

Abstract—We introduce Cubimorph, a modular interactive
device that accommodates touchscreens on each of the six
module faces, and that uses a hinge-mounted turntable
mechanism to self-reconfigure in the user’s hand. Cubimorph
contributes toward the vision of programmable matter where
interactive devices reconfigure in any shape that can be made
out of a chain of cubes in order to fit a myriad of
functionalities, e.g. a mobile phone shifting into a console when
a user launches a game. We present a design rationale that
exposes user requirements to consider when designing
homogeneous modular interactive devices. We present our
Cubimorph mechanical design, three prototypes demonstrating
key aspects (turntable hinges, embedded touchscreens and
miniaturization), and an adaptation of the probabilistic
roadmap algorithm for the reconfiguration.

I. INTRODUCTION
We wish to create interactive devices capable of

autonomously changing their shapes in order to create new
affordances1 that help the user to interact. For instance, when
launching a game, a phone reconfigures its edges to facilitate
grasping with two hands (Fig. 1). There has been a growing
interest toward achieving this goal in the Human Computer
Interaction (HCI) community, but yet existing devices consist
of folding displays and hardly reach high shape resolution
[14][30]. On the other side, the robotics field has provided
many elaborate robot designs especially self-reconfigurable
modular ones that are know to be very versatile [23]. For
instance Pixelbots [1] act as individual pixels to create a
display, Roombots [35] form furniture that can adapt to the
user activity, or Topobo [26] allows users to assemble kinetic
toys. However if some works have started to consider
interactive properties (e.g. Sifteo Cubes), there is still little

A Leverhulme Trust Early Career Fellowship funded part of this work.

This work is also partially funded by the EPSRC BGER-EP/K004581/1 and
the EC’s 7th framework programme through the FET Open scheme (no.
309191) under the GHOST project. Prof Ramani would like to acknowledge
partial support from the NSF IGERT on Sustainable Electronics (DGE
1144842) and Donald W. Feddersen Professorship. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the sponsors.
1Anne Roudaut and Diana Krusteva, Department of Computer Science,
University of Bristol, UK (roudauta@gmail.com, dd_kk@mail.bg)
2Mike McCoy and Karthik Ramani, School of Mechanical Engineering,
Purdue University,USA (therealmmccoy@gmail.com, ramani@purdue.edu)
3Abhijit Karnik, School of Computing and Communication, Lancaster
University, UK (abe.karnik@gmail.com)
4Sriram Subramanian, University of Sussex, UK (sriramable@gmail.com)

design care for devices requiring close interaction with
people, for example reconfiguring directly in the user’s hand.

Nevertheless, designing modular interactive devices is not
trivial as existing designs, while serving specific purposes
(e.g. locomotion or construction), conflict with usability
purposes. For example, detachable modules work well on a
large flat surface but not when the user is mobile [28][29];
most modules cannot accommodate interactive elements on
all the faces due to placement of actuators [25][32];
algorithms used for reconfiguration unfold the device into a
straight line before folding into a new shape [1][34], which is
hardly practical from a user point of view. These examples
only scratch the surface of problems encountered when
adding the user to the equation. There is a real need for taking
user experience into account when designing modular
interactive devices because the user requirements
dramatically change the way we tackle the design problem.

Our paper addresses this need with a design rationale
exposing user requirements for the design of homogeneous
modular interactive devices. We use the literature to
demonstrate the difficulty of the design problem, and
especially that trivial or existing solutions to address some
requirements tend to be in conflict with others. We then
present Cubimorph, our first attempt to fit user requirements
in reconfigurable homogeneous modular devices. Cubimorph
consists of a chain of cubical modules linked together with a
hinge-mounted turntable mechanism that repositions the
hinge along the desired edge, thus allowing faces to be free
and to contain a touchscreen. We present three proof-of-
concept prototypes that demonstrate key aspects of
Cubimorph: (1) using two 7.6x7.6cm modules to demonstrate
the turntable hinge mechanism; (2) another pair of 7.6x7.6cm
modules to demonstrate how to embed OLED touchscreens
in the modules faces; and (3) a 16-module 2x2cm design to
show how Cubimorph could be miniaturized in a near future.
We explain our reconfiguration algorithm, adapted from the
probabilistic roadmap algorithm [18].1

We believe that self-reconfigurable interactive device is a
promising area. Cubimorph is a first exploration of our
research agenda and certainly have limitations. But we hope
our paper can lay down a research agenda where HCI, HRI
and robotics researchers could benefit from their respective
skills to enable the creation of high-fidelity end-user devices.

1 The quality of an object to tell us how it wants to be used and how to use it

Cubimorph: Designing Modular Interactive Devices
Roudaut A.1, Krusteva D.1, McCoy M.2, Karnik A.3, Ramani K2, Subramanian S.4

Figure 1. Cubimorph is an interactive device made of a chain of reconfigurable modules that shape-shifts into any shape that can be made out
of a chain of cubes, e.g. transforming from (a) a mobile phone to (b) a game console. Following our design rationale, we propose a mechanical

design, (c) proof-of concept prototypes and an adaptation of the probabilistic roadmap algorithm for the reconfiguration.

II. DESIGN RATIONALE

Existing modular robots designs are demonstrably very
versatile. But using them to create interactive devices proves
to be a difficult task as some designs address certain issues
but create new ones. In fact these robots are not designed
with usability purposes in mind but rather locomotion or
construction. For example Lund [22] highlighted that several
factors in the implementation of user-configurable robots
have consequences for the user-configurability of the system.
Consider for example the following scenario inspired by
work on shape changing interactive devices [27][30][39]:

Shelly wants directions to a meeting location and
launches the map application. The device shape-shifts into a
surface-like shape. Shelly uses the seamless surface to pinch
and zoom the map to visualize the location and the terrain
that lies between. When she closes the map, the device shape-
shifts into a form that fits in her pocket. On the train, Shelly
launches a game and the device shape-shifts in a console-like
shape, curling its edges to facilitate grasping and popping up
joysticks to ease the manipulation of the game characters.

This scenario illustrates the type of functionalities that self-
reconfigurable interactive devices would offer to the users,
and as one can observe, they involve a very close interaction
with them. From this scenario, we derived requirements for
creating modular handheld devices (see below). We then
present an analysis of how existing modular designs address
some of the requirements but violate others in order to better
capture the complexity of the design task.
A. User requirements
R1. The device must be self-contained: Modules cannot fall

off or be lost, and the device should reconfigure without
the need for users to intervene2.

R2. Modules must have free-faces: This allows embedding
interactive elements like displays or touch sensors.

R3. Modules must be dockable: Linked modules should
create seamless interactive surfaces. This should also
increase the device robustness (compact assembly).

R4. Modules should have minimum two degrees of
freedom: This allows the assembly to transform into any
3D geometry3. The minimal requirement is that a module
rotates around any edge linked to an adjacent module.

R5. The device must be multistable: In between
transformations, and possibly in absence of actuation
power, the device should retain its shape and continue to
provide interactive capabilities.

R6. The transformation should be safe: It should not
endanger the user during the reconfiguration through its
motion and or by reconfiguring into an unwieldy shape.

R7. The transformation should happen in a constrained-
space: The device may be held by the users or placed on
a surface. The operating volume should be minimized.

Some of these requirements have a mechanical aspect as
they relate to the individual module shape and assembly
behavior. In contrast, other requirements are related to the
transformation. Next, we discuss how previous related work

2 Modules could also find others, but this is impractical in a mobile context
3 Diagonally linked squares/cubes can form any 2D/3D shapes by folding
[7][11]

has addressed these requirements. Note that existing designs
have not been designed from a user experience point of view
and will thus not fit most of the requirements. Those designs
are nevertheless original and relevant to other scenarios that
are not covered in this paper.

B. Mechanical requirements (R1 to R5)

R1 (self-contained): Robots with docking interfaces
allows modules to attach or detach to other modules. For
instance, Changible [29] use magnets and M-Blocks [28],
Pebbles [11], Em-Cube [3], Claytronic [13] or Catoms [8]
use electromagnets for docking. However, this actuation
mechanism violates R1 and R5. Loss of power (due to
battery drain) results in hinges breaking away. Other
solutions involve mechanical docking. This is the case of
Conro [6], Polybot [42] or MTRAN [17] whose modules can
attach or detach from another one through a connection
mechanism made of pins and holes. In contrast, CKBot [25]
and Superbot [32] rely on permanently attached modules.

R2 (free-faces): CKBot [25] and Superbot [32] offer two
free faces that could fit interactive elements. Roombot [35]
and Molecube [46], both rely on cubical modules that rotate
along their diagonals. Their faces are used for docking. Thus
only four faces are free among six. With Conro [6], Polybot
[42], MTRAN [17], or ATRON [16], the usable area is
reduced drastically by the hinge mechanism (clamps on each
hemisphere sides). M-Blocks [28] uses inertial force
actuation and thus allow free faces.

R3 (dockable): Some designs involve spherical (ATRON
[16]) or cylindrical modules (Claytronic [13], Catoms [8],
Octabot [33]). Such geometry, even a lattice positioning of
the modules, results in the gaps that prevent the creation of a
seamless surface (R3). Some geometry lends to more
efficient packing, which results in continuous planar
surfaces, e.g. hexagonal modules [4]. This is the case of
Fracta [24], Gear-Type-Unit [37] and Metamorphic [8].
Similarly, cubical modules can create seamless dockable
surfaces well. This is the case of M-Blocks [28], Pebbles
[11], Em-Cube [3], Roombot [35] and Molecube [46].

R4 (2DOF): Achieving minimum 2DOF can be done with
a shaft between modules. Conro [6], Polybot [42], MTRAN
[17] use this approach. The rotation requires a linkage
between two modules centers, which need to pass through
three of the module faces. It also requires the faces to be
rounded for smooth rotations. A potential challenge is that
the mechanisms should not protrude out of the modules as
this might prevent them from achieving 2DOF, have free-
faces (R2) or being dockable (R3). An alternate approach is
to move the rotation axis to the center of each module (on
their diagonals) such as in Roombot [35] and Molecube [46].

R5 (multistable): If modules are only connected (at most)
to two modules, the resulting shape may not be structurally
sound as neighboring modules are not necessarily attached. A
solution would be to use a latching mechanism such as in
Conro [6], Polybot [42] or MTRAN [17], but it would
prevent R2 (free-faces) except if the latching were done with
magnets like in Claytronic [13] or Catoms [8]. Another
solution could be to entangle units to create structural
strength, but this solution might increase the complexity of
the transformation algorithm to a great extent.

C. Transformation requirements (R6, R7)

R6 (safety): Existing algorithms can transform a chain into
another while avoiding collisions with or without obstacles
([21][41]). Obstacles could the user’s hand or the other users
in proximity. In Yakey et al. [41], however, the links between
modules are reduced to points and are allowed to pass
through each other, and thus it does not model constraints of
the real world. Adding such constraints significantly impacts
the complexity of the algorithms as reported by Trinkle et al.
[38]. Meanwhile, some researchers have proposed solutions
for discrete motion planning with obstacles but it is still
considered to be a difficult problem, especially when the
numbers of modules is increasing [5][31][20].

R7 (constrained-space): Most algorithms do not take into
consideration a constrained space and are specific to some
design such as MTRAN [44] Pebbles [12] or Catoms-like
structures using hexagonal modules [43] [40]. More generic
algorithms such as Motein [34], protein-folding algorithm [1]
or 2D chaining [31], also fail to validate this requirement as
they rely on applying repulsive forces to unfold the chain and
thus generally tend undergo a fully unfolded phase (all
modules in a straight line). A solution is to consider the
problem of constrained space as a particular form of
reconfiguring with dynamic obstacles such as in [9], but this
algorithm is specific to locomotion planning for cranes.

III. CUBIMORPH MECHANICAL DESIGN AND PROTOTYPES

Cubimorph mechanical design is a first attempt to satisfy
R1, R2, R3, R4 and R5.
A. Principle

Cubimorph design (Fig. 2) allows rotation along the
edges of each module using reconfigurable hinges which
keep the modules connected at all time. This lets all module
faces free to accommodate touchscreens.

Figure 2. Cubimorph mechanical design overview.

A chain of modules (R1): Cubimorph is a homogeneous
chain of cubical modules. Modules have five possible
positions relatively to their neighbor: straight, top, bottom,
back or front. Relying on independent hinges per edge
requires complex docking interfaces and does not fully
answer R1. We eliminate this need by using a single actuated
hinge, which keeps the modules connected at all time.

Modules shape (R2, R3): Each module is cubical, thus
enabling the placement of interactive elements as well as
allowing seamless docking.

Actuation mechanism (R4, R2, R3): The hinge connecting
two modules is mounted on a turntable mechanism. This
turntable repositions the hinge along the desired edge before
actuation (Fig. 3). This mechanism also does not protrude on
the side of the modules, thus increasing the real estate of each
module face (R2) and allowing for seamless docking (R3).
There are thus 3DOF per joint between modules.

Chain multistability (R5): The turntables are actuated by a
worm drive so they lock when not powered. Any two cubes
in a straight configuration (turntables face-to-face) will lock
in place by simply positioning the turntable hinge along any
diagonal of the cube face. This allows the device to retain a
rigid shape without consuming power for actuation or using a
complex latching mechanism.

Figure 3 shows how to flip the right module on the top (on
Fig.3.a, it can only flip backward): (1) rotating the hinge 180º
to put the two modules to their default position (Fig.3.b to c);
(2) rotating the internal assembly so that the hinge faces the
desired edge (Fig.3.d); (3) rotating the hinge 180º. Note that,
during the repositioning of the hinge, the external case of the
module does not rotate along with the internal assembly.
Thus, in order to place a module in a desired position, the
modules must first reach the straight position.

Figure 3. Two modules are linked with one hinge mounted on a turntable

internal assembly. To flip the right module on the top, we (b) rotate the
hinge to (c) place the two modules in a default position. (d) We then rotate
the internal assembly so that the hinge faces the appropriate edge. We can

then rotate the hinge to flip the module in the desired position.

B. Proof-of-concept prototypes
We built three proof-of-concept prototypes to

demonstrate specific aspects of Cubimorph. We used a ProJet
5000 multijet 3D printer to create the mechanical parts.

1. Hinge prototype (Fig.5.a): Our actuated prototype is
made of two 7.6x7.6cm modules. A module has two parts,
the external case that is a hollowed out cube, and the internal
assembly that is a cylindrical structure. This structure is
shared between two adjacent modules and rotates when in
default position (Fig.3.b). The internal assembly (Fig.4)
ensures that the chain is always connected and consists of:
• 2 hinge motors (Futaba s3115), one in the right side

module and one in the left to actuate the hinge gears.
• 2 hinge gears, one for each hinge motors, transmit

rotation to the hinge printed with a gear pattern.
• 1 turntable motor that is responsible for rotating the

turntable gear. We used ROB-08910 DC geared motors.
• 1 turntable gear, placed on top of the turntable motor,

transmits rotation to the turntable worm drives.
• 1 turntable worm drive transmits rotation to the entire

internal assembly.
• 1 metal protrusion makes contact with the limit switches

of the external case.
• 4 limit switches on each internal sides of the external

case to detect the rotation of the internal assembly.

b c d

a
external
case hinge

internal
assembly

Figure 4. Cubimorph mechanical design.

2. Touchscreens prototype (Fig.5.b): This prototype is
made of two 7.6x7.6cm modules. The faces embed a
µOLED-128-G2, which does not match exactly the size of
each face. The reason is that the µOLED-128-G2 is the only
display with embedded driver we could find. This prototype,
even though non-actuated, shows that it is possible to embed
displays on each module faces.

Figure 5. Proof-of concept prototypes: (a) the hinge version demonstrates
the turtable hinge mechanicsm; (b) the touchscreens version shows how to
embed OLED and (c) the miniature version demonstrates a device with an

estimation of module size to fit last advances in piezoelectric motors.

3. Miniature prototype (Fig.5.c): Researchers have
demonstrated that shrinking the size of modules is possible
with progress in miniaturization. In Peebles [11], each
module measures 12mm and weight 4g and is capable to
latch to neighbors using electromagnets. Yoshida et al.
created modules capable of 1DOF that measure only 2cm
and weight 15g each [45] using shape memory alloys.

Advances in piezoelectric motors have a smaller torque but
their reduced size and weight can lighten the entire assembly
and allow lifting multiple modules. For example, compared
to the motors we used in our design, a Squiggle motor [36]
has a torque 91x smaller but a weight 106x less and an
overall area 231x smaller. To demonstrate how such
technology could be used, we 3D printed our design at a
smaller scale in a way that it could accommodate these
piezoelectric motors (16 2x2cm modules). This prototype,
even though non-actuated, shows what we could build in a
near future and strengthens our vision that future devices
could be made of many modules. Note that the hinge and
turntable’s rotation are designed for running electrical
connections between modules.

IV. CUBIMORPH ALGORITHM
We show how we adapted the probabilistic roadmap

algorithm to fit the requirements R6 and R7.
A. General principle
Our goal is to transform a chain made of n modules into a

shape. It assumes that there are 3DOF per joint between
modules. The output is a collection of ordered chains, which
represents a discrete path from the initial chain to a chain
representing the final shape. Note that we treat the problem
in a discrete way (angle between modules is 0º or 180º
except when a rotation is in process). Our algorithm is based
on the probabilistic roadmap algorithm [18], which has been
shown to compute in a relatively small amount of steps. The
probabilistic roadmap algorithm consists of two parts:
1. Offline roadmap generation (pre-computation): The

algorithm creates a set of chains containing the initial and
final chain, and randomly generated non-self-colliding
chains. It then creates a graph with chains as nodes. An
edge is added between two nearby nodes if a local planner
computes that the number of steps required to reconfigure
from one node to another is below a given threshold.

2. Online graph search: To go from one chain to another, the
algorithm then searches the graph for the shortest path
between the node representing the initial device and the
node representing the final shape.

B. Adaptation to fit requirements
Prevent chains from colliding with user’s hand and
constrained space (R6, R7): To create the roadmap, the
algorithm generates non-self-colliding chains, and also takes
into account the user’s hand, while eliminating chains that
do not fit within a bounding box around the hand or that
collide with it. The size of the box is a parameter. Our
algorithm assumes that users hold an extremity of the device.

Figure 6. Our algorithm constructs an offline graph of chains. An edge

exists if a local planner can transform a node to another one. The
reconfiguration (online) consists in searching the best path in the graph.

internal
assembly

turnable motor
and worm drive

one limit switch

metal
protrusion

hinge motor 1
and hinge gear 1

hinge motor 2
and hinge gear 2

gear 1

gear 2

Detecting nearby chains: As with the original algorithm,
we check for an edge between two nodes only if those nodes
are nearby. This is computed using the number of rotations
needed to go from one node to another (as a maximum
threshold parameter of the algorithm). To compute this
difference, we encode our chains as a vector of position (1
straight, 2 top, 3 bottom, 4 back, 5 front) that represents the
relative position of each module to its previous neighbor.
For example a straight chain of 5 modules with the last
module placed on the bottom of the previous one is
{1,1,1,3}. The difference between two vectors tells how
many rotations are needed to go from the first chain to the
other one and thus decide if the chains are nearby.

The local planner checks user’s hand collision and allows
constrained space to inflate (R6, R7): To transform a node
into another, the local planer rotates each module one by one
in its correct position, thus creating a sequence of chains that
represent the path between one chain to another. This simple
planner computes in a constrained space. It means that each
time a collision is detected with the bounding box or the
user’s hand, the algorithm first resolves it. For example
when rotating the middle of a chain, if the last module
collides with the hand, the algorithm first rotates the
colliding module so that its new position will not create a
collision when performing the original rotation. As resolving
a collision can lead to collisions, the planner uses recursive
calls. If the algorithm fails to compute efficiently (the
number of reconfigurations in recursion reaches a certain
threshold), the bounding box of the constrained space
increases and the planner starts again, or abandons the path
if the box size reaches a given threshold.
 Each edge is tagged with a tuple: This tuple corresponds
to the output properties of the local planner that consist of
the number of reconfigurations necessary, the torque
required, and the area of the bounding box used to perform
the reconfiguration.

Parametrizable path search (R7): The algorithm can
search the shortest path (Dijkstra) in the graph but also take
into account the parameters of each edges. E.g. one could
tradeoff number of steps over space. The algorithm can also
be parameterized so that the search produces a path that fits
the maximum torque that the design permits.

C. Removing invalid chains and avoid deadlocks

Figure 7. Blocked chain: (a) the chain is not blocked and the module at
mj−1 rotates thus resulting in (b) blocking the module mj. This module is

facing another non-neighbor module, and has no more degrees of freedom.

Blocked modules: A module is blocked when its hinged
side faces a module to which it is not connected (i.e. the
unconnected module is in its “straight” position). In this case
the module has no degrees of freedom. Figure 7 illustrates a
case in which the module j is blocked after the rotation. A
way to avoid this situation is to search the pair of modules
that are connected but have no neighbors. For each of these

pairs (mi,mj) if the segment [i−1, i] and the segment [i,j] are
parallel then the module mi is facing module mj. We ensure
this case never happens by eliminating blocked chains and
rejecting any rotation that would lead to such a case.

Figure 8. Tangled chain: (a) the chain is not blocked but the rotation of the

module mi results in (b) a tangle of the first four modules of the chain.

Tangled chains: A tangled chain can lead to deadlocks.
For example in Figure 8, after transformation from (a) to (b),
the modules in yellow pass through a knot that can result in
tangling. Untangling is a hard problem and we choose to
avoid tangles altogether. Our implementation uses Khatib’s
algorithm [19] to achieve this. Our algorithm considers 3
consecutive module i−1, i, i+1 and checks if the triangle
formed by these points is intersected by any segment
constituting the chain (a segment starts and ends at the
centers of two modules). When no line intersects the triangle
i−1,i,i+1, it removes the point from the chain. After multiple
iterations, if there are no tangles, the algorithm reduces the
chain to a single line between the first and last module (as
shown by the green line in our implementation on Figure 9).

Figure 9. Our implementation of the Khatib’s algorithm on a (a) tangled

and (b) untangled chain.

D. Implementation and Performance
We implemented our algorithm using Open-Frameworks

and Python as well as Maya library to perform
transformation in 3D. Figure 10 shows an example of output
of our algorithm that reconfigures a rectangle shape to a
sphere with a device of 48 modules. During pilot
investigations, we implemented several algorithms: brute
force and simulated annealing (with a cost function
depending on the size of the bounding box plus a measure of
similarity of the current chain to the final one). The brute
force algorithm was too long to compute. The simulated
annealing failed to reach a satisfying ending reconfiguration
that was sufficiently similar to the final shape.

E. Possible optimizations
The offline part of the algorithm is not meant to run on the

device itself. However, if we desire to process in an online
mode, the following optimizations may be required.

Collision detection: Our method uses a simple collision
detection approach, but other proven collision methods can
accelerate this process such as the Gilbert–Johnson–Keerthi
distance algorithm [10].

a

b

Figure 10. Algorithm output with chains of 48 modules reconfiguring from

a rectangle to a coarse sphere.

One chain fitting a given shape: We used handwritten
chains to test our code. For a designer of an application, the
Motein algorithm [7] can help in automating the chains
corresponding to multiple final and initial shapes (Fig. 11).

Figure 11. The Motein algorithm finds a Hamiltonian path between the

voxels of a given shape (from [7]).

Multiple chains fitting a shape: More than one chain can
fit within a shape. These can be created using the Motein
algorithm on degenerated (blurred) versions of the original
shape. The aim is to trade-off the shape accuracy with the
user perception of the shape. A lower accuracy shape may
still offer the same affordance1. For instance chains that are
90% accurate may not change the overall use of the device.

V. LIMITATIONS AND FUTURE WORK
Cubimorph is our first attempt to satisfy our user

requirements but it has evident limitations. We list them
below and propose some solutions. We also present several
research opportunities that could benefit for more synergy
between the HCI and the robotics research fields.

A. Design and algorithm improvements
Continuous rotations (R3, R4): Our design relies on

discrete steps, i.e. the modules rotate at 180º but do not stop
in an intermediary position. Continuous movements could
increase the possible topologies although it could also
decrease the robustness of the devices (R3).

Chain vs. star (R5): We considered single chains wherein
transformation complexity is proportional to module
number. An alternative is to use chains emerging from a
central unit, which would decrease strain on the actuators.

Actuator type: Advances in technologies like shape
memory alloys could replace the two hinge motors with one
drive and synchronize the rotation. This would also reduce
the weight of the device and lead to better structural integrity
by reducing the stress on the joints, although investigations
on energy efficiency should be made.

Robustness: Our prototype is limited in term of robustness
and we want to explore the durability of the mechanisms to
determine if they would be practical in a real world setting.
With the growing interest in building malleable and shape-
changing interactive devices, finding ways to increase the
robustness of highly reconfigurable devices is a primordial
research question to be answered in the next few years.

Speed: The reconfiguration on Fig.10 takes ~2.30 minutes
assuming ½ second per steps. A physical prototype should
talk 5 to 10 minutes assuming 1-2 seconds per steps. This
time would be sufficient in scenarios where the users can
wait the device to reconfigure. But further improvements are
required to allow a full interactive experience.

B. Interactive improvements
User interaction during reconfiguration: We assumed that

a user holds the device during the transformation. Since the
grasp of the users can be detected, the algorithm can include
the user as part of the solution, and provide instruction to
reposition their hands to improve the reconfiguration speed.
These computations could be offloaded to a cloud computer.

The user chooses/models the shape: both the designer and
the user can decide the shape of the device. For example the
user can captures a shape with a depth camera and generate a
chain using a 3D reconstitution technique [15]. The device
could also support pseudo-plastic deformation behaving like
a lump of clay that the user can mold. These would require
further investigations from a user interaction perspective.

The designer chooses appropriate shapes: Finally we
believe that more investigations are needed to understand
what shapes make sense in certain scenarios. Doing so
would help designers to choose shapes with better
affordances1 for specific tasks. Answering these questions
need deeper evaluations to understand the cognitive and
psychomotor mechanisms behind the notion of affordance1.

VI. CONCLUSION
We have presented Cubimorph, a concept of modular

interactive device that changes its shape to fit functionalities
required by end-users. We contributed a design rationale to
create modular interactive devices. We made the first steps
toward concretizing our concept with a mechanical design,
three proof-of-concept prototypes and an adaptation of the
probabilistic roadmap algorithm. Much work still needs to
be achieved to put such devices in the end-user hands but we
hope our work will create discussion between pluri-
disciplinary fields that could highly benefit from each other.

REFERENCES
[1] Alonso-Mora J, Breitenmoser A, Rufli M, Haag S,

Caprari G, Siegwart R, et al. (2011) Displayswarm: A
robot swarm displaying images. Demo IROS11.

[2] Amato, N., Dill, K., Song, G. Using motion planning to
map protein folding landscapes and analyze folding
kinetics of known native structures. Recomb02, 2-11

[3] An, B. K. 2008. Em-cube: cube-shaped, self-
reconfigurable robots sliding on structure surfaces.
ICRA’08, 3149-3155.

[4] Aste T, Weaire D. 2000. The Pursuit of Perfect Packing.
London: Institute of Physics. ISBN 0-7503-0648-3.

[5] Canny, J.F. 1988. The complexity of robot motion
planning. Cambridge, MA: MIT Press.

[6] Castano, A., Chokkalingham, R., Will, P. M.
Autonomous and self-sufficient conro modules for
reconfigurable robots. DARS’00. 155-164.

[7] Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith,
Saul. Programmable assembly with universally foldable
strings (Moteins). Trans. on Robotics, 27 n4, 718-729.

[8] Christensen, D. J., Campbell, J. D. 2007. Locomotion of
miniature catom chains: Scale effects on gait and
velocity. IEEE ICRA’07, 2254-2260.

[9] Fiorini, P.; Shiller, Z. 1998. Motion planning in
dynamic environments using velocity obstacles. Journal
of Robotics Research 17 (7): 760–772.

[10] Gilbert, E.G., Johnson, D.W., Keerthi, S.S. 1988. A fast
procedure for computing the distance between complex
objects in three-dimensional space. IEEE RAS (4),193-
203.

[11] Gilpin, K., Koyanagi, K., Rus, D. 2011. Making self-
disassembling objects with multiple components in the
robot pebbles system. . IEEE ICRA’11, 3614 –3621.

[12] Gilpin, K., Rus, D. 2012. What’s in the bag: A
distributed approach to 3d shape duplication with
modular robots. In Robotics: Science and Systems.

[13] Goldstein, S. C., Mowry, T. C. 2004. Claytronics: A
scalable basis for future robots. In RoboSphere 2004.

[14] Gomes, A. Nesbitt, A., Vertegaal, R. 2013. MorePhone:
a study of actuated shape deformations for flexible thin-
film smartphone notifications. ACM CHI '13, 583-592.

[15] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., Fitzgibbon, A. KinectFusion:
real-time 3D reconstruction and interaction using a
moving depth camera. UIST11, 559-568.

[16] Jorgensen, M., Ostergaard, E., Lund, H. 2004. Modular
atron: modules for a self-reconfigurable robot. IROS’04,
vol. 2, 2068 – 2073 vol.2.

[17] Kamimura, A, Yoshida, E., Murata, S., Kurokawa, H.,
Tomita K., Kokaji, S. 2002. A Self-Reconfigurable
Modular Robot (MTRAN) - Distributed Autonomous
Robotic Systems 5, 17-26.

[18] Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.
H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces, IEEE Robotics
& Automation 12 (4): 566–580.

[19] Khatib, F., Weirauch, M. T., Rohl, C. A. 2006. Rapid
knot detection and application to protein structure.
Bioinformatics (2006) 22 (14): 252-259.

[20] Lavalle, S. M.2006.Planning Algorithms.Cambridge
University Press, Cambridge, U.K.

[21] Lenhart, W. J., Whitesides, S. H. 1995. Reconfiguring
closed polygonal chains in euclidean d-space.
ASME’95, 123-140.

[22] Lund, H. 2013 Lessons Learned in Designing User-
Configurable Modular Robotics. RiTA 2013: 279-286

[23] Moubarak, P., Ben-Tzvu, P. 2012. Modular and
reconfigurable mobile robotics. Robotics & autonomous
Systems 60, 12, 1648-1663.

[24] Murata, S., Kurokawa, H., and Kokaji, S. 1994. Self-
assembling machine. IEEE ICRA’94, 441–448.

[25] Park, M., Chitta, S., Teichman, A., Yim, M. 2008.
Automatic configuration recognition methods in
modular robots. Int. J. Rob.Res.27, 3-4 (Mar), 403-421.

[26] Raffle, H., Parkes, A., Ishii, H. 2004. Topobo: a
constructive assembly system with kinetic memory. In
Proceedings CHI04, 647-654.

[27] Rasmunssen, M., Pedersen, E., Pedersen, M., Hornbaek,
K. Shape-changing interfaces: a review of the design
space and open research questions CHI12, 735-744.

[28] Romanishin, J.W., Gilpin, K., Rus, D. 2013. M-blocks:
Momentum-driven, magnetic modular robots. IROS’13,
3-7 Nov. 2013, 4288-4295,

[29] Roudaut A., Reed R., Hao T. Subramanian, S. 2013.
Changibles: Analyzing and Designing Shape Changing
Constructive Assembly. CHI'14, to appear.

[30] Roudaut, A., Karnik, A., Lochtefeld, M., Subramanian,
S. 2013. Morphees: Toward high ”shape resolution” in
self- actuated flexible mobile devices. CHI’13, 593-602.

[31] Seo, J., Gray, S., Kumar, V., Yim, M. 2010.
Reconfiguring chain-type modular robots based on the
carpenter’s rule theorem. In WAFR, 105–120.

[32] Shen, W, Krivikon, M., Chiu, H.,Everist, J., Rubenstein,
M., Venkatesh, J. 2006. Multimode locomotion via
superbot reconfigurable robots. Aut. robots 20, 165-177.

[33] Shiu, M., Lee, H, Lian, F., Fu, L. Design of 2d modular
robot based on magnetic force analysis. ICIT’08,1-6

[34] Singh, A. P., Claude Latombe, J., Brutlag, D. L., 1999.
A motion planning approach to flexible ligand binding.
Proc Int Conf Intell Syst Mol Biol. 1999:252-61.

[35] Sporewitz,A., Laprade,P., Bonardi,S., Mayer,M.,
Moeckel,R.,Mudry, P., ijspeert, A. Roombots: Towards
decentralized reconfiguration with self-reconfiguring
modular robotic metamodules IROS10, 1126-1132.

[36] Squiggle motor http://www.newscaletech.com/techno-
logy/squiggle-motors.php

[37] Tokashiki, H.,Amagai,H., Endo,S.,Yamada, K., Kelly, J.
Development of a transformable mobile robot composed
of homogenous gear-type units, IROS’03, 1602-1607.

[38] Trinkle, J. C., Milgram, R. J., 2002. Complete path
planning for closed kinematic chains with spherical
joints. Int. Journal of Robotics Research 21:773-790.

[39] Vertegaal, R., Poupyrev, I. 2008. Organic User Interface
Introduction. Commun. ACM 51, 6 (June 2008), 26-30.

[40] Walter, J., Tsai, E., Amato, N. 2005. Algorithms for fast
concurrent reconfiguration of hexagonal metamorphic
robots. Robotics, IEEE 21, 4 (aug.), 621-631.

[41] Yakey, J. H., Lavalle, S. M., Kavraki, L.E. 2001.
Randomized path planning for linkages with closed
kinematic chains. Rob. and Aut., vol17, n6, 951,958

[42] Yim, M., Duff, D., Roufas, K. 2000. Polybot: a modular
reconfigurable robot. IEEE ICRA’00, vol. 1, 514-520.

[43] Yim, M., Zhang, Y., Lamping, J., Mao, E. 2001.
Distributed control for 3d metamorphosis. Autonomous
Robots 10, 41–56.

[44] Yoshida, E., Kurokawa, H., Kamimura, A., Murata, S.,
Tomita, K., 2007. Planning behaviors of modular robots
with coherent structure using randomized method.
Distributed Autonomous Robotic Systems 6, 149-158

[45] Yoshida, E., Murata, S., Kokaji, S., Tomira, K.,
Kurokawa, H. 2001. Micro self-reconfigurable modular
robot using shape memory alloy. Rob. and Mechatronics
13, 212-219.

[46] Zykov, V., Williams, P., Lassabe, N., Lipson, H.
Molecubes extended: Diversifying capabilities of open-
source modular robot.

