From crystalline to amorphous Ca-pyrophosphates: a solid state NMR perspective

P. Gras, A. Baker, C. Combes, C. Rey, S. Sarda, A. J. Wright, M. E. Smith, J. V. Hanna, C. Gervais, D. Laurencin and C. Bonhomme

Supplementary information

Content	Page
XRD powder patterns of the different hydrated calcium pyrophosphate phases synthesized in this work (Figure S1).	S2
Details on the ⁴³ Ca NMR experimental parameters (Table S1).	S3
³¹ P MAS NMR spectra of t-CPPD, m-CPPD, m-CPPT β , m-CPPM and a-CPP, together with their simulation (Figure S2). Exact MAS rotation frequencies are indicated for each experiment.	S4
Evolution of the a-CPP phase after over 4 years of storage at room temperature, as shown by ³¹ P MAS NMR (Figure S3).	S9
³¹ P MAS NMR spectra of a-CPP phases: samples A and B (Figure S4). See section 2.1 for the synthesis of A and B.	S10
⁴³ Ca MAS NMR spectra of t-CPPD, m-CPPD, m-CPPT β and m-CPPM, together with their simulation (Figure S5).	S11
Calculated ⁴³ Ca isotropic chemical shifts for m-CPPD, t-CPPD and m-CPPT β , and corresponding average CaO distances for each phase (Table S2).	S13
Natural abundance 43 Ca MAS NMR spectra of a-CPP phases corresponding to two synthetic procedures (samples A and B – see section 2.1) (Figure S6).	S14
Natural abundance ⁴³ Ca MAS NMR spectra of a-CPP corresponding to sample B (see section 2.1), before and after different heat-treatments (at 140 °C and 220 °C) (Figure S7).	S14
Calculated ¹ H δ_{iso} for m-CPPD, t-CPPD and m-CPPT β (Table S3).	S15
References	S15

Figure S1. XRD powder patterns of the different hydrated calcium pyrophosphate phases synthesized in this work.

Table S1. ⁴³Ca MAS experimental parameters for m-CPPT β , t-CPPD, m-CPPD, m-CPPM and amorphous samples (a-CPP) at variable temperature (D1: recycle delay, NS: number of scans).

Sample	Magnetic Field (probe)	D1	NS	Total experimental time	
	C	Crystalline phases			
t-CPPD	850 MHz	1 s	50000	~ 14 h	
	(7 mm) 600 MHz (7.5 mm)	1 s	144500	~ 41 h	
m-CPPD	850 MHz	1 s	20350	~ 6 h	
	(7 mm)	10	20000	0 11	
	600 MHz	1 s	143300	~ 41 h	
	(7.5 mm)				
m-CPPT ß	850 MHz	1 s	15550	~ 4 5 h	
m-crrrp	(7 mm)	1.5	15550	1.5 11	
	600 MHz	2 s	37200	~ 21 h	
	(9.5 mm)				
m-CPPM	850 MHz	1 s	78800	~22 h	
	(7 mm)				
	600 MHz	1 s	241300	~ 68.5 h	
	(7.5 mm)				
	^	marnhaus nhasas			
a-CPP	850 MHz	0.5 s	70900	~ 10 h	
sample B	(7 mm)	0.5 5	70900	10 11	
sumple D	600 MHz	0.5 s	320000	~ 48 h	
	(7.5 mm)	0.0 5	220000		
a-CPP	850 MHz	0.5 s	38000	~ 5.5 h	
sample A	(7 mm)				
a-CPP _{140°}	850 MHz	0.5 s	69000	~ 10 h	
sample B	(7 mm)				
(heated at 140°C)					
a-CPP _{220°}	850 MHz	0.5 s	97600	~ 13.5 h	
sample B	(7 mm)				
(heated at 220°C)	(0 C				
	600 MHz	0.5 s	320000	~ 48 h	
	(7.5 mm)				

Figure S2: ³¹P MAS NMR spectra (decoupled from ¹H during the acquisition time) of t-CPPD, m-CPPD, m-CPPT β , m-CPPM and a-CPP (14.1 T, 242.81 MHz, spinal 64 ¹H decoupling, relaxation delay: 128 s, number of scans: 4, regulation of the temperature: 10°C). MAS rotation frequency v_r : specified for each sample. Experimental spectra are in black; simulated spectra are in red.¹ The extracted CSA parameters are given in the table below each spectrum. The definitions of δ_{CSA} and η_{CSA} are given in the experimental section. The notations P1 and P2 are compatible with those used in Table 1. In the case of a-CPP, the minor component at $\delta_{iso} \sim 0$ ppm is assigned to orthophosphate species (see main text).

m-CPPD	δ _{iso} (ppm)	δ _{CSA} (ppm)	η _{csa}	v _r (Hz)
P1	-5.90	72.5	0.41	2921
P2	-9.70	82.6	0.34	2921

m-CPPT β	δ _{iso} (ppm)	δ _{CSA} (ppm)	η _{csa}	v _r (Hz)
P1	-9.31	84.5	0.21	2858
P2	-7.33	71.6	0.41	2858

m-CPPM	δ _{iso} (ppm)	δ _{CSA} (ppm)	η _{csa}	v _r (Hz)
P1	-11.27	64.0	0.80	2877
P2	-7.34	85.7	0.48	2877

a-CPP	δ _{iso} (ppm)	δ _{CSA} (ppm)	η _{CSA}	v _r (Hz)
Р	-6.7	78.2	0.80	4984

Figure S3: Evolution of the a-CPP phase after over 4 years of storage at room temperature, as shown by ³¹P MAS NMR (experiments performed at 14.1 T, with a rotation frequency of 16 kHz).

Figure S4: ³¹P MAS NMR spectra of a-CPP phases corresponding to two synthetic procedures (samples A and B – see section 2.1 in the main text) at 14.1 T. MAS rotation frequency: 16 kHz.

Figure S5: ⁴³Ca MAS NMR spectra of t-CPPD, m-CPPD, m-CPPT β and m-CPPM at 20.0 T $[v_0(^{43}Ca) = 57.22 \text{ MHz}]$ and 14.1 T $[v_0(^{43}Ca) = 40.37 \text{ MHz}]$. The relaxation delay and number of scans for each sample are given in Table S1. MAS rotation frequency: 4 to 6 kHz. Experimental spectra are in black, the simulation1 of the Ca sites is in blue (in agreement with the presence of 2 inequivalent Ca atoms in the asymmetric unit), and the sum of the contributions is shown as a dashed red line. The extracted quadrupolar parameters are given in an insert for each sample. The definitions of C_Q and η_Q are given in the experimental section. The notations Ca1 and Ca2 are compatible with those used in Table 2. For m-CPPM, only the data at 20.0 T was simulated due to the high level of noise in the data recorded at 14.1 T (this means that the accuracy of the ⁴³Ca NMR parameters for this phase is lower, especially for the Ca(2) site).

a/ t-CPPD

b/ m-CPPD

c/ m-CPPT β

d/m-CPPM

Table S2: Calculated ⁴³Ca δ_{iso} for m-CPPD, t-CPPD and m-CPPT β and corresponding average distance calculated taking into account the oxygen atoms situated at distances ≤ 2.7 Å.

		δ_{iso}	d(CaO)	Coordination	Number of H ₂ O
		(ppm)		number	in the
			(Å)		coordination
		calc			Sphere
m-CPPD	Cal	14.9	2.405	6	1
Rel H	Ca2	17.6	2.414	7	1
t-CPPD	Cal	13.8	2.453	7	1
Rel H	Ca2	12.0	2.443	7	2
m-CPPT β	Cal	11.9	2.431	7	1
Rel H	Ca2	11.4	2.422	7	3
m-CPPM	Cal	15.2	2.443	7	1
Rel tot	Ca2	5.3	2.426	6	1
α -Ca ₂ P ₂ O ₇	Cal	-22.1	2.470	6	0
	Ca2	6.4	2.496	8	0

Figure S6: Natural abundance ⁴³Ca MAS NMR spectra of a-CPP phases corresponding to two synthetic procedures (samples A and B – see section 2.1) at 20.0 T $(v_0(^{43}Ca) = 57.22 \text{ MHz})$. MAS rotation frequency: 5 kHz. For the relaxation delay and number of scans used for each sample, see Table S1.

Figure S7: Natural abundance ⁴³Ca MAS NMR spectra of a-CPP corresponding to sample B (see section 2.1), before (RT) and after different heat-treatments (at 140 °C and 220 °C). Spectra recorded at 20.0 T [$v_0(^{43}Ca) = 57.22$ MHz] and at 14.1 T [$v_0(^{43}Ca) = 40.37$ MHz]. For the relaxation delay and number of scans, see Table S1. MAS rotation frequency: 5 kHz. For T = 140 °C, a unique spectrum at 20.0 T was recorded.

Table S3: Calculated ¹H δ_{iso} for m-CPPD, t-CPPD and m-CPPT β and m-CPPM. All calculations were performed starting from H relaxed structures (Rel H), except for m-CPPM, for which a fully relaxed structural model was used.

		$\delta_{iso}(ppm)$
		Calc
m-CPPD	H1	4.26
Rel H	H2	3.05
	H3	8.32
	H4	3.95
t-CPPD	H1	5.10
Rel H	H2	4.89
	H3	5.85
	H4	4.74
m-CPPT β	H1	5.17
Rel H	H2	2.85
	H3	6.27
	H4	4.31
	H5	5.78
	H6	2.58
	H7	4.33
	H8	7.93
m-CPPM	H1	4.03
Rel tot	H2	7.41

¹ Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 2002;20:70-6.