
How to improve the security skills of mobile app developers?
Comparing and contrasting expert views

Charles Weir
Security Lancaster

Lancaster University, UK
+44-7876-027350

c.weir1@lancaster.ac.uk

Awais Rashid
Security Lancaster

Lancaster University, UK
+44-1524-510316

a.rashid@lancaster.ac.uk

James Noble
Victoria University

Wellington, NZ
+64-4-4635233

kjx@ecs.vuw.ac.nz

ABSTRACT
Programmers’ lack of knowledge and ability in secure
development threatens everyone who uses mobile apps. There’s
no consensus on how to empower app programmers to get that
knowledge. Based on interviews with twelve industry experts we
argue that the discipline of secure app development is still at an
early stage. Only once industry and academia have produced
effective app developer motivation and training approaches shall
we begin to see the kinds of secure apps we need to combat crime
and privacy invasions.

CCS Concepts
• Security and privacy~Software security
engineering • Security and privacy~Social aspects of security
and privacy • Software and its engineering~Programming teams

Keywords
secure development, software security, app security, secure app
development, app development, app programmer, app developer,
mobile app, whole system security, penetration testing, continued
learning, application security, secure app, security issue

1. INTRODUCTION
The past ten years has seen a massive growth in the creation and
usage of mobile phone and tablet apps. Increasingly those apps
are handling sensitive information about us: controlling our
financial transactions, enabling our personal communication and
social networking and holding the intimate details of our lives. So
the security of those apps is becoming increasingly vital.
In this context, it’s disturbing to find that some 73% of US app
development professionals, interviewed in a recent IBM-
sponsored survey [16], believe that developer lack of knowledge
of secure coding practice is a major concern. Analysis of existing
apps also gives us reason for disquiet. Enck et al [7] analyzed
some 1100 commercial Android apps in 2011 and found privacy
issues in a majority of them . Bluebox, an app security solution
provider, analyzed the top five payment apps in 2015 [2] and
found both vulnerabilities permitting financial theft and privacy
issues in all of them.

Virtually all of the vulnerabilities reported in these papers were
due to choices by the programmers developing the apps; they
could have made choices that didn’t lead to the issues. Thus the
security of users and data depends vitally on programmers’
security practices.
So it’s important to improve the effectiveness of developers at
producing secure apps. There are three research questions that
address this effectiveness, all worthwhile:
(1) What kinds of security errors do programmers make?
(2) How do we improve the systems and compilers that support
the developers in their work; and
(3) How can we improve the security skills of the app developers
themselves?
There has been a good deal of work on the first question such as
the previously-mentioned work by Enck and Bluebox, or work by
Xie et al [20] exploring the reasons why programmers make
security errors. Various projects – including Xie et al’s IDE
enhancements [19], compiler improvements and libFuzzer’s
testing support [13] – address the second question. Taking the
third question, however, there is little understanding how and why
app programmers learn security and what approaches are likely to
work best. This work starts to address that gap.
This paper draws on an ongoing project exploring how app
programmers learn security. We suggest a simple model of the
motivations of an app programmer, and explore how different
experts’ approaches relate to that model. We explore the aspects
of app security that were accepted by all the experts; and highlight
some of the differences.
Based on this exploration, we argue that app security is still at an
early stage. This has significant implications for potential
implementers. In particular they have choices to make about what
aspects of app security and secure processes are appropriate to
their projects, and these decisions are not yet codified in an
industrywide shared understanding.

2. BACKGROUND
We found little existing work about how programmers learn
application security. There is a selection of books and papers
aiming to provide the information the programmers need to know.
Examples include the ‘security patterns’ movement of the early
2000’s such as ‘Security Patterns…’ by Schumacher+ [17], which
provides a range of information from abstract process to detailed
implementation. More recent books are Gary McGraw’s
‘Software Security’ [14], which provides a process-based
approach; or Howard, LeBlanc and Viega’s ‘24 Deadly Sins of
Software Security’ [11], which concentrates on classic
programmer security errors. More popular with programmers1 are

1 Based on Amazon.com book rankings at March 2016.

Copyright is held by the authors. Permission to make digital
or hard copies of all or part of this work for personal or
classroom use is granted without fee. Symposium on Usable
Privacy and Security (SOUPS) 2016, June 22–24, 2016,
Denver, Colorado.

books targeted specifically at particular platforms, such as
Application Security for the Android Platform [18] or Learning
iOS Security [1], both of which restrict themselves to exploring
the security features of each respective platform.
Other effective learning resources include Microsoft’s classic
application developer website on application security [15], which
has everything from the Microsoft Security Development
Lifecycle to details about the security use of specific Microsoft
tools and environments; and the OWASP community-written
‘Developer Guide’ [21], providing a more general app-specific
guide to security issues.
However we found relatively little literature on how programmers
learn and nothing specific to app programmers. Johnson and
Senges [12] studied how programmers learned to function in a
complicated organization, Google. They concluded that the
majority of programmer learning there was peer learning,
facilitated by strong corporate standards and culture. Other studies
have incorporated the concepts of programmer learning into the
wider term of Software Process Improvement (SPI). So for
example a study by Dyba [6] examines learning as one aspect of
SPI, differentiating Exploitation, the dissemination of existing
knowledge, from Exploration, the gaining of new knowledge; it
concludes that both have a positive effect on productivity but
doesn’t explore mechanisms.
A little-known work by Enes [8] used interviews to discover how
professionals, including programmers, acquire their expert
knowledge. It concludes that the preferred learning mechanisms
are all informal ones: especially on-the job training and personal
interaction. It also highlights, as an important factor, professional
pride in having ‘expert areas’ of competence.
In the context of learning about software security, a particularly
important finding is that of Conradi and Dyba [4]. This identifies
that programmers had difficulty with, and resisted, learning from
the output of process improvers, and particularly from formal
written routines. This suggests an ‘impedance mismatch’ between

those who write instructions and processes for developers, and the
developers themselves who are expected to carry them out. We
can speculate that security experts tend to think in terms of
complete lists of issues and ways to break software; developers
think in terms of simplest and quickest ways to create desired
functionality.

3. OUR RESEARCH
The purpose of our research was to provide ways to improve app
software development, motivated by personal observation that app
security was difficult to learn. So our approach to this research
was pragmatic. We used aspects of different methodological
approaches to get the most effective results.
Our method was to interview experts in app security. We used
semi-structured interviews with app development specialists, and
analyzed them using Grounded Theory [3,9].
We had observed that much of the research and thinking in
security appears negative from the point of view of an app
developer: criticisms of existing software; penetration testing;
analysis of exploits. In the context of the ‘impedance mismatch’,
we were looking instead for positive approaches to security
learning. Thus the nature of the questions and the thrust of the
analysis were guided by a further research method, Appreciative
Inquiry [5]. This led our emphasis in the interviews to be the
positive techniques the experts had discovered or used, and where
and why those were particularly successful.
We chose our interviewees opportunistically, mainly through
introductions from former colleagues. Time and practicality
limited the number of interviews to a dozen. Guest [10] suggests
that further interviews would be unlikely to generate much in the
way of further new theory. In practice we believe that we have
probably reached this ‘theoretical saturation point’ with respect to
app security techniques (Section 7), but not with respect to the
contrasts among experts (Sections 5 and 6)

Table 1: The experts interviewed

ID Organisation type Typical role

P1 Bespoke app developer Developing apps for business clients; author on app security

P2 Mobile phone manufacturer Leader of large team specialising in security

P3 Operating system supplier Developer of user-facing web services

P4 Smart card specialists Design and implementation of smart card software

P5 Security-related SaS supplier Architecting and promoting a secure service

P6 Promoting industry App security consultancy

P7 Mobile phone manufacturer Developer and software architect for OS services

P8 Telecoms service provider Architecting mobile phone services

P9 Bank Analysis, design and implementing changes to web-based services

P10 Secure app technology provider Architecting and promoting app technologies

P11 Operating system supplier Designing and promoting security enhancements

P12 Bespoke app developer Developing apps for business clients

Table 1 gives an overview of the experts interviewed. For each,
we have given an indication of the nature of the companies they
are currently involved with and their typical role. Some were
contractors working for more than one organization; for them this
shows the organization they work with most. All had more than

20 years’ experience in software development. All were currently
working in some way with secure app development; all but P1 had
at least 5 years’ experience working with secure software
development; and all but P5 and P8 had backgrounds as a

software developer. Probably typically of their roles in this
industry, all were male.
Some of the interview questions related to the experts’ analysis of
how to achieve secure app development; others to their own
history and ways of learning about secure app development. Thus
we can distinguish two forms of information from the interviews:
information about how the app security experts had achieved their
expertise and kept themselves updated, and information they had
about best learning approaches for those working with them.
In this paper we quote extensively from the interviews. To convey
correctly the context and protect the confidentiality of the
interviewees, we’ve amended the quotations appropriately; square
brackets show additions and replacements; ellipses show
removals.

4. RESEARCH MODEL
We observed that the experts differed widely in their original
reasons for learning about software security. And there was
correspondingly little agreement on how best to motivate app
programmers generally to produce good secure apps.
Our analysis of the interviews highlighted four forces motivating
a programmer to learn and act on software security, as illustrated
in Figure 1.

Knowledge Worries

Enthusiasms Tasks

Figure 1: Motivation forces on a programmer

These forces are:
Knowledge the knowledge and skills that the programmers

have learned in the past or gained through
experience on how to deal with software security
issues.

Tasks the formal and informal assignments of code to
write, changes to make, training, and related work
that the programmer has as their overt job.

Worries the concerns and fears the programmer has about
what they are doing.

Enthusiasms the positive inspirations that motivate the
programmer to make specific choices.

We found a tension between these as two pairs of alternatives:
those who saw knowledge as a motivation didn’t feel the need for
tasks and vice versa; those who felt worries were a motivation
didn’t consider enthusiasm and vice versa.
So where an expert’s interview expressed a position on these
forces, we express that position as a location on each scale. For
example, an expert who expressed strong views that security
should be part of every relevant activity in software development
would be represented at the ‘knowledge’ end of the scale; an

expert who mildly suggested that security could be included as the
tasks of penetration testing and app hardening would place
towards the ‘tasks’ end of the scale.
We found similar tensions between approaches to different views
on implementing security and on the role of teamwork. These
tensions we also represented on appropriate scales.
Thus in diagrams in the following sections 5 and 6 we position the
views or information expressed by experts on specific topics
against axes representing two related scales. Each diagram shows
only the experts who expressed a clear opinion, and shows
clusters where several shared roughly the same position. The
resulting pattern highlights the range of views expressed.

5. REASONS FOR LEARNING
5.1 Experts’ reasons for learning
Thus Figure 2 expresses the original motivations for the experts
themselves for learning about software security.

Worries

Enthusiasm

TasksKnowledge

P1

P2

P3

P4

P10 P11

P12

P9

P7
P6

P5

P8

Figure 2: Reasons for original learning

As it shows, these varied significantly. Most had learned from
day-to-day experience, given enthusiasm for the security aspects
of that experience; some had started as hackers:
“Actually when I was a kid – fortunately, I never released any of
this stuff – I did actually take copy protection off games for the
intellectual challenge of this” (P3)
Others had started on projects which required security:
“[While at college] I had three very fun summers working on top
secret projects and things like that, which had a fair amount of
security in it.” (P12)
“I did a lot of firmware work on a magnetic stripe card reader ...
that had a number of security features… I definitely got the
[security] bug there”. (P4)
Only P1 had decided to learn about software security as a career
decision – to build experience and credibility in a new area.

5.2 Experts’ reasons for continued learning
We also analyzed experts’ reasons for continued learning. Here
we have more consistency; for most it’s an out-of-band task in
addition to their normal day job, and they do it on an ad-hoc basis.
Only P3 and P11, who work for a global, security aware,
company, receive security-related training; and P1, in his role as
author, assigns app security learning as part of his normal work”
Most kept up to date through a background task of following
appropriate internet media – Bruce Schneier’s update email was
the most commonly mentioned medium (P3, P7, P8), or:

“My work screen has a Twitter feed just running up the right hand
side. Whenever I get to enough of a break that I can glance over
I'll take a look at whatever is currently up there.” (P7)
“I listen to a few podcasts… Security Now… with Steve Gibson on
the TWiT Network” (P12)
Figure 3 shows the experts’ reasons for their continued learning,
where these were discussed.

Worries

Enthusiasm

TasksKnowledge

P1

P2 P3P4

P10

P11

P12

P9

P7

Figure 3: Motivation for continued learning

5.3 Motivating programmers to learn
All the interviewees who discussed the point stressed that
programmers had a tendency to avoid security issues and
concentrate on delivering functionality. Some highlighted that few
undergraduate level computing courses incorporate security into
normal examples and practice.
“So for the majority of people who are currently going through
various computer science degrees, security doesn't really come
into it at all, in any real context”. (P10)
Many correlated general life experience, software development
experience, and especially formal software development
experience with ability at software security. Those who discussed
it stressed the difficulty in motivating inexperienced developers:
“When I'm talking to 22 year old phenomenally brilliant
mathematician software developer who has got almost no life
experience at all – how do I make him care about things that seem
unimportant to him?” (P5)
However the interviewees showed little consistency in their
approaches to solving this problem and motivating programmers
to work on security, as follows.

5.3.1 Enthusiasm or worry?
Some wanted security as an enthusiasm, wanting programmers to
be passionate about doing a good job on security:
“trying to talk to my developers about this and trying to come up
with techniques that make them think about it in a way that makes
them care about it” (P5)
Others felt it should be a worry, where the impact of poor security
is a threat to the programmers:
“We’ll need a mass security event [caused by a mobile app] to get
programmers to take app security seriously” (P1)

5.3.2 Knowledge or task-based?
Some represented making systems secure as part of a process,
where developers do the right thing because they are expert and
knowledgeable:

“So you are going to have to get developers to understand
computer science, and the consequences of the code they are
writing” (P6)
Others saw the adding of and planning of security as part of the
functionality requirements and thus as a specific task.
“Mine is much more practical. I need it to work, I'll put something
together that actually does the job, and I will learn whatever I
need to learn to do that. And then move on, if necessary.” (P4)
We observe that these external motivators for programmers
naturally follow the same axes as the motivators the experts had
had for their own learning. Figure 4 shows how the experts who
expressed views are positioned on the same axes.

Worries

Enthusiasm

TasksKnowledge

P1

P2

P3

P4

P10P7P6

P5

Figure 4: Opinions on how to motivate app programmers

6. IMPLEMENTING SECURITY
We also saw differences in how the experts suggested achieving
app security.

6.1 Approach to teamwork on security
There were differences in how they viewed team interaction and
their roles.

6.1.1 Teamwork vs individual rigor
Some stress communication between and within teams:
“And I think one thing that we were incredibly good at with [a
specific project], is bringing the entire project team together
probably with the aid of, as well as the formal meetings, some of
the more casual discussions over a beer. And so everybody fully
understood the scope of what everyone was bringing to the table
and there was never any of the artificial formalities that
sometimes you can get around these projects where it feels
uncomfortable to pick the phone up to somebody.” (P8)
Others stressed individual rigor, as their primary tool. For
example:
“I tend to look at things in a stepwise way. Certainly when you’re
evolving software, you don’t necessarily have formal proof but
you can go in sufficiently simple steps that you can see that it’s
obviously correct.” (P12)
We saw the latter view expressed usually related to single
developer situations where there weren’t others with whom to
discuss security.

6.1.2 Influencing vs directing
Another distinction that emerged is that some saw their best
means for they themselves to influence the team members as
directive, exerting authority:

“I had success [by] whacking them over the head with a wet fish”
(P7, speaking metaphorically).
Whilst others saw their role as influencing, questioning and
encouraging:
“[I] throw out a few 'what ifs' you know, what if I did that, and
get somebody who is aware and will have an understanding of
what you are suggesting, and they will counter with a sensible
response.” (P8).
Figure 5 shows these two contrasts.

Directive

Influencing

Team
communications

Individual
rigor

P2

P3 P4

P10

P12

P7

P6

P5

P8

Figure 5: Expectation of team interaction

Though one might expect the choice of influencing vs directing to
reflect the expert’s authority in the organization, in fact this was
not necessarily the case. For example P5’s role gave him authority
and P7 was referring to peers.

6.2 Approach to security
In terms of knowledge transfer and implementing app security
there were also differences between experts. These were more
nuanced, reflecting differences in emphasis.

6.2.1 Checklists or whole system security?
Some experts preferred a checklist, excellent-coding attitude to
security:
“Checklists I think are wonderful things. And if they are Why,
How, What, Where, When, not just 'does it' – it's not just a 'yes /
no'. It’s a checklist that goes, in what way have you done this?”
(P5)
Others stressed the importance of various aspects of Whole
System security:
“I would just wish that education was better and that developers
understood about separation of code and data and Saltzer and
Schroeder’s 8 principles of computer security, and understood the
background more and focussed less on the top 10 vulnerabilities –
what they happen to be this year.” (P6)

6.2.2 Concentrate on attacker or stakeholder?
There was an interesting distinction as to whether the emphasis
was more on attackers, or on stakeholders such as product
managers. Some emphasized the importance of understanding and
reacting to different kinds of attackers:
“You also try and understand why someone is coming to your
service in the first place. And try to give them what they want up
front, so they lose interest and go away.” (P9)

“I think it is actually very important to understand the motivations
behind why somebody is hacking the system. We try to address the
motivations of the attackers, versus the technical aspects - just
locking it down for the sake of locking it down.” (P11)
Others emphasized the importance of negotiation with
stakeholders on what security was put in the product:
[When I started] a project I’d go back and ask [my
customer]…‘You do realize this [information] can be seen’. It
goes from there: ‘how secure do you want it to be?’ You have to
show that there’s a problem first I think” (P1)
Figure 6 shows these differences in emphasis.

Checklist

Whole system

Stakeholder
negotiation

Attacker
profiling

P1

P3P11P9

P7

P6

P5

P8

P4

Figure 6: Preferred approach to app security

7. WHAT TO LEARN
Our purpose in the research was to work towards helping app
developers in future. To work towards a practical positive output
we looked therefore for development techniques that lead to good
app security. There was no clear consensus, but we did identify a
range of approaches each championed by at least one of the
interviewees, and each rejected by none. Thus we synthesized
agreement on important things for app programmers to learn.
Many of our interviewees were clear that app programming
techniques and choices alone wouldn’t be sufficient. So they take
as a given approaches such as the OWASP lists and penetration
testing, and they build on that.
“We said 'right – these checklist things don't work, because
products are too different, and so on, actually what we are
looking at is more…’ – and to be fair, these days, you would call
them architecture patterns rather than design patterns because
they are at a higher level than typical design patterns.” (P6)
This section explores some of the ‘best practice points’ raised in
the interviews. They’re grouped under four categories: analysis,
dialectic development, continuous feedback, and continuous
enhancement.

7.1 Analysis
Analysis covers the programmer involvement in work outside the
main design and coding of their apps. In some projects this will be
upfront work; in agile projects it is likely to continue throughout
the development life-cycle.
Important features of analysis include agreement on the level of
security and the processes involved:

“It depends on the client, how much money they’ve got, how much
time they want, how much time they’ve got to get to market. And
you have to compromise all the processes, how you do it, and the
degree to which you do it based on them. There is no One Way.
It’s the same with security.” (P1)
To that, they added security-aware choices of libraries and
environments; ideation sessions working with stakeholders and
penetration testing experts of different possible exploits on the
system; and formal or informal risk assessments of the likelihood
of each exploit and its possible impact.
“One of the things I like to do with the [penetration testing] guys
is to, if you sit down and say 'what are all the different ways you
could subvert this system'. It is quite common to come up with 20,
30, 40, 50 in five or ten minutes of brainstorming. I bet you, you
wouldn't think of half of them.” (P2)

7.2 Dialectic development
‘Dialectic’ means the finding out of knowledge through one
person questioning another. Because of the adversarial nature of
security, many of the most effective techniques for finding
security issues are dialectic. Some of the techniques
recommended were penetration testing, code reviews, pair
programming, and a variety of code analysis tools.
“I think the one [approach] that has been, arguably, most useful
has been using specialist external consultancy around security.
Not for training, but ‘can you just come in and penetration test
this device’” (P2)
“Nothing gets submitted without it being reviewed by at least
another engineer. And there are strong processes to protect that
fact. … The most successful technique has to be review by [a
security] expert – you can't really beat that – an actual
conversational review by an expert, because someone who is an
expert in security might not be an expert in the domain.” (P3)
“[The most successful technique I have found is] to use various
types of Lint checkers” (P7)

7.3 Continuous feedback
Many interviewees stressed the interactive nature of defending
apps. In order to deal with new exploits and analyze existing ones,
developers need access to information about what is happening to
the deployed apps.
This is more difficult with apps than with in-house or cloud-based
systems, since apps are deployed remotely and may not have
continuous communication with any central point. App developers
typically need to put in extra functionality and have support
processes to ensure they receive feedback. These range from
delayed logging back to a central server:
I’ve built quite a bit into the apps where they have their own
debug logs because I don’t trust the likes of Google because they
have to sanitize what they give you because they’ve got privacy
issues on their side of things. (P12)
to offering bounty for people who report possible weaknesses:
“We pay people to report bugs to us” (P11)
Based on this feedback programmers can analyze new security
issues and plan fixes into the development stream for the future.

7.4 Continuous enhancement
The interviewees also stated that software needs to continue to
change throughout its lifetime in order to remain sufficiently
secure. New exploits, improved processing power, and wider

publication of existing exploits all mean that what might have
been secure a year ago may not be now.
“Security is a process and update rates are an important part of
that process” (P3)
Two aspects make this particularly difficult for apps. First, the
process of upgrading an app’s code is difficult. It usually requires
a new release via an ‘App Store’, whether for a mobile app or a
new OS version; but many users may choose not to upgrade.
“The moment you release something to [a mobile phone OS], you
will, in general, never get a 100% update rate, because loads of
people [install] software once and never update.” (P3)
So developers of mobile apps need to consider whether
functionality is required to work around this.
Second is the nature of app development ‘contracts’, whether
internal to a company or commercial external contracts. In many
cases app development is seen as ‘fire and forget’; on completion
of the initial app development phase, the team is allocated to
different projects.
“Like many things that get delivered in a project, the project ends
and interest dies with it. Unfortunately. And I think you lead into a
significant challenge in securing things on an operational basis”.
(P8)
Secure app development therefore requires a different, continued
development, approach to support sufficient security maintenance.

8. WHAT NEXT?
We observed in section 7 a lack of consistent emphasis on
different secure app development techniques, and we observed in
section 5 notable differences of opinion on how to motivate
programmers to security, as highlighted by the spread of the
points in Figure 4. Section 6 showed even stronger contrasts in
experts’ approaches to teamwork in Figure 5, and their approaches
to app security in Figure 6.
The authors had experienced a similar lack of consistency in the
early days of both the object oriented design paradigm (OOD) and
the Agile development paradigm, each of which in due course
converged into well accepted approaches: around UML and
Scrum respectively. In the early days of each there were many
good ideas and many experts championing different aspects of
those ideas; the current situation in secure app development has a
similar character. This suggests that the discipline of app
development security is still at an early stage.
The convergence around UML and Scrum led to greatly increased
programmer acceptance and knowledge of OOD and Agile
development respectively. We suggest that similar convergence in
app development security will lead to greatly improved
programmer knowledge in that area. Looking at the history of
object oriented design and agile development we believe two
steps are likely to lead to this convergence. First is the
codification of the main principles by well-respected experts in a
popular form: a book, online resource, or even video. Second is
the championing of that codification by one or more large
commercial organizations. Microsoft and Google are likely
contenders, but both are tainted by their commitments to specific
mobile platforms so it remains to be seen which organization may
champion a global approach.

9. CONCLUSION
In this paper we have highlighted the risks associated with app
security, and identified the importance of ensuring programmer

motivation to program apps securely and of improving their skills
at doing so.
From our research we showed in Section 5 that there is little
similarity in people’s motivation to learn software security, nor
consensus on how to motivate app developers to do so. Section 6
showed diverging opinions on the use of teamwork and on the
best approach to implementing security. And Section 7
highlighted valuable ‘whole system security’ approaches to apply
to app development despite a lack of industry-wide consensus on
them.
The lack of agreement is a significant challenge to improving the
skills of app programmers, and Section 8 highlighted the
importance of working towards an industry-wide consensus based
on research.
Thus future research is needed to explore objectively the most
effective ways to motivate app developers in different contexts to
learn and use secure development practices. And research is
required to clarify the best security practices in different app
development contexts and to discover the most effective ways for
programmers to learn them.

10. REFERENCES
[1] Banks, A. and Edge, C.S. Learning iOS Security. Packt

Publishing, 2015.

[2] Bluebox Security. ’Tis the Season to Risk Mobile App
Payments - An Evaluation of Top Payment Apps. (2015).

[3] Charmaz, K. Constructing grounded theory. Sage,
London, 2014.

[4] Conradi, R. and Dybå, T. An empirical study on the
utility of formal routines to transfer knowledge and
experience. ACM SIGSOFT Software Engineering Notes
26, 5 (2001), 268–276.

[5] Cooperrider, D.L. and Whitney, D. Appreciative inquiry:
a positive revolution in change. Appreciative Inquiry,
(2005), 30.

[6] Dybå, T. An empirical investigation of the key factors for
success in software process improvement. IEEE
Transactions on Software Engineering 31, 5 (2005),
410–424.

[7] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A
Study of Android Application Security. USENIX security
symposium, 2011.
http://www.usenix.org/event/sec11/tech/slides/enck.pdf.

[8] Enes, P. and Conradi, R. Acquiring and Sharing Expert

Knowledge. 2005.
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-
2005/aanes-fordyp05.pdf.

[9] Glaser, B.G. and Strauss, A.L. The Discovery of
Grounded Theory : Strategies for Qualitative Research.
Aldine Transaction, Chicago, 1973.

[10] Guest, G., Bunce, A., and Johnson, L. How many
interviews are enough? An experiment with data
saturation and variability. Field methods 18, 1 (2006),
59–82.

[11] Howard, M., LeBlanc, D., and Viega, J. 24 Deadly Sins
of Software Security: Programming Flaws and How to
Fix Them. McGraw-Hill, Inc., 2009.

[12] Johnson, M. and Senges, M. Learning to be a
programmer in a complex organization. Journal of
Workplace Learning 22, 3 (2010), 180–194.

[13] LLVM Project. libFuzzer.
http://llvm.org/docs/LibFuzzer.html.

[14] McGraw, G. Software security: building security in.
Addison-Wesley Professional, 2006.

[15] Microsoft. Learning Security - MSDN.
https://msdn.microsoft.com/en-
us/security/aa570420.aspx.

[16] Ponemon Institute. The State of Mobile Application
Insecurity. 2015.

[17] Schumacher, M., Fernandez-buglioni, E., Hybertson, D.,
Buschmann, F., and Sommerlad, P. Security Patterns:
Integrating Security and Systems Engineering. John
Wiley & Sons, 2005.

[18] Six, J. Application Security for the Android Platform.
O’Reilly, Sebastapol, CA, 2011.

[19] Xie, J., Chu, B., Lipford, H.R., and Melton, J.T. ASIDE:
IDE support for web application security. Proceedings of
the 27th Annual Computer Security Applications
Conference on - ACSAC ’11, (2011), 267.

[20] Xie, J., Lipford, H.R., and Chu, B. Why do programmers
make security errors? Proceedings - 2011 IEEE
Symposium on Visual Languages and Human Centric
Computing, VL/HCC 2011, (2011), 161–164.

[21] OWASP Developer Guide.
https://github.com/OWASP/DevGuide.

