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Graphene-based Josephson junctions have attracted significant interest as a novel system to study 
the proximity effect1-3 due to graphene’s unique electronic spectrum and the possibility to tune 
junction properties by gate voltage4-16. Here we describe graphene junctions with the mean free 
path of several micrometers, low contact resistance and large supercurrents. Such devices exhibit 
pronounced Fabry-Pérot oscillations not only in the normal-state resistance but also in the critical 
current. The proximity effect is mostly suppressed in magnetic fields of <10 mT, showing the 
conventional Fraunhofer pattern. Unexpectedly, some proximity survives even in fields higher 
than 1 T. Superconducting states randomly appear and disappear as a function of field and carrier 
concentration, and each of them exhibits a supercurrent carrying capacity close to the universal 
limit17,18 of e∆/h where ∆ is the superconducting gap, e the electron charge and h Planck’s 
constant. We attribute the high-field Josephson effect to mesoscopic Andreev states that persist 
near graphene edges. Our work reveals new proximity regimes that can be controlled by quantum 
confinement and cyclotron motion.  

The superconducting proximity effect relies on penetration of Cooper pairs from a superconductor 
(S) into a normal metal (N) and is most pronounced in systems with transparent SN interfaces and 
weak scattering so that superconducting correlations penetrate deep inside the normal metal. 
Despite being one atom thick and having a low density of states, which vanishes at the Dirac point, 
graphene (G) can exhibit low contact resistance and ballistic transport on a micrometer scale19,20 
exceeding a distance between superconducting leads by an order of magnitude. These properties 
combined with the possibility to electrostatically control the carrier density n offer tunable 
Josephson junctions in a regime that can be referred to as ballistic proximity superconductivity21. 
Despite intense interest in SGS devices3-16 that can show features qualitatively different from the 
conventional SNS behavior2,3, ballistic graphene Josephson junctions15,16 remain little studied.  

Our SGS devices are schematically shown in Fig. 1 and described in further detail in Supplementary 
Section 1. The essential technological difference from the previously studied SGS junctions4-14 is the 
use of graphene encapsulated between boron-nitride crystals19,20 as well as a new nanostrip 
geometry of the contacts. This allows high carrier mobility, low charge inhomogeneity and low 
contact resistance. More than twenty SGS junctions with the width W between 3 and 8 μm and the 
length L between 0.15 and 2.5 μm were studied, all exhibiting a finite supercurrent at low 
temperatures (T), reproducible behaviour and consistent changes with L and W. First, we 
characterize the devices above the transition temperature TC ≈ 7 K of our superconducting contacts. 
Fig. 1b shows examples of the normal-state resistance Rn as a function of back gate voltage Vg that 
changes n in graphene. The neutrality point (NP) was found shifted to negative Vg by a few V, with 
the shift being consistently larger for shorter devices (Supplementary Information). This is due to 
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electron doping induced by our Nb contacts. For ballistic graphene, such doping is uniform away 
from the metal interface22. The observed smearing of Rn(Vg) curves near the NP allows an estimate 
for charge inhomogeneity in the graphene bulk as ≈ 2×1010 cm-2. For consistency, data for devices 
with different L are presented as a function of ∆Vg, the gate voltage counted from the NP.  

For positive ΔVg (electron doping) and n > 1011 cm-2, SGS junctions made from the same graphene 
crystal and having the same W exhibit the same Rn(ΔVg) dependence, independently of L (Fig. 1b). 
This shows that mean free path is larger than the contact separation and yields carrier mobility > 
300,000 cm2 V-1 s-1, in agreement with the quality measured for similarly made Hall bar devices. The 
dashed curve in Fig. 1b indicates the behavior expected in the quantum ballistic limit, RQ = (h/e2)/4N 
where N =int(2W/λF) is the number of propagating electron modes, λF the Fermi wavelength that 
depends on n(∆Vg) and the factor 4 corresponds to graphene’s degeneracy. The difference between 
RQ and the experimental curves yields a record low contact resistivity, ≈ 35 Ohm µm. This value 
corresponds to an angle-averaged transmission probability Tr ≈ 0.8 (Supplementary Section 2).  

 
Figure 1| Ballistic SGS junctions. a, Top: Junctions’ schematics. Bottom: Electron micrograph of a set 
of four junctions with different L. A few nm-wide graphene ledge (top drawing) is referred to as a 
nanostrip contact. b, Typical behavior for SGS junctions with different L but for the same set of 
junctions with W = 5 µm. To avoid an obscuring overlap between four oscillating curves, we plot Rn 
at negative ∆Vg only for the two shortest junctions. For positive ∆Vg > 5 V, the four curves overlap 
within the line width. The dashed curve shows calculated RQ(n). Inset: Changes in the differential 
conductance dI/dV; L =0.25 µm. Color scale: -1 to 1 mS.   

For hole doping, Rn becomes significantly higher indicating smaller Tr. This is because pn junctions 
appear at the Nb contacts and lead to partial reflection of electron waves, which effectively creates a 
Fabry-Pérot (FP) cavity5,23. The standing waves lead to pronounced oscillations in Rn as a function of 
both Vg and applied bias Vb (Fig. 1b). The oscillatory behavior indicates that charge carriers can cross 
the graphene strip several times preserving their monochromaticity and coherence. Some FP 
oscillations could also be discerned for positive ∆Vg but they were much weaker because of higher 
Tr. The observed FP behavior in the normal state agrees with the earlier reports5,23. Its details can be 
modelled accurately if we take into account that the position of pn junctions varies with Vg so that 
the effective length of the FP interferometer becomes notably shorter than L at low hole doping 
(Supplementary Section 3). 
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After characterizing our SGS devices at T > TC, we turn to their superconducting behavior. All of the 
junctions (including L = 2.5 µm) exhibited the fully developed proximity effect. Figures 2a,b show 
that the critical current Ic remained finite at the NP and rapidly increased with |∆Vg|, reaching 
densities > 5 µA/µm for high electron doping and short L, notably larger than Ic previously reported4-

16. Such high Ic are due to ballistic transport and low contact resistance. Indeed, Ic can theoretically 
reach a value2,24 

Ic = α∆/eRn              (1) 

with α ≈2.1. Because in our devices Rn ≈ RQ = h/4Ne2, the equation implies that we approach the 
quantum limit Ic ≈ (e∆/h)4N where the supercurrent is determined solely by the number of 
propagating electronic modes that transfer Cooper pairs between superconducting contacts, and 
each of the modes has the supercurrent carrying capacity3,17 IQ ≈ e∆/h. 

 

Figure 2| Quantum oscillations in supercurrent. a, Examples of I-V characteristics for ballistic SGS 
junctions in the superconducting state. The data are for the device in Fig. 1 with L = 0.25 µm. The 
arrows explain notions Ic and Ie. b, Absolute voltage drop |Vb| across the SGS junction in (a) for a 
wide range of doping. The black region corresponds to the zero-resistance state, and its edge 
exhibits clear FP oscillations. c, IcRn and IeRn for a device with L = 0.3 µm, W = 6.5 µm and ∆ ≈ 0.8 
meV estimated from its TC. Each data point is extracted from a trace such as in (a). Inset: Oscillatory 
part of IcRn is magnified. Similar behavior was observed for other devices. d, Effect of the junction 
length on supercurrent for 12 devices with different W. Red symbols - W = 3 µm; blue - 5 µm; green - 
6.5 µm. For each data set, Ic follows the same dependence as IcRn because Rn were practically 
independent of L for the same W. For the two longest devices in (d), the critical current falls below 
the plotted 1/L dependence, probably because of thermal fluctuations (Supplementary Section 4).  
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Equation (1) suggests that IcRn should be a constant. This holds well in our SGS devices away from 
the NP (Fig. 2c) and indicates that, at low T, external noise, fluctuations and other mechanisms4-16 
which are dependent on n or Rn do not limit Ic. However, Fig. 2c yields α that is notably smaller than 
the expected constant in eq. (1). For hole doping, this can be attributed to the presence of pn 
junctions at the superconducting interfaces but even for electron doping and high Tr we find α ≈ 0.4 
(Fig. 2c). Furthermore, we measured the excess current Ie > Ic as shown in Fig. 2a and found that, in 
the case of Ie, α also does not reach a value close to 2.1 (Fig. 2c). This corresponds to the fact that all 
our devices were in the limit of long L > ∆/hvF (vF is the Femi velocity), as also follows from the 1/L 
dependence found for IcRn (Fig. 2d). In this long-junction regime, the critical current is given by Ic  ≈ 
ETh/eRn being determined by the Thouless energy ETh rather than the superconducting gap2,17,24. For a 
ballistic system, ETh depends on time charge carriers spent inside the FP cavity and can be 
estimated25 as ∼ hvF/L. This yields Ic  ∝ 1/L and IcRn ∝ 1/L because Rn is independent of ballistic 
device’s length. Our detailed studies of Ic as a function of T and L show that all data for IcRn/ETh 
collapse on a universal curve f(T/ETh) with ETh ∼ hvF/L, which again agrees well with expectations for 
the long-junction limit (Supplementary Section 4). We estimate that to reach the transition regime 
ETh/∆ ∼ 1 for our SGS junctions would require L < 100 nm. Let us also mention that no definitive signs 
of specular Andreev reflection3,17 were found in our devices (Supplementary Section 4).  

As a consequence of FP resonances in the normal state (Fig. 1), the supercurrent also exhibits 
quantum oscillations that are clearly seen in Fig. 2b for hole doping. Eq. (1) implies that such 
oscillations in Ic should occur simply because Rn oscillates. Indeed, Rn and Ic are found to oscillate in 
antiphase, compensating each other in the final products Ic,eRn. However, we find that oscillations in 
the critical current are approximately 3 times stronger than those in Rn. This observation is 
consistent with the fact that Ic is not only inverse proportional to Rn but also depends on the 
Thouless energy as discussed above whereas the latter is expected to oscillate because of the 
oscillating transparency of FP resonators (Supplementary Section 4).  
In magnetic field B, our ballistic junctions exhibit further striking departures from the conventional 
behavior (Fig. 3). In small B such that a few flux quanta φ0 = h/2e enter an SGS junction, we observe 
the standard Fraunhofer dependence2  

Ic = Ic(B =0)|sin(πΦ/φ0)/(πΦ/φ0)|    (2) 

where Φ = L×W ×B is the flux through the junction area. Marked deviations from eq. (2) occur in B > 
5 mT (Fig. 3a). Figures 3b-e show that, in this regime, the supercurrent no longer follows the 
oscillatory Fraunhofer pattern but pockets of proximity superconductivity can randomly appear as a 
function of n and B. At low doping, the pockets can be separated by extended regions of the normal 
state where no supercurrent could be detected with accuracy of a few nA << IQ (Figs. 3c,e). Within 
each pocket, I-V characteristics exhibit a gapped behavior (inset of Fig. 3d) with Ic ∼ IQ ≈ 40 nA, 
although the exact value depends on doping and Ic falls down to ≈ 10 nA close to the NP, possibly 
due to rising contributions of electrical noise and thermal fluctuations that suppress apparent Ic (Fig. 
3c). These proximity states persist until B as large as ≈1 T (Φ/φ0 ∼103) and are highly reproducible, 
although occasional flux jumps in Nb contacts can reset the proximity pattern (Supplementary 
Section 5). Correlation analysis presented in Supplementary Section 6 yields that, to suppress such 
superconducting states, it requires changes in Φ of ≈ φ0 and changes in the Fermi energy of ≈ 1 meV.   
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Figure 3| Fluctuating proximity superconductivity. a, Example of dV/dI as a function of applied 
current I and B. The purple regions correspond to the zero-resistance state and their edges mark Ic 
(see Supplementary Section 10). The map is symmetric in both I and B. The white curve is given by 
eq. (2). The low-B periodicity is ≈ 0.4 mT, smaller than expected from the device’s area, which is 
attributed to the Meissner screening that focuses the field into the junction30. b, Continuation of the 
map from (a) above 0.1 T. Intervals with finite Ic continue randomly appear, despite the Fraunhofer 
curve is indistinguishable from zero. c, Another high-B example but as a function of ∆Vg in 0.5 T. d, 
Examples of low-current resistance (I = 2 nA) in different B. The dashed curve for 0.5 T shows that 
current I = 150 nA > IQ completely suppresses superconductivity. The arrows mark the expected 
onset of edge state transport. e, Local map of fluctuating superconductivity. T ≈10 mK; all color 
scales are as in (c). Inset in (d): Typical I-V characteristics for high-B superconducting states. f-i, 
Electron-hole paths responsible for Andreev states in ballistic junctions in zero (f), intermediate (g,h) 
and high B (i). In (h), the cyclotron bending suppresses the transfer of Cooper pairs in the middle of 
the graphene strip but Andreev states can persist near the edges.   

The semiclassical description2,24-27 of  the superconducting proximity relates the Cooper pair transfer 
between the leads to electrons and Andreev-reflected holes, which travel along same trajectories 
but in opposite directions (Fig. 3f). In low B, interference between many Andreev states traversing 
the graphene strip results in the Fraunhofer-type oscillatory suppression of Ic described by Eq. (2) 
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(see Fig. 3a). Although not reported before, the Fraunhofer pattern in ballistic devices can be 
expected to break down in relatively small B because the cyclotron motion deflects electrons and 
holes in opposite directions so that they can no longer retrace each other (Fig. 3g). We have 
estimated the field required to suppress Andreev states in the bulk as B*∼ ∆/eLvF (Supplementary 
Section 7). For the devices in Fig. 3, this yields B* ≈5 mT, in agreement with the field where strong 
deviations from the Fraunhofer curve are observed.  

As for the random pockets of superconductivity at B >> B* which exhibit Ic much higher than that 
expected from Eq. (2), we invoke the previously noticed analogy18 between mesoscopic fluctuations 
in the normal-state conductance28, <δG2> and in the supercurrent17,18, <δIc

2>. Both types of 
fluctuations are due to interference of electron waves propagating along different paths but start 
and finish together. In contrast to the case of B =0, for which semiclassical phases of counter-
propagating electrons and holes near the Fermi level cancel each other because of time-reversal 
symmetry (Fig. 3f), electrons and holes propagating along non-retracing trajectories in a finite B 
acquire large and random phase differences (Figs. 3g,h). Averaging over all imaginable geometrical 
paths would lead to complete suppression of the supercurrent18. However, for each given realisation 
of either diffusive or chaotic ballistic SNS junction, the characteristic values of fluctuations are 
set17,18,28-30 at <δG2>1/2 ∼ e2/h and <δIc

2>1/2 ∼ e∆/h. In the case of B >> B*, non-retracing paths that can 
transfer Cooper pairs between superconducting contacts can occur only near graphene edges (see 
Fig. 3h and Supplementary Section 7). In a way, a combination of cyclotron motion and edge 
scattering provides a chaotic ballistic billiard near each graphene edge, and this leads to random 
pockets of superconductivity with Ic = <δIc

2>1/2 ∼ IQ. Moreover, the analogy with chaotic billiards 
allows us to estimate the change in the Fermi energy, which is needed to change a realization of the 
mesoscopic system and, therefore, suppress an existing pocket of superconductivity. The required 
change is again given by the Thouless energy ETh ∼ hvF/Λ where Λ is the typical length of Andreev 
paths in a strong magnetic field (Fig. 3h). At high B, we estimate Λ as ≈(rcL)1/2 where rc is the 
cyclotron radius. This yields ETh ≤ 1 meV, in agreement with the observed changes in doping which 
are required to suppress the pockets of superconducting proximity (Supplementary Section 6). An 
interference pattern in mesoscopic systems is also known18,28-30 to change upon changing the flux Φ 
through the system by ≈φ0. This scale agrees well with that observed experimentally (Fig. S8). 

Finally, the discussed mesoscopic proximity effect can be expected to disappear if rc becomes 
shorter than L/2 (Fig. 3i). This condition is marked in Fig. 3d and seen more clearly in the data of 
Supplementary Section 8. It is also worth noting that that the near-edge superconductivity was not 
observed for hole doping, which we attribute to the fact that Klein tunneling in graphene collimates 
trajectories perpendicular to the pn interface23, making it essentially impossible to form closed-loop 
Andreev states shown in Fig. 3h (Supplementary Section 7). In principle, the effect of near-edge 
Andreev states could be further enhanced by presence of extended electronic states at graphene 
edges16 but, based on our experimental data, no evidence for this or other spatial inhomogeneity 
was found in the studied samples (Supplementary Section 9). 

 

Methods 
The measurements were carried out in a helium-3 cryostat for T down to 0.3 K and in a dilution 
refrigerator, for lower T. All electrical connections to the sample passed through cold RC filters 
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(Aivon Therma) and additional ac filters were on the top of the cryostats. The differential resistance 
was measured in the quasi-four-terminal geometry (using 4 superconducting leads to an SGS 
junction) and in the current-driven configuration using an Aivon preamplifier and a lock-in amplifier. 
To probe the superconducting proximity, we used an excitation current of 2 nA.  
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