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Abstract
Contemporary attempts to explain the existence of ultra-high energy cosmic
rays using plasma-based wakefield acceleration deliberately avoid non-stan-
dard model particle physics. However, such proposals exploit some of the
most extreme environments in the Universe and it is conceivable that hypo-
thetical particles outside the standard model have significant implications for
the effectiveness of the acceleration process. Axions solve the strong CP
problem and provide one of the most important candidates for cold dark
matter, and their potential significance in the present context should not be
overlooked. Our analysis of the field equations describing a plasma augmented
with axions uncovers a dramatic axion-induced suppression of the energy
gained by a test particle in the wakefield driven by a particle bunch, or an
intense pulse of electromagnetic radiation, propagating at ultra-relativistic
speeds within the strongest magnetic fields in the Universe.

Keywords: particle acceleration, plasma, axion

1. Introduction

The existence of cosmic rays with energies  1020 eV remains an outstanding puzzle in
astrophysics [1, 2]. The well-established Fermi paradigm for cosmic acceleration, in which
charged particles gain energy by scattering repeatedly from magnetic inhomogeneities [3] or
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shock waves [4–7], has not yet been shown to be efficient for accelerating particles to such
exceptional energies. However, it has been argued that strategies whose effectiveness has
been honed in the laboratory could be important in the astrophysical context [8]. Experience
gained in the laboratory suggests that efficient acceleration mechanisms exploit sub-luminal
waves, avoid collisional processes and do not involve particle trajectories with large curvature
(thus avoiding excessive energy losses due to inelastic scattering and synchrotron radiation,
respectively).

A sufficiently short and intense laser pulse, or charged particle bunch, propagating
rectilinearly through a laboratory plasma will drive an inhomogeneity in the plasma electron
density that trails behind the pulse or bunch. The inhomogeneity, or wakefield, is a wave in
the plasma electron density that propagates at the group velocity of the pulse (or velocity of
the bunch) and whose longitudinal electric field is several orders of magnitude greater than
that achievable within radio-frequency cavities. Driven mainly by the spectacular success of a
number of landmark experiments and simulations [9–12] approximately a decade ago,
plasma-based wakefield acceleration [13] is now recognised as a vital concept for the next
generation of terrestrial particle accelerators [14, 15].

In tandem, plasma wakefield acceleration has also gained attention in astrophysical
contexts [8, 16, 17]. For example, it has been argued that longitudinal space charge waves
excited by Alfvén shocks caused by the collision of a pair of neutron stars may have the
necessary properties for reliably accelerating protons to ZeV energies [8]. Thus, plasma
wakefield acceleration may provide an effective solution to the problem of the origin of ultra-
high energy cosmic rays.

In fact, neutron stars have long been suspects in the search for the culprits behind ultra-
high energy cosmic rays [18]. In particular, the fast rotation of a pulsar combined with its
strong magnetic field yields a particle accelerator based on unipolar induction, and the
implications of this mechanism have been thoroughly explored over many years (see, e.g.,
[1]). Although difficult questions remain over whether this approach can correctly explain the
ultra-high energy cosmic ray spectrum [1], some success has been achieved in recent years in
explaining the acceleration of heavy nuclei using sufficiently young strongly magnetised
neutron stars with millisecond rotation periods [19]. Nevertheless, plasma wakefield accel-
eration is an important alternative to unipolar induction, especially for light nuclei [8, 17], and
the focus of the present article will be on plasma wakefield acceleration in ultra-strong
magnetic fields.

A strength of the plasma wakefield mechanism, like the unipolar inductor, for cosmic
acceleration is that it does not rely on ingredients outside of the standard model of particle
physics. However, non-standard model effects may be relevant as a consequence of the ultra-
strong electromagnetic field strengths expected in the most extreme astrophysical environ-
ments. In particular, it is conceivable that effects due to hypothetical particles with very weak
coupling to light and matter may manifest in such environments. One of the most popular
dark matter candidates, the axion, was proposed as an elegant solution to the strong CP
problem in QCD [20–22] before its significance in the cosmological context was expounded
[23–25]. Furthermore, in addition to the QCD axion, light pseudo-scalar particles are a
generic consequence of type IIB string theory [26]; hence, a range of experiments have been
developed, or are under development, in an attempt to uncover the effects of axions and
axion-like particles (ALPs) [27–33]. Although positive detection remains elusive in the
laboratory, it is possible that ALPs play a significant role in the ultra-strong magnetic field of
a neutron star.

The purpose of this article is to demonstrate that ALPs may have significant con-
sequences for plasma wakefield acceleration in ultra-strong magnetic fields. Although ALP
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fields couple directly to ordinary matter, the effects of the ALP-photon coupling are expected
to dominate over those due to ALP-matter couplings in strongly magnetised plasmas. For
convenience, we will briefly describe the main ingredients of our approach and summarise the
key results before turning to their derivation.

2. Ingredients in the model and key results

Our assessment of the influence of ALPs is based on a model of a magnetised plasma that
includes two charged pressureless perfect fluids. One fluid represents mobile electrons while
the other fluid describes the charge carriers of a neutralising background medium with
constant proper number density. The charge-to-mass ratio of the charge carriers of the
background is assumed to be considerably lower than that of the other charged particles in the
system and we assume that the motion of the background can be neglected over the timescales
of interest.

The explanations in [8, 17] of the origin of ultra-high energy cosmic rays invoke
acceleration in astrophysical jets where the magnetic field is almost certainly too weak for
ALPs to play a significant role. However, it has also been argued [16] that plasma-based
acceleration is of interest within neutron stars, where the magnetic field is considerably
higher.

The outer crust of a neutron star provides a background medium comprised of magne-
tically polarised iron atoms. Due to the considerable strength of the magnetic field (∼108 T),
the electron ‘gas’ within the crust is essentially confined to move along magnetic flux tubes
threaded by the field lines [16]. Thus, we model the plasma wakefield as a sub-luminal
nonlinear longitudinal plane wave in the electron fluid density propagating at velocity v
parallel to the field lines of a homogeneous magnetic field of strength B in the frame of the
background medium. The electron density wave generates an ALP field whose strength is
proportional to gB, where g is the ALP-photon coupling constant; in turn, stress–energy–
momentum conservation requires that the plasma fields are influenced by the ALP field. A
self-consistent analysis of this type was previously used to uncover a novel signature of the
ALP-photon coupling in waveguide mode spectra [34].

For sufficiently large density fluctuations, the electric field of the wave has a sawtooth-
like profile and its amplitude saturates; this leads to an upper bound on the energy that can be
gained by a test particle in the wakefield. In particular, we will show that a test particle with
mass M and charge Q cannot achieve an energy greater than +W Mcmax 2 where
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the increase in energy in the absence of the magnetic field. The dimensionless parameters σ,
Θ are
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where mα is the ALP mass, g = - v c1 1 2 2 is the Lorentz factor of the phase speed v of
the wave and w e= e q n mp 0 0 0 e( ) is the plasma frequency (q0 is the charge on a particle of
the background medium, n0 is the proper number density of the background medium, e is the
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elementary charge and me is the mass of an electron). Equation (2) yields the well-established
result

g g= - -=W m c 4 3 1 4B 0
max

e
2 3( ) ( )

when the test particle is an electron (M=me, Q=−e) [35, 36].
The influence of the ALP field emerges as an overall multiplicative factor in (1) that does

not depend on the properties of the test particle. It is clear that  =W WB
max

0
max where the

approximate bound is saturated when B=0, and the ALP field and the background magnetic
field together reduce the maximum overall energy gain of the test particle. The previous result
is reassuring because the energy supplied by the driver of the wakefield is shared between the
ALP field and the plasma, and the test particle does not directly couple to the ALP field in our
model. Furthermore, as we will show, QED vacuum polarisation does not contribute to (1), to
first order in small quantities, even though it affects the wavelength and amplitude of the
wakefield.

It is important to note that our analysis does not incorporate the structure and dynamics of
the driver of the wakefield. Neither the back-reaction of the plasma and ALP field on the
driver, nor the back-reaction of the accelerated particle on the plasma, ALP field and driver,
are included. Detailed investigation of such effects requires intensive numerical calculations
that are beyond the scope of the present article, but it is likely that they would further reduce
the energy gain of the accelerated bunch. For example, in most laboratory-based configura-
tions, the coupling between the driver and the plasma in particle-beam driven wakefield
acceleration imposes severe restrictions on the energy gain [37].

The scale of the ALP-induced effects in (1) can be estimated as follows. The DESY
ALPS-I (any light particle) experiment has excluded light ALPs with strengths
g10−7 GeV−1, while astrophysical and cosmological considerations lead to

 a
- -m c10 eV 10 eV6 2 2 for the QCD axion [31]. The plasma frequency of the magne-

tically polarised iron lattice providing the neutralising background within the outer crust of a
neutron star is ∼ 1018 Hz when B∼108 T [16]. Hence, convenient estimates of the dimen-
sionless parameters that characterise the ALP-induced suppression of a plasma wakefield
accelerator driven by a ∼1 TeV bunch of electrons (γ∼2×106) propagating along the
∼ 108 T magnetic field within the outer crust of a neutron star are as follows:
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Note that a∼3% perturbation to =WB 0
max follows from (1), (5) and (6) when the repre-

sentative parameters are used. The relative size of the perturbation is highly sensitive to the
ALP mass; in particular, it reduces to ∼0.04% for =a

-m c 10 eV2 4 and increases to ∼90%
for =a

-m c 10 eV2 6 . As we will see in the remainder of this article, a perturbative approach
is used to obtain (1) and, although the use of perturbation theory is suspect when

a
-m c 10 eV2 6 , it is reasonable to conclude that the ALP field has a substantial effect on the

maximum energy gain if <a
-m c 10 eV2 5 .

More stringent upper bounds on the ALP-photon coupling constant g, such as those
obtained from solar axion searches by CAST [38] (g10−10 GeV−1), can be compensated
by the magnetic fields found in magnetars (B∼1011 T). The plasma frequency of the outer
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crust of a neutron star satisfies w p~ ´ d -B2 10 10 T rad sp
18 8 1( ) , where δ∼3/5 – 3/4 [16],

and inspection of (6) shows that a wakefield driven by a ∼30 TeV bunch of electrons in a
∼1011 T field leads to values of σ that are similar to those found when B∼108 T. Note that
only relatively modest drive-bunch energies (in the context of cosmic rays) are required to
obtain substantial axionic suppression of the plasma wakefield acceleration mechanism.

3. Derivation of the results

Henceforth, units are used in which the speed of light c, the permittivity ε0 of free space and
the reduced Planck constant ÿ are unity. Furthermore, for linguistic convenience, we will refer
to the charge carriers of the neutralising background medium as ions regardless of whether
they are polarised ion cores in the crust of a neutron star or ions in a magnetised plasma.

3.1. Field equations

The variables describing a cold ALP-plasma are the ALP 0-form α, the electromagnetic
2-form F, the 4-velocity field Ve of the plasma electrons, the proper number density ne of the
plasma electrons, the 4-velocity field V0 of the ions and the proper number density n0 of the
ions. The effect of the electromagnetic field on the ions is negligible over the length and time
scales of interest; we choose n0 to be constant and choose V0=∂/∂t where the spacetime
metric η and volume 4-form å1 are

h = - Ä + Ä + Ä + Ät t x x y y z zd d d d d d d d , 7( )

 =   t x y z1 d d d d 8( )

with ∧ the exterior product and d the exterior derivative on differential forms. Exterior
differential calculus is used extensively in this section because it is an efficient tool for
formulating the ALP-plasma field equations and reducing them to nonlinear ODEs; a detailed
account of the techniques and conventions used here may be found in [39].

The Hodge map å induced from the volume 4-form å1 satisfies the identity
 b i b =

~
W W( ) for all differential forms β and vectors W. The action of å is extended to

non-decomposable forms by linearity, and the linear operator ιW is the interior derivative with
respect to W. The 1-form

~
W is the metric dual of W and satisfies h=

~
W V W V,( ) ( ) for all

vectors V; likewise, the vector field b is the metric dual of the 1-form β and satisfies
b b=V V( ) ( ) for all vectors V.
The electric 4-current densities of the plasma electrons and the ion background are

qeneVe, q0n0V0, respectively, where qe=−e is the charge on an electron, q0 is the charge on a
background ion and h h= = -V V V V, , 1e e 0 0( ) ( ) . The behaviour of the electromagnetic field
is determined by the Gauss–Faraday and Gauss–Ampère laws:

=Fd 0, 9( )

  = - - d G q n V q n V 10e e e 0 0 0 ( )

and the ALP field α satisfies

  a a l- = -¶a ad md 1 1 112 ( )

with mα the ALP mass. The electromagnetic excitation 2-form G is specified by

l l= ¶ - ¶G F F2 , 12X Y( ) ( )
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where λ is a 0-form-valued function of the ALP field α and the electromagnetic invariants

  =  = X F F Y F F, . 13( ) ( ) ( )

The 0-form λ(X, Y, α) is the sum of all purely electromagnetic contributions to the Lagrangian
(including effective self-couplings due to QED vacuum polarisation) and terms that encode
the interaction between the electromagnetic and ALP fields.

The behaviour of the electron fluid is determined by appealing to total stress–energy–
momentum conservation. The divergence of the total stress–energy–momentum tensor of the
electron fluid, electromagnetic field and ALP field must balance the forces on the ions. For
present purposes, it is useful to cast this statement in the language of differential forms; the
behaviour of the plasma electrons is determined by the following field equation:

t i=  q n F Vd , 14K K0 0 0 ( )

where the total stress 3-form tK of the electromagnetic field, ALP field and plasma electron
fluid is

    



t i l i a a a i a a
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with K a Killing vector and me the mass of an electron. The stress 3-form τK is related to the
total stress–energy–momentum tensor  of the electromagnetic field, ALP field and plasma
electron fluid via the identity  i t=K W, W K( ) , for all vector fields W, and (14) is the
component of a local balance law associated with K. In particular, if K is a generator of spatial
translations then (14) is the K-component of a field equation describing the local balance of
linear momentum while a generator of time translations leads to local energy balance.

Before reducing the above field equations to a system of nonlinear ODEs, it is worth
commenting on the approach adopted here in comparison to our earlier analysis of plasma
wakefields in nonlinear electrodynamics [40]. It can be shown that the system (9)–(11) and
(14) is equivalent to (9)–(11) with the Lorentz equation of motion for the plasma electron
fluid:

i i=V
q

m
Fd . 16V Ve

e

e
e e

( )

The system (9), (10) and (16) is the starting point for the analysis in [40]; however, the
analysis in [40] includes the derivation of a first integral that can be shown to follow
immediately from the stress–energy–momentum balance law (14) [41]. For present purposes,
it is more efficient to adopt the strategy that we recently developed in [41] and begin with the
stress–energy–momentum balance law (14) rather than (16).

3.2. ODE system describing nonlinear longitudinal ALP-plasma waves

Solutions to (9)–(11) and (14) are sought that describe longitudinal plane waves propagating
along a constant magnetic field. The electromagnetic field F and electron fluid 4-velocity Ve

have the form

z=  - F E t z B x yd d d d , 17( ) ( )

m z q m z g q= - -V 18e
1 2 2 2( ) ( ) ( )
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where z = -z vt with v the phase speed of the wave, 0<v<1, g = - v1 1 2 ,
q = - +t v zd d1 and q z= = -z v td d d2 . Likewise, the electron proper number density ne
and the ALP field α are assumed to depend on ζ only.

Clearly, the Gauss–Faraday law (9) is trivially satisfied by (17). Furthermore, the point-
wise behaviour of the components of åG with respect to the co-frame {dt, dx, dy, dz} depends
on ζ only and it immediately follows that z  =d Gd 0. Thus, the exterior product of dζ
and the Gauss–Ampère law (10) yields

g
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1
. 19e
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( )

The set of Killing vectors q q¶ ¶ ¶ ¶
~ ~

x y, , ,1 2{ } is a basis for vector fields on flat
spacetime. Setting K to ∂/∂x or ∂/∂y in (15) yields τK;0 where ; denotes equality modulo
exact forms. On the other hand, inspection of (17) reveals that the right-hand side of (14)
vanishes when Î ¶ ¶ ¶ ¶K x y,{ } and so (14) is trivially satisfied.

Setting q=
~

K 1 in (15) reveals
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follows from (14), (17) and (20). A prime indicates differentiation with respect to ζ.
The remaining outcome of (14) is revealed by choosing q=
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where (19) has been used to eliminate ne. Thus, combining (22) with the result of using (21)
to eliminate E in the right-hand side of (14) reveals
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Only the ALP field equation (11) remains and it can be shown that

a
g

a l
- = -¶a am . 24

2
2 ( )

It is worth noting that the above procedure bypasses the second-order ODE for μ that
emanates from the Gauss–Ampère law (10). However, the latter ODE also follows as a
consequence of (21), (23), (24) and no new information is uncovered.

In summary, the ALP-plasma field system reduces to (23) and (24) with E given by (21).
The electromagnetic invariants are = -X E B2 2, Y=2EB. For definiteness, from now on
we will only consider theories with a minimal coupling between the ALP and the
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electromagnetic field rather than those with more general couplings [31, 42]. We will focus on
theories of the form

l a l a= +X Y X Y g Y, , ,
1

2
, 25EM( ) ( ) ( )

where λEM(X, Y) depends only on the electromagnetic field invariants and g is a coupling
constant. The term gαY/2 coupling the ALP field and electromagnetic field does not appear in
the stress–energy–momentum tensor and its contributions to the first three terms in (23)
cancel; substituting λ in (23) and (24) leads to
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The 0-form λEM(X, Y) reduces to the classical vacuum Maxwell Lagrangian X/2 in the weak-
field limit and, for stronger fields, captures the effects of quantum vacuum polarisation. As we
will soon see, the detailed structure of λEM(X, Y) is unimportant for our purposes.

3.3. Periodic solutions

Inspection of (27) shows that, in general, α behaves exponentially when g=0 and such
solutions describe ALP fields generated by a source other than the plasma electrons and ions.
Although such effects could be attributed to the driver of the plasma wakefield, we will only
consider the ALP fields self-consistently generated by the plasma electrons and ions.

The structure of (26) suggests the existence of solutions for μ that are periodic in ζ when
α=0. Furthermore, the structure of (27) ensures that an ALP field generated by a periodic
electric field will be periodic; hence, in the absence of a background ALP field, a Fourier
series representation for μ, α will be sought:
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where the period l of the solution must be determined as part of the analysis. Thus (21), (27),
(28) and (29) lead to the relationship

a
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between the Fourier components of α and μ, and we can express (26) as the nonlinear and
non-local equation
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with α specified by (29), (30) and
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3.4. Maximum energy gain

Following the approach used in [41], the change in energy D K of a test particle between the
endpoints I, II of a segment C of its world-line in an inertial frame of reference adapted to a
timelike unit Killing vector K is
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where M, Q are the mass and charge of the test particle, respectively, and Ċ is the 4-velocity
of the particle. Equation (34) is a covariant expression of the relationship between the change
in energy of the particle and the work done on the particle by the Lorentz force between I and
II. Of particular interest here is the case when ζI, ζII are located at adjacent turning points of μ,
i.e. adjacent nodes of the electric field.

The square root in (31) ensures that μ>γ and leads to an upper bound on the amplitude
of the solution to (31) if λEM=X/2 and g=0 (i.e. the effects of quantum vacuum polar-
isation and the ALP are neglected). However, the effects of quantum vacuum polarisation and
the ALP are expected to be small and, from a perturbative perspective, an upper bound on μ is
also expected to exist when such effects are included.

The electric field ιKF in a frame adapted to g= ¶ + ¶K vt z( ) (i.e. a frame in which the
wave is static) is Eγ dζ using (17) and z = -z v td d d . Thus, the maximum gain in energy of
the test particle is

 òg
m
z

z

g
m m

D =

= -

z

zQ m

q

Q m

q

d

d
d

, 35

K
e

e

e

e
II I

I

II

( ) ( )

where (21) has been used. Although (35) can be expressed in terms of the potential difference
between two adjacent nodes of the electric field, it is convenient for present purposes to retain
D K in the form given above.

The parameters μI, μII are adjacent turning points in μ and further analysis is required to
determine them. Integrating (31) immediately yields
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⎧⎨⎩
⎫⎬⎭j m m g m+ - - =

z

z
q

q
m n v 0 360

e
e 0

2 2

I

II

[ ] ( ) ( )

because E∝μ′ and so z z= =E E 0I II( ) ( ) . In order to ensure that the test particle is
accelerated, rather than decelerated, we require the particle to be in the appropriate phase of
the wave. If Q/qe>0 then we choose μI to be a minimum of μ and μII to be the subsequent
maximum of μ. However, if Q/qe<0 then we choose μI to be a maximum of μ and μII to be
the subsequent minimum of μ.

Note that nonlinear corrections to λEM=X/2 only contribute to (36) through j[μ].
However, as noted above, the corrections to classical Maxwell theory due to quantum vacuum
polarisation and the coupling to the ALP are expected to be amenable to perturbative analysis.
Since j[μ] is a small perturbation to the remaining terms in (36), we expect the value of μ for
a classical cold plasma to be adequate for calculating the first term in (36). Furthermore,
inspection of (36) reveals that the absolute minimum value of μ is γ when j[μ] is neglected
and this conclusion will hold when j[μ] is not neglected. Thus, we express (36) as

* *
j n m g m g+ - - + »z

z q

q
m n v 0 370

e
e 0

2 2
I

II[ ]∣ ( ) ( )

with ν the solution to (26) for μ that arises when λEM=X/2, α=0. The parameters ò, μ* satisfy

⎧⎨⎩ =
+ >
- <

Q q

Q q

1 if 0

1 if 0
38e

e
( )

and

⎧⎨⎩*
m

m
m

=
>
<

Q q

Q q

if 0

if 0
39II e

I e
( )

with μI=γ if Q/qe>0 or μII=γ if Q/qe<0. Setting λEM=X/2, α=0 in (26) reveals

⎡
⎣⎢

⎤
⎦⎥m g w m g m¢ - - -
¢
=v

1

2
0, 40p

2 4 2 2 2( ) ( )

where w = -q q n mp 0 e 0 e is the plasma (angular) frequency, and it follows that ν satisfies

n g w n g n g¢ - - - + =v
1

2
0 41p

2 4 2 2 2( ) ( )

since, by construction, ν′=0 when ν=γ.
Note that in calculating the maximum gain in energy, all electromagnetic self-couplings (such

as those that arise from QED) are distilled away without further approximation. The explicit
modifications to the period and profile of the wave due to vacuum polarisation conspire to produce
no change in the maximum possible energy gain [41]. The effects of quantum vacuum polarisation
implicit in the remnants of the ALP field in (36) are lost when j[μ] is approximated by j[ν].

Solving (37) for μ* and casting the result in an amenable form is a little involved and, to
avoid distraction, we have presented the details in the appendix. We find

*
m g= += v1 42g 0

3 2∣ ( ) ( )

in the absence of the ALP-photon coupling and

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥*

m g g
p

p
» + - -

a
v

g B

m s

s
1

2
1

2
tanh

2
433 2

2 2

2
3( ) ( )
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to first order in g2, where the parameter s is

g
p

= as
m l

2
44( )

and only the leading order γ-dependence of the g2( ) term in (43) has been retained. Hence,
using (42) and (35) with μI=γ if Q/qe>0 or μII=γ if Q/qe<0, the maximum gain in
energy in the wave frame when g=0 is

 gD == m v
Q

q
2 45K g 0 e

2 2

e

∣ ( )

and

⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭ g
p

p
D » - -

a
m

Q

q
v

g B

m s

s
2 1

2 1
tanh

2
46K e

2

e

2
2 2

2
( )

follows from a perturbative analysis of (43) and (35) in g2.
The maximum energy gain in the inertial frame in which the ions are at rest is

straightforward to obtain by adapting the approach in [41] to accommodate a test particle with
arbitrary mass M and charge Q. Unlike (46), the energy gain in the ion frame depends on the
initial velocity of the test particle. Although it is intuitively obvious that the test particle
should begin at rest in the wave frame to gain maximum energy within the wave, we will
prove this result for completeness.

Expressing the 4-velocity Ċ of the test particle as = G +C K UL˙ ( ) where (0, 0, U) is the
3-velocity of the test particle in the wave frame, g= ¶ + ¶K vt z( ), g= ¶ + ¶L vz t( ) and

G = - U1 1 2 gives

 h
g

D =- ¶
= G + - G +

¶ M C

M U v U v

,

1 1 , 47
t I

II

II II I I

t
( ˙ )∣

[ ( ) ( )] ( )

where UI, UII are the values of U and ΓI, ΓII are the values of Γ at the spacetime events I, II
respectively. The expression

 hD =-
= G - G

M C K
M

,
48

K I
II

II I

( ˙ )∣
( ) ( )

fixes ΓII (and therefore also fixes UII) in terms of ΓI and the known quantity D K . Since D K

is independent of ΓI it follows that G G =d d 1II I using (48) and

⎛
⎝⎜

⎞
⎠⎟


g

D
G

= -¶
M v

U U

d

d

1 1
49

I II I

t ( )

follows from (47); therefore D G <¶d d 0It
since UII>UI (the test particle is assumed to be

in the phase of the plasma wave in which it is accelerated). Hence, the maximum value D ¶
max

t

of D ¶t
is obtained at the minimum value of ΓI and setting ΓI=1 in (47) yields

 gD = G + -¶ M U v1 1 , 50max
II IIt

[ ( ) ] ( )

where ΓII is specified in terms of D K as

G = + D
M

1
1

. 51KII ( )

The maximum total energy that the test particle can achieve in the ion frame is
+W Mmax where
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 g= D + -¶W M 1 . 52max max
t

( ) ( )

Using (45), (50) and (51) to eliminate D ¶
max

t
from (52) in favour of γ and the ALP-plasma

parameters leads to

g g g g g= Q - + Q - + Q - + -=W M 2 2 1 1 1 1 , 53g
max

0
2 3 2 2 2∣ [ ( ) ( ) ( ) ] ( )

where

Q =
Q

q

m

M
54

e

e ( )

and a perturbative analysis of (50) in g2 yields

⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭p
p

» - -
a

=W W
g B

m s

s
1 1

2 1
tanh

2
55g

max max
0

2 2

2
∣ ( )

for γ?1. The equality in (55) is approximate because it is only valid to first order in g2 and
the dominant behaviour of the g2( ) term in large γ has been exploited to write the final result
in a factored form. Equation (53) with M=me, Q=qe=−e leads immediately to the
classic result

g g= - -=W m 4 3 1 56g
max

0 e
3∣ ( ) ( )

for the maximum energy gain of a test electron in a plasma wakefield accelerator [35, 36].
Using (44) and (A.6) in the appendix, it follows that πs/2≈σ where

s
g

w
= am2

57
p

3 2
( )

and hence

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

s
s

» - -
a

=W W
g B

m
1 1

tanh
. 58g

max max
0

2 2

2
∣ ( )

The starting point in section 2 is obtained by restoring appropriate powers of c, μ0, ÿ in (53),
(57) and (58).

4. Conclusion

Axions are hypothetical particles that solve the strong CP problem and are one of the most
promising candidates for cold dark matter; it is conceivable that they pervade the cosmos. In
addition to QCD axions, type IIB string theory predicts a plethora of ALPs and we have
unearthed some of the implications of ALPs for plasma-based wakefield acceleration in ultra-
strong magnetic fields. Typical values of the ALP mass and ALP-photon coupling strength
suggest that minimally coupled ALPs generated within the plasma wave could dramatically
suppress the effectiveness of the acceleration process in ultra-strong field environments.
While such suppression is unlikely to play a significant role in scenarios that exploit moderate
magnetic fields, such as those in [8, 17], the theoretical significance of axions, and ALPs in
general, suggests that such particles should be taken into account in any attempt to explain
ultra-high energy cosmic rays using plasma-based wakefield acceleration in the strongest
magnetic fields in the Universe.
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Our analysis does not include the evolution of the the driver at the head of the wakefield,
ALPs directly generated by the electromagnetic field of the driver, or the ALPs generated by
external sources; such developments could form the basis of a future study.
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Appendix. The value of μ*

The maximum amplitude electrostatic wave in the absence of quantum vacuum polarisation
and the ALP field is governed by

n
z

g w n g n g= - - +v
d

d
2 , A.1p

2 2 2 1 2( ) ( )

where the electric field is given by (21) with μ replaced by ν. It is straightforward to obtain an
approximate analytical solution to (A.1) and determine a good approximation to the Fourier
coefficients αn of the ALP field when γ?1. Inspection of (A.1) reveals that the maximum
and minimum values of ν are g + v13 2( ), γ respectively and, in the following, we will choose
the constant of integration in (A.1) such that ν=γ at ζ=0.

The phase ζ of the wave can be written as

⎡
⎣
⎢⎢

⎛
⎝⎜
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g
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=
- - +
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n
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-
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2

1
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1

2
1

1 1 1
d , A.2

p

p

2 2 2 1 2

2
2

4 2

1 2

2

( )
( )

¯ ¯ ¯ ( )
¯

where n n g= 3¯ , c c g= 3¯ and g= - -v 1 2 has been used to clearly show the γ

dependence of the integrand. However

⎜ ⎟
⎛
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and hence
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1 1
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¯
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¯

is the dominant behaviour of (A.2) when γ?1. The period l of the oscillation is

z= n g
n g
=
= +l 2 A.5v13 2∣ ( )( )
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and thus

z
g

w
» =n

n
=
=l 2

4 2
A.6

p
0
2∣ ( )¯

¯

follows from (A.4). Solving (A.4) for ν and writing the result in terms of l using (A.6) yields

⎜ ⎟⎛
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⎞
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z z
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l l
l8 1 for 0 A.73( ) ( )

when γ?1.
Thus, the coefficients νn of the Fourier series
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follow immediately:
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4
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A.10

3

3

2 2
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when γ?1.
Although (A.7) is a poor approximation to ν very close to the minima of ν, numerical

investigation reveals that the difference between the approximate value of (A.9) and the exact
value is less than 1% for În 0, 1, 2, 3∣ ∣ { } with γ=10. The percentage error slowly
increases with n∣ ∣, but the Fourier coefficient νn rapidly decays with n and the absolute error is
negligible. Moreover, the accuracy of the approximation increases with γ; laser-driven plasma
wakefields have a Lorentz factor γ in the range 10–100 and the Lorentz factor of laboratory-
based electron-driven plasma wakefields are even higher (γ∼105). For notational con-
venience we will henceforth treat (A.10) as an equality rather than approximate equality.

We now turn to the value of the remnant j[ν] of the ALP field in (37). Inspection of
(A.10) and the expression

a
p g

p n=
+ a

gBl

n m l
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q
n

4
2 i A.11n n2 2 2 2 2

e

e

( )

obtained from (30) reveals that a a= --n n and so, using (29),

åa a= =
=-¥

¥

0 0, A.12
n

n( ) ( )

åa a= - =
=-¥

¥

l 2 1 0. A.13
n

n
n( ) ( ) ( )

It is also straightforward to show that
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where κe, κo result from splitting the Fourier sums into even and odd indices, respectively:
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The details of (A.16), (A.17) follow from (A.10), (A.11) with the parameter s given as

g
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2
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Furthermore, the summations in (A.16) and (A.17) can be expressed in closed form:
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Evaluating (32) at μ=ν and using (A.12)–(A.15) leads to
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have been used, and the periodicity of the fields has been exploited.
Finally, noting that k k = goe

2( ), equation (43) follows from a perturbative analysis of
(37). Equations (37), (A.21) yield

*
m g

w
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q

m
1
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p
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2

e
2

e
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to lowest order in the ALP-photon coupling constant g, and substituting (A.16), (A.17),
(A.19), (A.20) in (A.24) leads to (43).

Although only the leading order dependence on γ has been retained in the g2( ) term in
(A.24), we have retained the exact γ-dependence of the remaining terms for accuracy.
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