be occluded partially by
another object texture, they will remain separate clusters unless
the object is completely occluded. Further, once the occluding
object has moved on, the cluster will reform the same as before
defining the texture object. The approach is made faster by not
needing to process every pixel within the frame only those
that have a gradient assigned to them (the body of a texture
object wont have a gradient its not an edge). The process for
this clustering method is as follows:

1) Working from the top left of each image (x-plane and y-
plane Sobel images) find the first pixel with a non-zero
gradient value.

2) Create a new cluster on this pixel, and give the cluster
an area of influence of 1 pixel either side of the
pixel. The area of influence is the region the cluster
considers contiguous for new candidate pixels. The area
of influence also applies to the other Sobel image i.e.
even if in the pixel is not a detection in the other Sobel
image, assess the surrounding area in the same way this
will permit the combination of both images into one set
of clusters on the original frame image.

3) Assess the surrounding pixels within the area of influ-
ence of the pixel (except for image edges) for pixels (or
clusters where this pixel overlaps an existing cluster area
of influence) within the same gradient range. The gra-
dient range is a pre-defined parameter on initialization
(currently not autonomously defined).

a) If this pixel is within the gradient range of a cluster,
and it is within its area of influence, add to a
cluster.

b) Otherwise, if not the first pixel being assessed,
create a new cluster, and if a neighbouring pixel is
within the gradient range, and is contiguous (within
the area of influence), add to the newly created
cluster.

c) If there are no neighbouring pixels within its gra-
dient range, dont remove the cluster, and leave as

Fig. 6: Pixels in a cluster, and the clusters area of influence.

a singleton. It is either a very small texture object
(a mole hill in a field for example), or it will be
absorbed by another cluster as its area of influence
expands.

4) Adjust the area of influence of the clusters that were
affected by 3. See Figure 6 for an illustration.

a) The minimum x and y influence is the lowest pixel
coordinates that is a member of the cluster, minus
one in both directions.

b) The maximum x and y influence is the highest pixel
coordinates that is a member of the cluster, plus
one in both directions.

c) Update the mean gradient value of the cluster this
will be used for assessing the proximity of new
pixels to the gradient value of each cluster.

5) Flag any pixels that were assigned to a cluster to avoid
re-clustering these pixels.

6) Find next pixel with a non-zero gradient and repeat
steps 3 to 5 until all non-zero gradient pixels have
been assigned from both images. It is not important
which Sobel image is processed first (as there will be
crossovers from the images anyway).

Currently the approach is parametric, requiring a magni-
tude range which defines the similarity of candidate pixel
gradients required to be clustered together. There is scope
to autonomously define a gradient magnitude range in future
improvement works. Through this method each similar and
proximate edge are clustered together, resulting in a contigu-
ous object being defined for each different texture (object with
edges); an object is defined as an area of similar texture, not
as an isolated object in the truest sense. For example, a car
may be defined as 3 separate objects in edge flow the bonnet
which is of a particular texture, the roof which is a different
texture, and the boot which is the same texture as the bonnet
but separated by the roof. The main novelties of this approach
are it works well with partially occluded object textures and
keeps them separate until completely occluded, it rediscovers
the object textures post-occlusion, static and moving object
textures are clearly separable, and the processing speed com-
bined with the first two components of edge flow remains
real time; between 25 40 frames per second depending on
the number of object textures discovered in a scene. This
is significantly faster than other routines, and still permits



Fig. 7: Clustered contiguous gradients

some head room for additional processing. An example of
the occlusion discrimination capabilities; if a car drives over
a crack in the road (both of which have been clustered and
identified) the clusters will remain entirely separate unless
the car completely occludes the road crack. Once the crack
appears the other side of the car it is immediately re-discovered
and clustered as a separate object texture. Figure 7 shows the
outputted clusters from a car and bike video scene, clearly
showing static and moving object textures being detected with
excellent discrimination between object textures

4) Optical Flow: The component that is optical flow is
an additional process to extract further information about
the texture objects that were detected. This allows further
detail about the object that they belong to. The optical flow
algorithm is not applied to the entire image because this is
computationally resource heavy and defeats the purpose of
Edge Flow. Five pixels are selected within each cluster, one
from the centre and four from the edges of the cluster. Optical
flow [4] is then applied to these individual points which yields
a flow vector for each of the individual points within a texture
object. By taking the mean flow vector from each texture
object we can determine the similarity of movement between
texture objects. If the flow vectors are similar, and the texture
objects overlap in x-y proximity in both frames (two frames
required for optical flow), the texture objects can be considered
are actually belonging to the same object. As shown in Figure
8, the concept holds true in the case of texture object occlusion
as discussed in the clustering component. The case of the car
and the crack in the road the car texture objects will have
a different motion vector to the crack in the road, so despite
visually occluding the crack somewhat, they can be considered
as wholly separate objects and will not merge as the same
object (unless one is completely occluded).

Optical flow is not essential to the detection technique, the
texture objects are detected prior to the application of optical
flow. It is used as a method to define contiguous texture
objects and form the real object. Optical flow is made tractable
compared to the sole use of it in video processing by limiting
the points tracked to five per texture object, usually resulting
in one or two thousand points in total. This is significantly
reduced from over 300,000 pixels required if optical flow
was applied directly to the source image. The novelty of this
component is that a motion vector can be extracted from each
object within a scene in real-time. Furthermore, objects which
are moving in separate directions can be clearly seperated
despite any occlusion in the scene. The motion vector is a

Fig. 8: Two separate scenarios for texture objects with optical
flow calculated for each of the 5 pixels within them.

Fig. 9: Result of optical flow applied to clusters

representation of the relative velocity of an object compared
to the camera platform; later, given the platform velocity, this
can be used to determine the absolute velocity of all the
objects within a scene. With the inclusion of optical flow
in the method, the average processing time remains around
20 frames per second (50ms per frame) for a 640x480 video
stream. As with the clustering technique the processing time
changes slightly dependent on how many objects are detected.

III. EXPERIMENTAL RESULTS

A series of experiments were conducted on the proposed
algorithm to test its performance. The tests are performed in
this paper are split into sections due to the novel capabilities
of the proposed approach; the objective is to demonstrate the
capabilities with reference to other techniques. The following
performance characteristics are tested in individual experi-
ments:

• Dynamic and static object detection in a moving scene
• Occlusion Resistance
• Frame processing rate
• False detection tolerance and filtration
The experiments use a selection of videos to demonstrate the

capabilities across different scenarios testing differing camera
motions, object motions, and object dimensions. The video
descriptions and parameters:

1) Video 1: Helicopter video sequence featuring a police
chase with two moving objects, a car and motorcycle.
The scene is simple open terrain with roads, verges, a
bridge and occasional road side objects. The purpose is



to represent one of the simplest scenarios with a low
density of objects to clearly show important detections.
Resolution: 640 x 360. Pixel count: 230,400 Frame rate:
29 frames per second

2) Video 2: Dashboard mounted camera which has multiple
moving objects that are occasionally occluded. Resolu-
tion: 848 x 480. Pixel count: 407,040 Frame rate: 30
frame per second

3) Video 3: High density video of a drone launch with
multiple textures and moving objects. Resolution: 1920
x 1020. Pixel count: 2,073,600 Frame rate: 30 frames
per second

The test setup uses the Windows based PC1 and the algo-
rithm is run as a release version from Microsoft Visual Studio
2010. Set parameters of edge flow were used for the testing of
experiments A and B. Experiment C is such that the parameters
are adjusted to provide different filtration parameters.

• Gradient range that is considered too minor for an edge
(filtering minor oscillations in the texture gradient): +/-
20.

• Gradient range required to match a contiguous edge: +/-
20.

• RDE frame window size: 3.

A. Video 1 - Helicopter, translational motion

This experiment explores the capability to detect a variety of
objects in a simple, uncluttered scene, both static and dynamic.
The objective is to contrast the results of edge flow on the
same scene as motion estimation, and explore the differences.
The scene used in this experiment is shown in Figure 10. This
scene is specifically used because not only is there two moving
objects there are the occasional stationary object on the verge
(white objects), some road markings, and some damage to said
road.

In Figure 11, the motion estimation result clearly identifies
two objects the motorbike and car which are the two moving
objects within this scene. Edge flow however detects a signif-
icant number more objects, namely the static white objects on
the right of the road, the road defects, road markings and the
road verge. The empirical results for this run are shown in

Fig. 10: Scene from video 1 to demonstrate performance of
edge flow

IV. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.



Fig. 11: Motion estimation result from scene (left) Edge flow result from scene (right). Red boxes are included on edge flow
to highlight detections more clearly


