
 

 

 

  

Abstract—We introduce Cubimorph, a modular interactive 
device that accommodates touchscreens on each of the six 
module faces, and that uses a hinge-mounted turntable 
mechanism to self-reconfigure in the user’s hand. Cubimorph 
contributes toward the vision of programmable matter where 
interactive devices reconfigure in any shape that can be made 
out of a chain of cubes in order to fit a myriad of 
functionalities, e.g. a mobile phone shifting into a console when 
a user launches a game. We present a design rationale that 
exposes user requirements to consider when designing 
homogeneous modular interactive devices. We present our 
Cubimorph mechanical design, three prototypes demonstrating 
key aspects (turntable hinges, embedded touchscreens and 
miniaturization), and an adaptation of the probabilistic 
roadmap algorithm for the reconfiguration. 

I. INTRODUCTION 
We wish to create interactive devices capable of 

autonomously changing their shapes in order to create new 
affordances1 that help the user to interact. For instance, when 
launching a game, a phone reconfigures its edges to facilitate 
grasping with two hands (Fig. 1). There has been a growing 
interest toward achieving this goal in the Human Computer 
Interaction (HCI) community, but yet existing devices consist 
of folding displays and hardly reach high shape resolution 
[14][30]. On the other side, the robotics field has provided 
many elaborate robot designs especially self-reconfigurable 
modular ones that are know to be very versatile [23]. For 
instance Pixelbots [1] act as individual pixels to create a 
display, Roombots [35] form furniture that can adapt to the 
user activity, or Topobo [26] allows users to assemble kinetic 
toys. However if some works have started to consider 
interactive properties (e.g. Sifteo Cubes), there is still little 
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design care for devices requiring close interaction with 
people, for example reconfiguring directly in the user’s hand. 

Nevertheless, designing modular interactive devices is not 
trivial as existing designs, while serving specific purposes 
(e.g. locomotion or construction), conflict with usability 
purposes. For example, detachable modules work well on a 
large flat surface but not when the user is mobile [28][29]; 
most modules cannot accommodate interactive elements on 
all the faces due to placement of actuators [25][32]; 
algorithms used for reconfiguration unfold the device into a 
straight line before folding into a new shape [1][34], which is 
hardly practical from a user point of view. These examples 
only scratch the surface of problems encountered when 
adding the user to the equation. There is a real need for taking 
user experience into account when designing modular 
interactive devices because the user requirements 
dramatically change the way we tackle the design problem. 

Our paper addresses this need with a design rationale 
exposing user requirements for the design of homogeneous 
modular interactive devices. We use the literature to 
demonstrate the difficulty of the design problem, and 
especially that trivial or existing solutions to address some 
requirements tend to be in conflict with others. We then 
present Cubimorph, our first attempt to fit user requirements 
in reconfigurable homogeneous modular devices. Cubimorph 
consists of a chain of cubical modules linked together with a 
hinge-mounted turntable mechanism that repositions the 
hinge along the desired edge, thus allowing faces to be free 
and to contain a touchscreen. We present three proof-of-
concept prototypes that demonstrate key aspects of 
Cubimorph: (1) using two 7.6x7.6cm modules to demonstrate 
the turntable hinge mechanism; (2) another pair of 7.6x7.6cm 
modules to demonstrate how to embed OLED touchscreens 
in the modules faces; and (3) a 16-module 2x2cm design to 
show how Cubimorph could be miniaturized in a near future. 
We explain our reconfiguration algorithm, adapted from the 
probabilistic roadmap algorithm [18].1  

We believe that self-reconfigurable interactive device is a 
promising area. Cubimorph is a first exploration of our 
research agenda and certainly have limitations. But we hope 
our paper can lay down a research agenda where HCI, HRI 
and robotics researchers could benefit from their respective 
skills to enable the creation of high-fidelity end-user devices.  
 

1 The quality of an object to tell us how it wants to be used and how to use it 
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Figure 1.   Cubimorph is an interactive device made of a chain of reconfigurable modules that shape-shifts into any shape that can be made out 
of a chain of cubes, e.g. transforming from (a) a mobile phone to (b) a game console. Following our design rationale, we propose a mechanical 

design, (c) proof-of concept prototypes and an adaptation of the probabilistic roadmap algorithm for the reconfiguration.  



 

 

 

II. DESIGN RATIONALE 

Existing modular robots designs are demonstrably very 
versatile. But using them to create interactive devices proves 
to be a difficult task as some designs address certain issues 
but create new ones. In fact these robots are not designed 
with usability purposes in mind but rather locomotion or 
construction. For example Lund [22] highlighted that several 
factors in the implementation of user-configurable robots 
have consequences for the user-configurability of the system. 
Consider for example the following scenario inspired by 
work on shape changing interactive devices [27][30][39]: 

Shelly wants directions to a meeting location and 
launches the map application. The device shape-shifts into a 
surface-like shape. Shelly uses the seamless surface to pinch 
and zoom the map to visualize the location and the terrain 
that lies between. When she closes the map, the device shape-
shifts into a form that fits in her pocket. On the train, Shelly 
launches a game and the device shape-shifts in a console-like 
shape, curling its edges to facilitate grasping and popping up 
joysticks to ease the manipulation of the game characters. 

This scenario illustrates the type of functionalities that self-
reconfigurable interactive devices would offer to the users, 
and as one can observe, they involve a very close interaction 
with them. From this scenario, we derived requirements for 
creating modular handheld devices (see below). We then 
present an analysis of how existing modular designs address 
some of the requirements but violate others in order to better 
capture the complexity of the design task. 
A. User requirements 
R1. The device must be self-contained: Modules cannot fall 

off or be lost, and the device should reconfigure without 
the need for users to intervene2. 

R2. Modules must have free-faces: This allows embedding 
interactive elements like displays or touch sensors. 

R3. Modules must be dockable: Linked modules should 
create seamless interactive surfaces. This should also 
increase the device robustness (compact assembly).  

R4. Modules should have minimum two degrees of 
freedom: This allows the assembly to transform into any 
3D geometry3. The minimal requirement is that a module 
rotates around any edge linked to an adjacent module. 

R5. The device must be multistable: In between 
transformations, and possibly in absence of actuation 
power, the device should retain its shape and continue to 
provide interactive capabilities. 

R6. The transformation should be safe: It should not 
endanger the user during the reconfiguration through its 
motion and or by reconfiguring into an unwieldy shape. 

R7. The transformation should happen in a constrained-
space: The device may be held by the users or placed on 
a surface. The operating volume should be minimized. 

Some of these requirements have a mechanical aspect as 
they relate to the individual module shape and assembly 
behavior. In contrast, other requirements are related to the 
transformation. Next, we discuss how previous related work 
 
2 Modules could also find others, but this is impractical in a mobile context 
3 Diagonally linked squares/cubes can form any 2D/3D shapes by folding 
[7][11] 

has addressed these requirements. Note that existing designs 
have not been designed from a user experience point of view 
and will thus not fit most of the requirements. Those designs 
are nevertheless original and relevant to other scenarios that 
are not covered in this paper.   

B. Mechanical requirements (R1 to R5) 

R1 (self-contained): Robots with docking interfaces 
allows modules to attach or detach to other modules. For 
instance, Changible [29] use magnets and M-Blocks [28], 
Pebbles [11], Em-Cube [3], Claytronic [13] or Catoms [8] 
use electromagnets for docking. However, this actuation 
mechanism violates R1 and R5. Loss of power (due to 
battery drain) results in hinges breaking away. Other 
solutions involve mechanical docking. This is the case of 
Conro [6], Polybot [42] or MTRAN [17] whose modules can 
attach or detach from another one through a connection 
mechanism made of pins and holes. In contrast, CKBot [25] 
and Superbot [32] rely on permanently attached modules. 

R2 (free-faces): CKBot [25] and Superbot [32] offer two 
free faces that could fit interactive elements. Roombot [35] 
and Molecube [46], both rely on cubical modules that rotate 
along their diagonals. Their faces are used for docking. Thus 
only four faces are free among six. With Conro [6], Polybot 
[42], MTRAN [17], or ATRON [16], the usable area is 
reduced drastically by the hinge mechanism (clamps on each 
hemisphere sides). M-Blocks [28] uses inertial force 
actuation and thus allow free faces.  

R3 (dockable): Some designs involve spherical (ATRON 
[16]) or cylindrical modules (Claytronic [13], Catoms [8], 
Octabot [33]). Such geometry, even a lattice positioning of 
the modules, results in the gaps that prevent the creation of a 
seamless surface (R3). Some geometry lends to more 
efficient packing, which results in continuous planar 
surfaces, e.g. hexagonal modules [4]. This is the case of 
Fracta [24], Gear-Type-Unit [37] and Metamorphic [8]. 
Similarly, cubical modules can create seamless dockable 
surfaces well. This is the case of M-Blocks [28], Pebbles 
[11], Em-Cube [3], Roombot [35] and Molecube [46]. 

R4 (2DOF): Achieving minimum 2DOF can be done with 
a shaft between modules. Conro [6], Polybot [42], MTRAN 
[17] use this approach. The rotation requires a linkage 
between two modules centers, which need to pass through 
three of the module faces. It also requires the faces to be 
rounded for smooth rotations. A potential challenge is that 
the mechanisms should not protrude out of the modules as 
this might prevent them from achieving 2DOF, have free-
faces (R2) or being dockable (R3). An alternate approach is 
to move the rotation axis to the center of each module (on 
their diagonals) such as in Roombot [35] and Molecube [46]. 

R5 (multistable): If modules are only connected (at most) 
to two modules, the resulting shape may not be structurally 
sound as neighboring modules are not necessarily attached. A 
solution would be to use a latching mechanism such as in 
Conro [6], Polybot [42] or MTRAN [17], but it would 
prevent R2 (free-faces) except if the latching were done with 
magnets like in Claytronic [13] or Catoms [8].  Another 
solution could be to entangle units to create structural 
strength, but this solution might increase the complexity of 
the transformation algorithm to a great extent. 



 

 

 

C. Transformation requirements (R6, R7) 

R6 (safety): Existing algorithms can transform a chain into 
another while avoiding collisions with or without obstacles 
([21][41]). Obstacles could the user’s hand or the other users 
in proximity. In Yakey et al. [41], however, the links between 
modules are reduced to points and are allowed to pass 
through each other, and thus it does not model constraints of 
the real world. Adding such constraints significantly impacts 
the complexity of the algorithms as reported by Trinkle et al. 
[38]. Meanwhile, some researchers have proposed solutions 
for discrete motion planning with obstacles but it is still 
considered to be a difficult problem, especially when the 
numbers of modules is increasing [5][31][20]. 

R7 (constrained-space): Most algorithms do not take into 
consideration a constrained space and are specific to some 
design such as MTRAN [44] Pebbles [12] or Catoms-like 
structures using hexagonal modules [43] [40]. More generic 
algorithms such as Motein [34], protein-folding algorithm [1] 
or 2D chaining [31], also fail to validate this requirement as 
they rely on applying repulsive forces to unfold the chain and 
thus generally tend undergo a fully unfolded phase (all 
modules in a straight line). A solution is to consider the 
problem of constrained space as a particular form of 
reconfiguring with dynamic obstacles such as in [9], but this 
algorithm is specific to locomotion planning for cranes. 

III. CUBIMORPH MECHANICAL DESIGN AND PROTOTYPES  

Cubimorph mechanical design is a first attempt to satisfy 
R1, R2, R3, R4 and R5. 
A. Principle 

Cubimorph design (Fig. 2) allows rotation along the 
edges of each module using reconfigurable hinges which 
keep the modules connected at all time. This lets all module 
faces free to accommodate touchscreens. 

 
Figure 2.  Cubimorph mechanical design overview. 

A chain of modules (R1): Cubimorph is a homogeneous 
chain of cubical modules. Modules have five possible 
positions relatively to their neighbor: straight, top, bottom, 
back or front. Relying on independent hinges per edge 
requires complex docking interfaces and does not fully 
answer R1. We eliminate this need by using a single actuated 
hinge, which keeps the modules connected at all time.  

Modules shape (R2, R3): Each module is cubical, thus 
enabling the placement of interactive elements as well as 
allowing seamless docking. 

Actuation mechanism (R4, R2, R3): The hinge connecting 
two modules is mounted on a turntable mechanism. This 
turntable repositions the hinge along the desired edge before 
actuation (Fig. 3). This mechanism also does not protrude on 
the side of the modules, thus increasing the real estate of each 
module face (R2) and allowing for seamless docking (R3). 
There are thus 3DOF per joint between modules. 

Chain multistability (R5): The turntables are actuated by a 
worm drive so they lock when not powered. Any two cubes 
in a straight configuration (turntables face-to-face) will lock 
in place by simply positioning the turntable hinge along any 
diagonal of the cube face.  This allows the device to retain a 
rigid shape without consuming power for actuation or using a 
complex latching mechanism. 

Figure 3 shows how to flip the right module on the top (on 
Fig.3.a, it can only flip backward): (1) rotating the hinge 180º 
to put the two modules to their default position (Fig.3.b to c); 
(2) rotating the internal assembly so that the hinge faces the 
desired edge (Fig.3.d); (3) rotating the hinge 180º. Note that, 
during the repositioning of the hinge, the external case of the 
module does not rotate along with the internal assembly. 
Thus, in order to place a module in a desired position, the 
modules must first reach the straight position.  

 
Figure 3.  Two modules are linked with one hinge mounted on a turntable 

internal assembly. To flip the right module on the top, we (b) rotate the 
hinge to (c) place the two modules in a default position. (d) We then rotate 
the internal assembly so that the hinge faces the appropriate edge. We can 

then rotate the hinge to flip the module in the desired position. 

B. Proof-of-concept prototypes 
We built three proof-of-concept prototypes to 

demonstrate specific aspects of Cubimorph. We used a ProJet 
5000 multijet 3D printer to create the mechanical parts. 

1. Hinge prototype (Fig.5.a): Our actuated prototype is 
made of two 7.6x7.6cm modules. A module has two parts, 
the external case that is a hollowed out cube, and the internal 
assembly that is a cylindrical structure. This structure is 
shared between two adjacent modules and rotates when in 
default position (Fig.3.b). The internal assembly (Fig.4) 
ensures that the chain is always connected and consists of:  
• 2 hinge motors (Futaba s3115), one in the right side 

module and one in the left to actuate the hinge gears. 
• 2 hinge gears, one for each hinge motors, transmit 

rotation to the hinge printed with a gear pattern. 
• 1 turntable motor that is responsible for rotating the 

turntable gear. We used ROB-08910 DC geared motors. 
• 1 turntable gear, placed on top of the turntable motor, 

transmits rotation to the turntable worm drives. 
• 1 turntable worm drive transmits rotation to the entire 

internal assembly. 
• 1 metal protrusion makes contact with the limit switches 

of the external case. 
• 4 limit switches on each internal sides of the external 

case to detect the rotation of the internal assembly. 
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Figure 4.  Cubimorph mechanical design. 

2. Touchscreens prototype (Fig.5.b): This prototype is 
made of two 7.6x7.6cm modules. The faces embed a 
µOLED-128-G2, which does not match exactly the size of 
each face. The reason is that the µOLED-128-G2 is the only 
display with embedded driver we could find. This prototype, 
even though non-actuated, shows that it is possible to embed 
displays on each module faces. 

 
Figure 5.  Proof-of concept prototypes: (a) the hinge version demonstrates 
the turtable hinge mechanicsm; (b) the touchscreens version shows how to 
embed OLED and (c) the miniature version demonstrates a device with an 

estimation of module size to fit last advances in piezoelectric motors. 

3. Miniature prototype (Fig.5.c): Researchers have 
demonstrated that shrinking the size of modules is possible 
with progress in miniaturization. In Peebles [11], each 
module measures 12mm and weight 4g and is capable to 
latch to neighbors using electromagnets. Yoshida et al. 
created modules capable of 1DOF that measure only 2cm 
and weight 15g each [45] using shape memory alloys. 

Advances in piezoelectric motors have a smaller torque but 
their reduced size and weight can lighten the entire assembly 
and allow lifting multiple modules. For example, compared 
to the motors we used in our design, a Squiggle motor [36] 
has a torque 91x smaller but a weight 106x less and an 
overall area 231x smaller. To demonstrate how such 
technology could be used, we 3D printed our design at a 
smaller scale in a way that it could accommodate these 
piezoelectric motors (16 2x2cm modules). This prototype, 
even though non-actuated, shows what we could build in a 
near future and strengthens our vision that future devices 
could be made of many modules. Note that the hinge and 
turntable’s rotation are designed for running electrical 
connections between modules.  

IV. CUBIMORPH ALGORITHM 
We show how we adapted the probabilistic roadmap 

algorithm to fit the requirements R6 and R7.  
A. General principle 
Our goal is to transform a chain made of n modules into a 

shape. It assumes that there are 3DOF per joint between 
modules. The output is a collection of ordered chains, which 
represents a discrete path from the initial chain to a chain 
representing the final shape. Note that we treat the problem 
in a discrete way (angle between modules is 0º or 180º 
except when a rotation is in process). Our algorithm is based 
on the probabilistic roadmap algorithm [18], which has been 
shown to compute in a relatively small amount of steps. The 
probabilistic roadmap algorithm consists of two parts: 
1. Offline roadmap generation (pre-computation): The 

algorithm creates a set of chains containing the initial and 
final chain, and randomly generated non-self-colliding 
chains. It then creates a graph with chains as nodes. An 
edge is added between two nearby nodes if a local planner 
computes that the number of steps required to reconfigure 
from one node to another is below a given threshold. 

2. Online graph search: To go from one chain to another, the 
algorithm then searches the graph for the shortest path 
between the node representing the initial device and the 
node representing the final shape. 

B. Adaptation to fit requirements 
Prevent chains from colliding with user’s hand and 
constrained space (R6, R7): To create the roadmap, the 
algorithm generates non-self-colliding chains, and also takes 
into account the user’s hand, while eliminating chains that 
do not fit within a bounding box around the hand or that 
collide with it. The size of the box is a parameter. Our 
algorithm assumes that users hold an extremity of the device. 

 
Figure 6.  Our algorithm constructs an offline graph of chains. An edge 

exists if a local planner can transform a node to another one. The 
reconfiguration (online) consists in searching the best path in the graph. 
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Detecting nearby chains: As with the original algorithm, 
we check for an edge between two nodes only if those nodes 
are nearby. This is computed using the number of rotations 
needed to go from one node to another (as a maximum 
threshold parameter of the algorithm). To compute this 
difference, we encode our chains as a vector of position (1 
straight, 2 top, 3 bottom, 4 back, 5 front) that represents the 
relative position of each module to its previous neighbor. 
For example a straight chain of 5 modules with the last 
module placed on the bottom of the previous one is 
{1,1,1,3}. The difference between two vectors tells how 
many rotations are needed to go from the first chain to the 
other one and thus decide if the chains are nearby. 

The local planner checks user’s hand collision and allows 
constrained space to inflate (R6, R7): To transform a node 
into another, the local planer rotates each module one by one 
in its correct position, thus creating a sequence of chains that 
represent the path between one chain to another. This simple 
planner computes in a constrained space. It means that each 
time a collision is detected with the bounding box or the 
user’s hand, the algorithm first resolves it. For example 
when rotating the middle of a chain, if the last module 
collides with the hand, the algorithm first rotates the 
colliding module so that its new position will not create a 
collision when performing the original rotation. As resolving 
a collision can lead to collisions, the planner uses recursive 
calls. If the algorithm fails to compute efficiently (the 
number of reconfigurations in recursion reaches a certain 
threshold), the bounding box of the constrained space 
increases and the planner starts again, or abandons the path 
if the box size reaches a given threshold. 
 Each edge is tagged with a tuple: This tuple corresponds 
to the output properties of the local planner that consist of 
the number of reconfigurations necessary, the torque 
required, and the area of the bounding box used to perform 
the reconfiguration. 

Parametrizable path search (R7): The algorithm can 
search the shortest path (Dijkstra) in the graph but also take 
into account the parameters of each edges. E.g. one could 
tradeoff number of steps over space. The algorithm can also 
be parameterized so that the search produces a path that fits 
the maximum torque that the design permits.  

C. Removing invalid chains and avoid deadlocks 

 
Figure 7.  Blocked chain: (a) the chain is not blocked and the module at 
mj−1 rotates thus resulting in (b) blocking the module mj. This module is 

facing another non-neighbor module, and has no more degrees of freedom. 

Blocked modules: A module is blocked when its hinged 
side faces a module to which it is not connected (i.e. the 
unconnected module is in its “straight” position). In this case 
the module has no degrees of freedom. Figure 7 illustrates a 
case in which the module j is blocked after the rotation. A 
way to avoid this situation is to search the pair of modules 
that are connected but have no neighbors. For each of these 

pairs (mi,mj) if the segment [i−1, i] and the segment [i,j] are 
parallel then the module mi is facing module mj. We ensure 
this case never happens by eliminating blocked chains and 
rejecting any rotation that would lead to such a case. 

 
Figure 8.  Tangled chain: (a) the chain is not blocked but the rotation of the 

module mi results in (b) a tangle of the first four modules of the chain. 

Tangled chains: A tangled chain can lead to deadlocks. 
For example in Figure 8, after transformation from (a) to (b), 
the modules in yellow pass through a knot that can result in 
tangling. Untangling is a hard problem and we choose to 
avoid tangles altogether. Our implementation uses Khatib’s 
algorithm [19] to achieve this. Our algorithm considers 3 
consecutive module i−1, i, i+1 and checks if the triangle 
formed by these points is intersected by any segment 
constituting the chain (a segment starts and ends at the 
centers of two modules). When no line intersects the triangle 
i−1,i,i+1, it removes the point from the chain. After multiple 
iterations, if there are no tangles, the algorithm reduces the 
chain to a single line between the first and last module (as 
shown by the green line in our implementation on Figure 9). 

 
Figure 9.  Our implementation of the Khatib’s algorithm on a (a) tangled 

and (b) untangled chain. 

D. Implementation and Performance 
We implemented our algorithm using Open-Frameworks 

and Python as well as Maya library to perform 
transformation in 3D. Figure 10 shows an example of output 
of our algorithm that reconfigures a rectangle shape to a 
sphere with a device of 48 modules. During pilot 
investigations, we implemented several algorithms: brute 
force and simulated annealing (with a cost function 
depending on the size of the bounding box plus a measure of 
similarity of the current chain to the final one). The brute 
force algorithm was too long to compute. The simulated 
annealing failed to reach a satisfying ending reconfiguration 
that was sufficiently similar to the final shape.  

E. Possible optimizations 
The offline part of the algorithm is not meant to run on the 

device itself. However, if we desire to process in an online 
mode, the following optimizations may be required. 

Collision detection: Our method uses a simple collision 
detection approach, but other proven collision methods can 
accelerate this process such as the Gilbert–Johnson–Keerthi 
distance algorithm [10].  
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Figure 10.  Algorithm output with chains of 48 modules reconfiguring from 

a rectangle to a coarse sphere. 

One chain fitting a given shape: We used handwritten 
chains to test our code. For a designer of an application, the 
Motein algorithm [7] can help in automating the chains 
corresponding to multiple final and initial shapes (Fig. 11). 

 
Figure 11.  The Motein algorithm finds a Hamiltonian path between the 

voxels of a given shape (from [7]). 

Multiple chains fitting a shape: More than one chain can 
fit within a shape. These can be created using the Motein 
algorithm on degenerated (blurred) versions of the original 
shape. The aim is to trade-off the shape accuracy with the 
user perception of the shape. A lower accuracy shape may 
still offer the same affordance1. For instance chains that are 
90% accurate may not change the overall use of the device.  

V. LIMITATIONS AND FUTURE WORK 
Cubimorph is our first attempt to satisfy our user 

requirements but it has evident limitations. We list them 
below and propose some solutions. We also present several 
research opportunities that could benefit for more synergy 
between the HCI and the robotics research fields.  

A. Design and algorithm improvements 
Continuous rotations (R3, R4): Our design relies on 

discrete steps, i.e. the modules rotate at 180º but do not stop 
in an intermediary position. Continuous movements could 
increase the possible topologies although it could also 
decrease the robustness of the devices (R3).  

Chain vs. star (R5): We considered single chains wherein 
transformation complexity is proportional to module 
number. An alternative is to use chains emerging from a 
central unit, which would decrease strain on the actuators. 

Actuator type: Advances in technologies like shape 
memory alloys could replace the two hinge motors with one 
drive and synchronize the rotation. This would also reduce 
the weight of the device and lead to better structural integrity 
by reducing the stress on the joints, although investigations 
on energy efficiency should be made.  

Robustness: Our prototype is limited in term of robustness 
and we want to explore the durability of the mechanisms to 
determine if they would be practical in a real world setting. 
With the growing interest in building malleable and shape-
changing interactive devices, finding ways to increase the 
robustness of highly reconfigurable devices is a primordial 
research question to be answered in the next few years. 

Speed: The reconfiguration on Fig.10 takes ~2.30 minutes 
assuming ½ second per steps. A physical prototype should 
talk 5 to 10 minutes assuming 1-2 seconds per steps. This 
time would be sufficient in scenarios where the users can 
wait the device to reconfigure. But further improvements are 
required to allow a full interactive experience.  

B. Interactive improvements 
User interaction during reconfiguration: We assumed that 

a user holds the device during the transformation. Since the 
grasp of the users can be detected, the algorithm can include 
the user as part of the solution, and provide instruction to 
reposition their hands to improve the reconfiguration speed. 
These computations could be offloaded to a cloud computer. 

The user chooses/models the shape: both the designer and 
the user can decide the shape of the device. For example the 
user can captures a shape with a depth camera and generate a 
chain using a 3D reconstitution technique [15]. The device 
could also support pseudo-plastic deformation behaving like 
a lump of clay that the user can mold. These would require 
further investigations from a user interaction perspective.  

The designer chooses appropriate shapes: Finally we 
believe that more investigations are needed to understand 
what shapes make sense in certain scenarios. Doing so 
would help designers to choose shapes with better 
affordances1 for specific tasks. Answering these questions 
need deeper evaluations to understand the cognitive and 
psychomotor mechanisms behind the notion of affordance1.  

VI. CONCLUSION 
We have presented Cubimorph, a concept of modular 

interactive device that changes its shape to fit functionalities 
required by end-users. We contributed a design rationale to 
create modular interactive devices. We made the first steps 
toward concretizing our concept with a mechanical design, 
three proof-of-concept prototypes and an adaptation of the 
probabilistic roadmap algorithm. Much work still needs to 
be achieved to put such devices in the end-user hands but we 
hope our work will create discussion between pluri-
disciplinary fields that could highly benefit from each other.  
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