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Abstract—In this paper the design, implementation, and 

evaluation of a general purpose smartphone based intelligent 

surveillance system is presented. It has two main elements; i) a 

detection module, and ii) a classification module. The detection 

module is based on the recently introduced approach that 

combines the well-known background subtraction method with 

the optical flow and recursively estimated density. The 

classification module is based on a neural network using Deep 

Learning methodology. Firstly, the architecture design of the 

convolutional neural network is presented and analyzed in the 

context of the four selected architectures (two of them recent 

successful types) and two custom modifications specifically made 

for the problem at hand. The results are carefully evaluated, and 

the best one is selected to be used within the proposed system. In 

addition, the system is implemented on both a PC (using Linux 

type OS) and on a smartphone (using Android). In addition to 

the compatibility with all modern Android-based devices, most 

GPU-powered platforms such as Raspberry Pi, Nvidia Tegra X1 

and Jetson run on Linux. The proposed system can easily be 

installed on any such device benefiting from the advantage of 

parallelisation for faster execution. The proposed system 

achieved a performance which surpasses that of a human 

(classification accuracy of the top 1 class >95.9% for automatic 

recognition of a detected object into one of the seven selected 

categories. For the top-2 classes, the accuracy is even higher 

(99.85%). That means, at least, one of the two top classes 

suggested by the system is correct. Finally, a number of visual 

examples are showcased of the system in use in both PC and 

Android devices.  

I. INTRODUCTION  

Surveillance systems are widespread (in the UK there are 

reported 4.2 Million surveillance cameras in use ten years ago 

[1]; now this number is obviously much higher), and most of 

them are being computerised. However, the dramatic increase 

of the power and lowering the cost of the devices such as 

smartphones, GPU (graphic processing units) as well as the 

developments in the area of computational intelligence and 

neural networks, in particular, open new horizons for the 

confluence of the advanced platforms and advanced 

algorithms.   

In this paper, we present a general purpose surveillance 

system that has at its core two main elements: i) a detection 

module, and ii) a classification module. The detection module 

is based on the recently developed and published SARIVA 

method [2] and WhatMovesApp [3] application for detecting 

objects that move using smart-phone devices. The detection 

module was a subject of a recent publication [2] and will only 

briefly be outlined in section II. The main novelty of this 

paper is the classification module which is based on 

convolutional neural network (CNN) using Deep Learning 

methodology [4]. This module classifies the object into one of 

the seven pre-defined categories using a pre-trained CNN 

based on the DL methodology. These categories include 

“human”, “cat”, “dog”, “car/4-wheeled vehicle”, “motorbike”, 

“bird”, and “trees/forest”. The reason only seven categories 

were chosen is because maximum accuracy was desired on 

categories that are valuable for a general purpose home or pet 

security system. The system is general purpose as the user can 

select which categories should trigger notifications and what 

actions to be taken after a category has been identified such as 

raise an alarm, send an SMS, email and/or a photograph using 

GSM or Wifi, etc. Having a smartphone as a platform makes it 

possible to get a two-way communication with the remote user 

who may ask specific type of requests following a detection of 

object of a certain class at a certain time instant. For example, 

if an object is being autonomously being detected and this has 

been classified as being a human, the system can send a 

message to the remote user. The user may or may not request a 

photo snapshot. The user may also request that all further 

images where objects of type human are being detected are 

also sent to him/her and/or saved.     

The proposed system and smartphone application can be 

very useful for general use, for social science research, traffic 

studies and control, robotics-based image recognition 

applications and video surveillance.  

Studying different architectures and their suitability for the 

specific task, the following recent benchmark deep neural 

network architectures were investigated: VGG-Net [4], 

GoogLeNet [5], AlexNet [6]. In this paper, we present the 

results of two custom made architectures which borrow some 

elements of the above in comparison with the original designs. 

They proved to be very competitive and particularly suitable 

for the low memory and processing capacity requirements of a 

contemporary smart phone as well as ensuring no latency so 

that a real-time applications is possible. The accuracy of the 

proposed system is 95.9% in the Top-1 category. This level of 

accuracy is comparable and surpassing human level object 

recognition ability [7]. Therefore, the system can rightfully be 

called intelligent, and it is also very powerful.  



The system is efficient to be used on currently available 

high-end mobile devices, as well as embedded system 

platforms such as Android-based smartphones, Raspberry Pi 

[8] and Tegra X1 [9]. 

Finally, we compare and contrast all the architectures 

investigated and identify future work and possible additions to 

the system. To test in a real world scenario, we implemented 

the system as a PC application as well as an Android app. 

The remainder of the paper is organized as follows. Section 

II briefly outlines the SARIVA method used to autonomously 

detect any moving object. Further details on SARIVA method 

can be found in [2]. Section III describes the image 

classification module in general. Section IV then goes into the 

architectures of the proposed two custom Deep Learning 

classifiers as well as of two benchmark classifiers (AlexNet 

and GoogLeNet). Section V describes the data pre-processing 

and augmentation. Section VI provides details of the 

Experimental Results and Analysis. Section VII describes the 

specifics and demonstrates the computer and smartphone 

applications. Finally, the conclusions and the outline of the 

further work are given in Section VIII. 

II. MOVING OBJECT DETECTION MODULE 

The detection module of the proposed system is based on the 

recently introduced SARIVA approach [2] which is also 

implemented as an Android app and available on Google play 

Store [3].  SARIVA overcomes the main issue related with the 

use of a moving camera to detect moving objects, namely that 

the prior information about the objects to be tracked is 

assumed to be available. Other existing approaches also suffer 

from high computational complexity. In SARIVA this is 

overcome by the use of recursive calculation of the similarity 

between different images using data density [10]. The high 

computational complexity combined with the limited 

(although growing in recent years dramatically) 

computational, memory and energy resources of a handheld 

device mean that traditional approaches will not run real time 

on a smartphone. This leads to a reduced detection rate, 

restrictions on the movement of the camera/phone and makes 

the whole system not viable. The recently proposed SARIVA 

approach allows real-time object detection by introducing a 

new method called Optical ORB [2]. It has the ability to detect 

multiple objects without the need of prior knowledge about 

these objects. The main advantage of Optical ORB used in 

SARIVA and ,respectively, in the proposed system and also 

implemented and available on Google Play Store under the 

name WhatMoves app [3] is that there is no need for so-called 

“image stitching” to eliminate the effect of moving camera 

and get the ego-motion [2]. This operation used in traditional 

approaches as well as in the recently introduced ARTOT 

method [10] is most computationally costly within the object 

detection module. At its first stage, Optical ORB method used 

and implemented within SARIVA extracts the features from 

the previous image frame using ORB feature detector which is 

a pyramidal approach to the FAST feature detection algorithm 

aiming to detect stable keypoints [2]. The ORB detector can be 

tuned to detect a lot of features in a short amount of time 

compared to the standard methods [2] without degrading the 

quality of the detected points. Once the features have been 

selected, the Lucas-Kanade optical flow algorithm [11] is used 

to locate each feature’s position in the current frame and, 

therefore, the optical flow displacement vector which 

describes the movement of the feature. Then the detection 

module applies an evolving clustering algorithm called ELM 

[12] that was also recently introduced by the authors which 

groups the features and thus removes the influence of the 

number and velocity of the moving objects. That is to say, on 

a scene there may be more than one object moving with 

different velocity vectors (speed, direction) and ideally, we 

would like to group the feature points that were detected into 

clusters or groups that correspond to these objects. Moreover, 

the cluster with the majority of the optical flow vectors is 

considered to represent the background. The features that 

relate to the background are then removed. More details on 

SARIVA and Optical ORB are provided in [2]. At the end of 

the detection module an area around each detected object is 

being cropped and each of these regions containing a single 

physical object is passed to the classification module which is 

described in the next section.  

III. IMAGE CLASSIFICATION MODULE 

In this module, the proposed system classifies the cropped part 

of the image frame with detected object into one of the seven 

pre-defined categories, namely: “human”, “cat”, “dog”, 

“bird”, “motorbike”, “car/vehicle” or “tree/forest”. The 

architecture of the neural network and the training 

methodology used including the feature extraction falls within 

the so called Deep Convolutional Neural Networks [13] 

(CNN). A Deep CNN is composed of stacked convolutional 

layers that are used for feature training and extraction, 

followed by additional fully connected MLPs at the end to 

classify the features to each category and, thus, successfully 

classify the images. The deep learning framework “Caffe” 

[14] was used in combination with the tools provided by 

Nvidia called “Digits” [15] to train and visualize our models. 

The existing state of the art architectures that were studied as a 

starting point were: 

 

1. GoogLeNet [5] 

2. AlexNet [6] 

3. VGG Net [4] 

 

To allow a proper comparison all of the above three state of 

the art Deep CNN were build and trained as described in [5]-

[6]. The only exception was with VGG Net because of its 

massive size and number of parameters (180 million 

parameters) the system (running on a 960 GTX) would need 

about a week to train it. Such an amount of time was not 

acceptable due to time-frame constraints and as such smaller 

networks inspired by it were trained instead as described in the 

next section. In addition, such an amount of parameters will 

consume too much memory, and access to them will not allow 

real-time application on a smart phone platform which is the 

ultimate aim of this study.  



IV. DEEP NEURAL NETWORK ARCHITECTURE DESIGNS 

As it is well known [13], the term Deep Learning was coined 

recently, although the problem with the amount of neurons, 

structure and architecture of the neural networks, so called 

“vanishing gradient”, recurrent type networks and links with 

the memory [16]-[17] exist and were a subject of analysis 

much earlier (as early as 1990s) and all of them found a new 

angle of interest within the Deep Learning paradigm. Some 

define formally the Deep Learning (DL) type NN as ones in 

which there is a large number of layers, millions or billions of 

neurons and parameters. However, there is more to DL NN 

than just the size and quantitative factors. Within DL NN it is 

now considered also an automatic feature selection using CNN 

which found numerous applications to image [18]-[19] and 

speech processing [16]-[17] recently grabbing some of the 

headlines even outside of the scientific circles. In what 

follows, we briefly analyze the two existing popular 

architectures that we used as a starting point as well as the two 

proposed custom designs which borrow from the first two but 

go further.    

A. AlexNet (Original) 

AlexNet [6] was the network architecture that won the 

ImageNet competition in 2012, in which a computer system 

was required to classify 1000 different classes of animals and 

objects. AlexNet improved the state-of-the-art that year, 

bringing the error rate down astonishingly almost twice (to 

about 15% from the previous 26.5%). The AlexNet 

architecture is composed of cascading convolutional, Max-

Pooling layers of size 3x3, local response normalization 

(LRN) layers and 3 fully connected multilayer perceptron 

(MLP) layers to synthesize the features and classify the 

objects. 

More specifically, a data layer is used that prepares the 

mini-batches and feeds them into the input layer. The reason a 

dedicated data layer is used is that by asynchronously building 

the next mini-batch while the network is training then a speed 

increase is achieved as no time will be spent building the 

batches in between iterations. The next component is the input 

layer that receives an image of size 224x224 in red-green-blue 

(RGB) format, thus, having a total size of 224x224x3. The 

next component is the first convolutional layer which 

convolves patches of the image of size 11x11 with stride 4 and 

creates a total of 96 feature maps. Then the next component is 

the linear normalization layer that normalizes all values before 

sending them to the Max pool layer of size 3x3 and stride 2 

that selects the dominant feature neurons to send to the next 

layer. After that the data is sent to the second convolutional 

layer that uses a patch of 5x5 with stride 1 and creates a total 

of 256 feature maps, followed by a Max pool and a 

normalization layer. Finally, the extracted features are sent to 

3 cascading convolutional layers of filter sizes 512, 1024 and 

256 with patch size 3x3, stride 1 and pad 1. Then, the high-

level features obtained from the final convolutional layer are 

then sent to a Max pool layer that selects the strongest 

activations to send to the fully connected layer of size 4096, 

which then connects to a dropout layer with parameter 0.5. In 

other words, this layer will randomly drop half its connections 

in the training session to prevent overfitting (this is a 

regularization instrument). The next module is another fully 

connected MLP of the same size with a dropout layer with a 

parameter of 0.5 [20]. Finally, the last component is a fully 

connected MLP of size 7 which sends out activations into a 

SoftMax Layer to output the result. 

B. GoogLeNet (2015 BN Revision ) with PReLU 

GoogLeNet [5] was Google’s submission to the ImageNet 

competition in 2014, which also won the competition with an 

impressive error rate of 6.65%. GoogLeNet is a convolutional 

type network that uses an advanced architecture layer called 

Inception Layer; the inception layer takes advantage of the 

speed of parallel execution to process huge convolutional 

layers in smaller bits and then concatenate them back together. 

This approach reduces the number of parameters by a factor of 

10 and increases execution speed by a factor of 2. In 2015, 

Google also presented a new layer architecture called Batch 

Normalization, then by making slight changes to GoogLeNet 

and adding batch normalization [20] it was able to achieve the 

astonishing 4.82% error rate which surpasses the human 

performance at 5.01% error rate [21]. GoogLeNet takes 

advantage of parallelization of multiple smaller convolutional 

layers in parallel rather than in series. This results in a network 

with a much smaller amount of parameters with a performance 

that exceeded all the other networks (for comparison, 

GoogLeNet has 13.6 M parameters vs. 180 M parameters for 

the VGG-Net). In our implementation, the ReLU (rectified 

linear unit) activation type functions used in the original 

architecture were replaced by parametric ReLU or PReLU in 

an attempt to improve the performance. The number of 

parameters in our implementation is 

approximately 13.6 𝑥 106, therefore, making the file which 

contains the weights and has to be stored and accessed in real 

time on the smart phone only 13.6 MB which is not much and 

is especially important since a mobile app should be compact.  

C. Custom Network 1 

The first of the two newly proposed architectures was inspired 

by both the AlexNet and VGG. The Local Response 

Normalization [20] layer contributions to error rate 

minimization have been proven in practice to be very low if  

TABLE 1: PARALAYER DETAILS 

Layer Type 

Feature 

Maps 

Other 

Parameters 

Activation 

Function 

Patch 

Size/Stride 

Convolutional  128 - PReLU 7x7/2 

Convolutional  128 - PReLU 3x3/2 

Convolutional  128 - PReLU 3x3/1 

Maxpool - - - 3x3/2 

Fully Connected 

MLP 
- 

512 

Neurons 
PReLU - 

Dropout - 

Dropout 

Parameter: 
0.5  

- - 

Fully Connected 

MLP 
- 

512 

Neurons 
PReLU - 



 

any. Therefore, it was decided not to use an LRN layer in the 

proposed network architecture. In addition, the new PReLU 

activation function has proven to be better on average than the 

ReLU type activation function used in the above-mentioned 

benchmark architectures. In addition, because in this particular 

application of a general purpose intelligent surveillance 

system only seven classes are considered (as opposed to the 

1000 classes considered by AlexNet and VGG) the fully 

connected layers were with a significantly reduced size (only 

1024x1024x7 as opposed to 4096x4096x1000 used in AlexNet 

and VGG. This leads to a reduction in the memory usage and 

speeds up the training and deployment. An increase in the 

feature maps in convolutional layers 3, 4, and 5 from 384, 384, 

256 to 512, 1024, 512 was experimentally proven to be 

contributing to improving the accuracy. The proposed network 

architecture is using much less memory than AlexNet and 

produces better accuracy results for the problem at hand we 

have. The larger feature maps provide richer results though 

can be a reason for over-fitting if the training is not stopped on 

time. 

D. Custom Network 2 – ParaNet (VGG-Inspired) 

The second network architecture that is proposed in this paper 

is ParaNet. It draws ideas from a variety of networks; first, the 

parallelism of GoogLeNet; the smaller receptive fields of 

VGG and the idea of Multi-Task learning [19]. In Multi-Task 

learning, a network can achieve multiple tasks, through the use 

of dedicated parallel pipelines where each one of them is 

responsible for carrying out a specific task. For example, one 

pipeline can be responsible for image classification; another 

pipeline for caption generation, etc. In our case, we used 

separate pipelines for each class allowing the network to have 

dedicated convolutional and MLP layers for each 

category/class. Parallel layers were designed with identical 

architecture and called “ParaLayers” for simplicity. In Table 1 

the specific details for each one of those layers are tabulated. 

The architecture of the network is composed initially of 2 

cascading convolutional layers plus a Max-Pooling and then 

of seven ParaLayers (one for each class, e.g. one for “human”; 

another one for “cat”, etc). 

V. DATA PRE-PROCESSING AND AUGMENTATION 

One of the most important steps in training a model using 

supervised learning and especially for DL-NN architectures 

and image processing tasks is the data pre-processing and 

augmentation. The level of accuracy for the state of the art 

techniques can be greatly impacted by it, as it has been 

experimentally shown that 10-15% higher accuracy rates can 

be reached. In our particular problem, this step includes: 

A.  Resizing 

Each and every one of the images was transformed into 

256x256 size using the method of “squashing” or, in other 

words, resizing without having any considerations about the 

previous aspect ratio, see Figure 4, for example. 

B. Mean Subtraction 

For better results subtracting the mean of all the images from 

each image is recommended, as it prevents saturation and  

makes the differences between images more apparent.  

C. Data Augmentation 

Because large neural networks need massive amounts of data, 

it was decided that applying data augmentation to our dataset 

was appropriate. By generating new samples based on the 

existing ones in a way that preserves the objects to be 

recognized allows the training data set to increase multiple 

times which leads to a much better-performing network and 

much higher generalization results. By increasing our data, 

over-fitting is significantly reduced which allows the accuracy 

of the network to increase. The following techniques were 

used to augment the dataset we considered.  

D. Random Rotations from 0 to 360 degrees 

Rotating the images to random angles ranging from 0 to 360 

degrees not only increases the data but also allows for better 

generalizations of the model. 

E. Random Cropping 

Randomly crop 224x224 pixel size patches from the original 

images and add these to the training data set, thus producing 

new images in each mini-batch. 

F. Mirroring 

Creating mirrored versions of the images.  

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Model Training and Evaluation 

The models were trained using stochastic gradient descent 

method and error back-propagation. The initial learning rate 

was 0.1 and the learning rate decay was 0.9. The batch sizes 

varied with the models (for AlexNet and CustomNet 1 a batch 

size of 128 was used whilst for GoogLeNet the batch size was 

48 and in the case of CustomNet 2 the batch size was 12). The 

cross-entropy type loss function was considered (see figure 1). 

Finally, for each epoch the accuracy of correct predictions was 

also calculated. The dataset was split into 85% of the data for 

training and 15% for validation. Naturally, in the validation 

data set (the 15%) only original images were used, not 

augmented data. Finally, the system was trained for 10 epochs 

in order to select the best model out of the 4 and then 

additional 20 epochs on the best model to allow it to reach a 

much better score. This took approximately 4 to 12 hours on a 

laptop depending on the network. 

B. Results 

In Figure 1 one can clearly see that GoogLeNet is by far the 

best of all four architectures. However, it is worth noting that 

CustomNet 1 had very similar performance to GoogLeNet and 

needed only 3 hours to train compared to GoogLeNet that 

needed 10 hours to train as shown in Table 2. This is an 

important factor to consider when choosing an architecture as 

decreased training time can save both time and resources. 



FIGURE 1: LOSS FUNCTION ON THE VALIDATION DATA 

 

For that reason, it was chosen as the architecture to be further 

trained with the available limited GPU handheld device. 

 

Validation 

Loss  

Validation 

Accuracy 

Network Type Total Time 

to needed 

for training 

0.436948 0.839887 GoogLeNet (2015 

Revision) 

10 hours 

0.665369 0.81925 CustomNet 1 3 hours 

0.745423 0.773935 CustomNet 2 - 

ParaNet 

9 hours 

0.708225 0.769173 AlexNet 2 hours 

TABLE 2: LOSS AND ACCURACY OF ALL ARCHITECTURES AFTER 10 EPOCHS 

 

FIGURE 2: TRAINING AND VALIDATION LOSS OF GOOGLENET 

In Figure 2 the performance of the GoogLeNet over 30 epochs 

can be seen. Its final validation loss is 0.122971 which is very 

small and translates to a very high-performance network. 

 

FIGURE 3: GOOGLENET VALIDATION ACCURACY 

In Figure 3 one can see the performance in terms of accuracy 

of the GoogLeNet over 30 epochs. The final Top-1 accuracy is 

95.9924%. In other words, the system can predict the correct 

label in its top-1 choice at a level that is on par or better 

than a human would do it [7], [21]. This is extremely 

important for the overall system as it relies on the model being 

very reliable and accurate in its predictions. Also, the top-2 

error is 99.85%. In other words by using a top-2 prediction, 

one can have an extremely high accuracy rate. The table below 

shows the performance of all the networks. Additionally, 

given that some images may have 2 or more objects in them, 

we can deduce that some of the erroneous classifications were, 

in fact, not real errors.  

C. Action/Notification 

Finally, after detecting a moving object and classifying it 

successfully, our proposed system also offers an intelligent 

action which may be a two-way communication process. For 

example, the system can enable an alarm autonomously or 

inform the remote user by SMS, email, etc. Moreover, it can 

get back the response from the user who may want specific 

image frames to be sent to him/her remotely or other action 

(e.g. call security firm/police, relatives etc.) to be taken 

automatically on his/her behalf. The system is general purpose 

and as such one can change its functionality from pet detector 

to theft detector or even car detector (for parking spaces).  

 

 

 

 

 

 

 

 

 

 

FIGURE 4: EXAMPLES OF CLASS HUMAN USED FOR TRAINING 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5: EXAMPLES OF TRAINING DATA FOR THE CLASS TREE 

D. PC API and Android App Implementation 

1) PC Application 

After training, fine tuning and selecting the best model the 

implementation of the PC and Android apps was initiated. 

First, SARIVA, including Optical ORB, was implemented 

using the OpenCV API. The programming language for the 

PC app was Python as its prototyping speed is among the best 

available. Along with Python, we used the PyCharm IDE, 

which allowed even quicker iteration speed. After building the 

moving object detector, classification module was built using 

the Caffe Python API, which allows quick and easy 

deployment of models trained in Caffe. Finally, the 

action/notification module was built using Python. On the PC 

application, a GUI based solution was not implemented but 

instead a terminal based system that could quickly and 

efficiently find moving objects, classify, make a decision and 

act on it using email and SMS. Because of the speed of the 

Caffe framework which is written in C++, the system could 

easily be used on a Raspberry Pi [8].   

2) Android Application 

The tools used for implementing the Android app were 

Android Studio with the Android Development Kit (SDK) and 

Android Development Tools (ADT). Additionally, a “Caffe” 

port to Android was used that allowed the C++ code of 

“Caffe” to interface with Android. In addition, the Android 

Native Development Kit (NDK) was used to combine C++ 

and Java. Features of the app include a selection of activation 

labels as well as the availability of email and SMS messages. 

The object movement detector was first implemented in 

Python using OpenCV and then directly translated into Java 

OpenCV API. This was rather simple as the method names are 

consistent. Special care was taken to drive all module-tasks 

using multi-threading and, thus, maximize the performance 

and responsiveness of the app. The classification pipeline was 

implemented using the Caffe port and the trained model. The 

model that was already trained on the GPU was copied to the 

mobile device’s hard drive and accessed when the app is 

launched. The trained DL CNN architecture required 15Mb of 

memory. Finally, the action/notification module was 

implemented in Java. The UI was built using the Android 

Development Tools. The size of the app was additionally 

reduced by the fact that the OpenCV library is pre-installed on 

the phone as a separate app that allows sharing of the API with 

multiple apps. Thus, the app only needed to access the already 

installed tools. Also, a prompt was added to automatically 

download OpenCV toolkit in case the user did not have them 

installed beforehand. 

E. Real World Testing 

The app was tested module by the module during production, 

and then system-level tests followed the full implementation. 

In this sub-section, only some of the tests carried out are 

presented. 

1) Object Classification Tests in Real-Time: 

In Figures 6 and seven we can see some real-time 

classifications that took place as we moved with the smart 

phone and the App enabled. 

 

FIGURE 6: CLASSIFICATION OF CARS 

 

FIGURE 7: CLASSIFICATION OF TREES 

F. Movement Detection: 

The movement detector was tested, and results showed 

adequate performance, see Figure 8.  



 

FIGURE 8 ANDROID MOVEMENT DETECTION 

 

 

FIGURE 9: “MORE” MENU 

Allows further options from the main menu 

 

FIGURE 10: MAIN MENU 

Allows selection of detection type, resolution, phone numbers, 

emails and more 

 

FIGURE 11: ACTIVATION MENU 

Allows the selection of which objects should trigger a 

response (SMS, email, alarm) from the system. 

 

FIGURE 12: EMAIL SENT WITH OBJECT CATEGORY AND PICTURE 

VII. CONCLUSION AND FURTHER WORK 

A. Conclusion 

In this paper, we present and analyze a novel general purpose 

intelligent video surveillance system portable on a smart 

phone. The procedure of the design and training a deep neural 

network capable of 95.9% accuracy in the top-1 category over 

seven categories is described. In addition, we proposed two 

new custom architectures capable of performance comparable 

to the best-known state of the art. Additionally, it is worth 

noting that CustomNet 1 had a very fast training of only 3 

hours compared to GoogLeNet’s 10 hours. In addition the 

GoogLeNet trained used PReLU instead of ReLU as the 

original architecture did. Furthermore, we present and outline 

the design and implementation of both a PC and Android 

application that can be used for the intelligent surveillance 

systems. We have demonstrated that deep neural networks can 

be used for classification on Android devices with high frame 

rate and human-like performance. The PC app can also be 

used on Raspberry Pi and other Linux-based embedded 

devices. Future applications could include real-time learning 

as well as classification through the use of combined 

unsupervised and supervised learning given that the mobile 

devices of the future have powerful GPUs like the Tegra X1 

[9]. 



B. Future Work: 

The system presented in this paper is only capable of using a 

pre-trained model for its classification. The truly game-

changing capability is to allow a mobile device to learn as it 

collects samples of images. This is currently only possible 

through the use of Cloud GPU servers and combination of 

unsupervised learning with deep neural networks. As mobile 

devices become increasingly more powerful, we believe that 

GPUs such as Tegra X1 will become part of the mainstream 

smartphone hardware. Further ways to achieve learning in real 

time is the use of reinforcement learning in combination with 

a deep neural network [7]. In addition online learning can also 

be implemented through the use of self-learning and 

dynamically evolving systems [22] which, however, for the 

case of Deep Neural Networks are not yet developed. Further 

studies will be directed to this. When that is achieved new 

more powerful systems will be able to learn on the device 

itself without the need of the Internet or wireless 

communication.  
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