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Abstract

Supply chain risk management is drawing the attention of practitioners and
academics. A source of risk is demand uncertainty. To deal with it demand
forecasting and safety stocks are employed. Most of the work has focused
on point demand forecasting, assuming that forecast errors follow the typi-
cal normal i.i.d. assumption. The variability of the forecast errors is used
to compute the safety stock, in order to reduce the risk of stockouts with
a reasonable inventory investment. Nevertheless, real products’ demand is
very hard to forecast and that means that at minimum the normally i.i.d.
assumption should be questioned. This work analyses the effects of possible
deviations from these assumptions and it proposes empirical methods based
on Kernel density estimators (non-parametric) and GARCH models (para-
metric) in order to compute the safety stock. The results show that Kernel
density estimator is recommended when the forecast errors are fat tailed and
GARCH models are well-suited when forecast errors present autocorrelation.
Additionally, GARCH models present important improvements for lead time
forecast errors, as shown in terms of customer service level, inventory in-
vestment and backorders volume. Simulations and real demand data from a
manufacturer are used to illustrate our methodology.
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1. Introduction

Supply chain risk management (SCRM) is becoming an interesting area
for researchers and practitioners with a growing number of related publica-
tions (Fahimnia et al., 2015). However, among the different related works, a
clear meaning for SCRM had not emerged. Recently, in order to bridge that
gap, Heckmann et al. (2015) accomplished a critical review of SCRM and
provided a definition of supply chain risk: “Supply chain risk is the potential
loss for a supply chain in terms of its target values of efficiency and effective-
ness evoked by uncertain developments of supply chain characteristics whose
changes were caused by the occurrence of triggering-events”

Following that definition, one of the supply chain characteristics that is
subject to uncertainty is future demand. In this sense, if demand is unusually
large, a stockout may occur with the associated negative consequences. If
demand is lower than expected, then the company may carry higher holding
costs due to excess inventories. In order to mitigate such risks, safety stocks
may be employed, which are additional units over the stock required to attend
the lead time forecasted demand. According to Silver et al. (1998), different
approaches can be utilized to calculate the safety stock: i) safety stocks
established through the use of a simple-minded approach; ii) safety stocks
based on minimizing cost; iii) safety stocks based on customer service; and,
finally, iv) safety stocks based on aggregate considerations.

Although the most appropriate method depends on the organization cir-
cumstances, calculating the safety stock based on customer service is widely
used given that it does not require knowledge of the stockout cost that can
be very difficult to estimate. The safety stock based on customer service is
determined on the basis of the demand uncertainty.

A literature survey may suggest to use demand variability as a variable
of demand uncertainty. For example, Heizer and Render (2004) suggest this
approach. Other authors like Silver et al. (1998) and Nahmias (2009) suggest
the use of demand forecasting error variability instead, given that future de-
mand is unknown and it should be forecasted; thus safety stocks are designed
to prevent issues due to such demand forecast errors. Additionally, the use of
demand variability may under/over-estimate demand uncertainty. Nahmias
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(2009) shows that demand variability underestimates demand uncertainty,
i.e. the demand forecast error variance is greater than the demand variance
when simple exponential smoothing is used as forecasting technique, unless
the exponential smoothing constant is equal to zero. When this is true, as
long as the initial value for the level is optimal, the forecast is simply the
arithmetic mean of the historical sales, and in that case both variances are
the same, as the variance formula becomes identical. It should be pointed out
that simple exponential smoothing is appropriate for non-trended and non-
seasonal demand data generating processes (Gardner, 2006), and therefore
the difference in variances is not due to using an inappropriate forecast.

Conversely, in situations when the demand data generator process can-
not be assumed to be a constant plus an error term, for example when the
product is seasonal or when it is subject to any kind of promotions, the use
of demand variance instead of demand forecast error variance may overes-
timate the demand uncertainty. In the seasonal case, part of the demand
variability can be anticipated by using an adequate forecasting model like
Holt-Winters exponential smoothing. In the other case, promotions are de-
signed beforehand and causal promotional models can be used (Trapero et al.,
2015; Beutel and Minner, 2012). Therefore, in this work, demand forecast
errors will be used as the demand uncertainty variable. More details about
the difference between variance of demands and variance of forecasts can be
found in Katsikopoulos and Syntetos (2016).

Focusing on the demand forecast error, it is assumed to be Gaussian in-
dependent and identically distributed (i.i.d.) with zero mean and constant
variance. Nonetheless, often the forecast error does not fulfill these assump-
tions and this may cause a lower service level than targeted. In other words,
the risk of a stockout is increased. It should be noted that, although em-
pirical approaches in different areas such as prediction intervals theory and
the financial risk management literature have been developed to overcome
such limitations, their application to safety stock calculation and, therefore,
to supply chain risk management, have remained overlooked.

The aim of this work is to compute the safety stock for a certain lead
time by using empirical variability estimations of the measured forecast er-
rors, where the i.i.d. assumption is relaxed. First, we will explore the use
of empirical non-parametric approaches, such as the kernel density estima-
tor (Silverman, 1986), which are typically utilized in prediction interval case
studies (Isengildina-Massa et al., 2011), in order to avoid the normality as-
sumption on the forecasting error. Second, empirical parametric estimators
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associated to financial risk management, such as Generalised Autoregressive
Conditional Heteroskedastic (GARCH, Bollerslev, 1986), along with expo-
nential smoothing models (Taylor, 2004) will be investigated to overcome the
independence assumption and exploit potential forecast error correlations.

The performance of the aforementioned empirical approaches will be mea-
sured first by using prediction intervals metrics, like forecast coverage and
average interval width. Subsequently, simulation experiments that incorpo-
rate an order-up-to level stock control policy will be used to analyze the close
links between prediction interval metrics and classic stock control metrics like
cycle customer service level, inventory investment and backorders. The pro-
posed empirical approaches will be compared to the traditional supply chain
theoretical approaches based on the i.i.d. assumptions on simulated and real
data from a manufacturing company.

The rest of the paper is organised as follows: Section 2 reviews the tra-
ditional literature on safety stock calculation that is denoted by theoretical
approach. Section 3 describes the empirical approximation proposed in this
work. Section 4 explains the performance metrics that will be used to assess
the different methods and provides any implementation details of the alter-
native approaches. Simulation experiments are carried out in Section 5. A
case study based on a manufacturer shipments data is described in Section
6, and finally, section 7 presents the concluding remarks.

2. Literature review

If demand forecasting error is Gaussian i.i.d. with zero mean and constant
variance, the safety stock (SS) for a target Customer Service Level (CSL),
expressed as the target probability of no stockout during the lead time, can
be computed as:

SS = kσL (1)

where k = Φ−1(1 − CSL) is the safety factor; Φ(·) denotes the standard
normal cumulative distribution function; and σL stands for the standard
deviation of the forecast error for a certain lead time L that it is assumed to
be deterministic and known.

The main problem in (1) is how to estimate σL. In order to do that,
we have two approaches: a theoretical approach, where an estimation of σ1
(one-step ahead standard deviation of the forecast error) is provided and
an analytic expression that relates σL and σ1 is employed. The estimate of
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σ1 is possible as the updating forecast step is usually smaller than the lead
time, On the other hand, an empirical approach can be employed, where
σL is directly estimated from the lead time forecast error. We discuss the
theoretical approach in detail below, and the empirical approach in the next
section.

2.1. Theoretical approach

2.1.1. Estimation of σ1
Traditional textbooks suggest to compute σ1 based on forecast error met-

rics. For instance, Silver et al. (1998) uses MSE (Mean Squared Error) and
Nahmias (2009) suggests MAD (Mean Absolute Deviation):

MSEt =
1

n

n∑
t=1

(yt − Ft)
2 , (2)

MADt =
1

n

n∑
t=1

|yt − Ft| , (3)

where yt is the actual value at time t and Ft is the forecast value for the same
time period and n is the sample size. The one step ahead standard deviation
of the forecasting error can be approximated by

σ1 =
√
MSEt+1. (4)

Note that if we want to use the MAD metric to estimate the standard
deviation, under the normal distribution assumption it holds that

σ1 = 1.25MADt+1. (5)

As the conversion factor from MAD to σ̂1 is different for other statistical
distributions and for MAD the results of the analysis would be proportional,
hereafter we will simply use MSE to estimate σ1. Additionally, the estimation
of MSE can be updated when new observations are available such as:

MSEt+1 = α′(yt − Ft)
2 + (1− α′)MSEt, (6)

whereMSEt+1 is the forecast of MSE for the period t+1 and α′ is a smoothing
constant that varies between 0 and 1, although small values between 0.01
and 0.1 are commonly employed (Silver et al., 1998). In this work α′ and
the initial value are optimized by minimizing the in-sample squared error
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following the suggestion by RiskMetrics (1996). Note that (6) is the well
known single exponential smoothing.

2.1.2. Estimation of σL
A theoretical formula for σL can be obtained on the basis of σ1, the

forecast updating procedure and the values of the smoothing constants used.
According to Silver et al. (1998), an exact relationship can be complicated
and they propose the following approximation:

σL = Lcσ1, (7)

where c is a coefficient that must be estimated empirically, considering dif-
ferent SKUs. It should be noted that in this work we assume the lead time
(L) constant and deterministic and thus focus our analysis on σ.

Axsäter (2007) argues that if we disregard that errors usually increase for
longer forecast horizons and we also assume that forecast errors are indepen-
dent over time, then:

σL =
√
Lσ1. (8)

It should be noted that when c = 0.5 then (7) corresponds the assumption
of forecast errors being independent over time, while in the other extreme,
c = 1 corresponds to forecast error that are completely correlated over time.
He also proposes to use c > 0.5 to compensate for disregarding that the
forecast error for a more distant period tends to be larger.

Hyndman et al. (2008) shows that, in case the demand can be modeled
as a local level model, i.e., a ETS(A,N,N) with parameter α, the conditional
variance for the lead-time demand is

σL = σ1
√
L

√
1 + α(L− 1) +

1

6
α2(L− 1)(2L− 1). (9)

Note that the difference between (8) and (9) increases as both the lead time
and the exponential smoothing constant become larger. The lead time vari-
ance for some well-known exponential smoothing models can be found in
page 91 of Hyndman et al. (2008). It is interesting to note that although an
exact relationship has been provided in (9), most of the literature still is us-
ing the approximation given in (8). Furthermore, expression (9) was initially
derived by Wecker (1979) for a deterministic lead time for an IMA(0,1,1)
demand process, which is equivalent to ETS(A,N,N). According to Graves
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(1999a), Wecker’s manuscript was not published but was referenced by Ep-
pen and Martin (1988). On the other hand, Graves (1999b) arrived at the
same result for an inventory system that is subject to an IMA(0,1,1) demand
process, a deterministic replenishment lead-time and an adaptive base-stock
policy.

3. Empirical estimation of the lead time forecast error variability

Note that the theoretical approach assumes that forecast errors are i.i.d.
and this means that we know the “true” model of the SKU’s demand. How-
ever, if there are doubts about the validity of the “true” model, then empirical
approaches can be a useful alternative Chatfield (2000). Given the complex
nature of markets, clients, promotions, economic situation, etc., assuming
that we know the true demand model for each SKU would be far from realis-
tic and empirical approaches must be, at least, tested. An empirical estimate
of σL can be calculated as:

σL =

√∑n
t=1(et(L)− ē(L))2

n
, (10)

where et(L) =
∑L

h=1 yt+h−
∑L

h=1 Ft+h is the lead time forecast error and ē(L)
is the average error for the L under consideration. In this approach, we do
not need to know neither the forecasting model/method nor its parameters.
This could be a potential advantage for Forecasting Support Systems that
do not provide such information to users. Furthermore, an estimate of σ1 is
not needed.

It should be noted that, although empirical approaches have been shown
to give good results in other applications like prediction intervals theory
(Chatfield, 2000), its use for supply chain risk management has been scarce.
In order to bridge that gap, this section is devoted to show how empirical
lead time errors can be used effectively to determine the safety stock, or in
other words, to measure the demand uncertainty risk.

In order to employ an empirical approach we have to make two decisions.
First, what kind of empirical data is used? This can be in-sample or out-of-
sample. Second, whether the method is parametric or not (Lee and Scholtes,
2014).

For the in-sample errors case, the forecasting model is applied to the same
data employed for estimating its parameters to provide a sample of forecast
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errors at different lead times. However, in-sample errors may also be inade-
quate given that residuals errors usually are lower than out-of-sample errors
(Tashman, 2000; Barrow and Kourentzes, 2016). In order to overcome this
limitation, empirical approaches using out-of-sample errors have also been
developed, i.e., forecast errors obtained from the forecasting model applied
on data that have not been used in the fitting process. This kind of em-
pirical approach was initially suggested by Williams and Goodman (1971)
within a prediction interval context and it has gained popularity in diverse
applications, particularly in those areas where data requirements are not a
limitation (Isengildina-Massa et al., 2011).

In this work we estimate σL using out-of-sample forecast errors. To do
this, we can employ the following parametric and non-parametric approaches.

3.1. Parametric approach. SES and ARCH/GARCH models

In the empirical parametric approach, we keep the assumption that lead
time forecast errors are normally distributed, but we relax the independence
assumption by allowing time-varying σL.

3.1.1. Single Exponential Smoothing, SES

Expression (6) shows how σ1 can be updated with the new observed
forecast errors. Likewise, we can update σL on the basis of the lead time
forecast error instead of the one-step-ahead forecasting error:

MSEL,t+1 = α′′(yL − FL)2 + (1− α′′)MSEL,t, (11)

where
√
MSEL,t+1 forecasts σL in (18) at time t + 1. Unlike expression

(6), the updating step does not match with the lead time forecast error.
The expression is updated at every period, but by using yL and FL that
correspond to L periods. For example, assume weekly observations and the
lead time could be 4 weeks. When a new observation is received both yL and
FL are recalculated by dropping the oldest observation and adding the new
one in the sum over 4. Effectively a period is used for the calculation of yL
and FL four times. On the other hand, there is a unique MSEL,t+1 for each
period, since this is updated at every step.

The process followed for the calculation of yL and FL is known as overlap-
ping temporal demand aggregation (Boylan and Babai, 2016). In the same
reference, the authors recommend the overlapping approach when the de-
mand history is not too short. For instance, they show that the overlapping
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approach produce lower variance estimates for a demand history of 24 pe-
riods. As we will see later on, our case study has a demand history of 173
periods per SKU and so, the overlapping approach is adopted. Similarly to
(6), α′′ and the initial value are optimized by minimizing squared errors.

It should be pointed out that by using expressions (6) or (11), we are
implicitly assuming that the forecast errors can be dependent and/or het-
eroskedastic. Otherwise computing the in-sample standard deviation of the
forecast errors would be enough given that it remains constant across time.
However, from the authors’ point of view, the supply chain literature has not
achieved important advances regarding how to deal with such a potential het-
eroskedasticity/autocorrelation of forecast errors. In turn, other disciplines
related to financial risk management have done an important effort to deal
with this problem providing sophisticated models. In particular, they have
widely employed the family of ARCH/GARCH models.

3.1.2. ARCH/GARCH models

Although exponential smoothing is the work horse in supply chain fore-
casting, when we are dealing with volatility forecasting other models have
been developed and they may be good candidates for enhancing the risk
estimation and therefore, the determination of the safety stock.

Particularly, the AutoRegressive Conditional Heteroscedasticity (ARCH)
model introduced by Engle (1982) is one of the most important developments
in risk modelling that can be well-suited for our application. Basically, this
model expresses the forecast error as εt = σt · vt, where

σ2
t+1 = ω +

p∑
i=1

aiε
2
t−i+1 (12)

and vt is an independent and identically distributed (i.i.d.) process. ARCH
models express the conditional variance as a linear function of p lagged
squared error terms. Bollerslev (1986) proposed the generalized autoregres-
sive conditional heteroscedasticity (GARCH) models that represent a more
parsimonious and less restrictive version of the ARCH(p) models. Generally
speaking, GARCH models with respect to ARCH models bring similar advan-
tages as exponential smoothing with regards to moving average (Boudoukh
et al., 1997). GARCH(p,q) models express the conditional variance of the
forecast error (or return) (εt) at time t, as a linear function of both q lagged
squared error terms and p lagged conditional variance terms. For example,
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GARCH(1,1) model is given by:

σ2
t+1 = ω + a1ε

2
t + β1σ

2
t . (13)

It should be noted that exponential smoothing has the same formulation
as the integrated GARCH model (IGARCH) (Nelson, 1990), in which β1 =
1 − a1, plus the additional restriction ω = 0. If we apply the GARCH(1,1)
on the lead time forecast error instead the one-step ahead forecasting error,
equation (13) can be rewritten as:

σ2
L,t+1 = ω′ + a′1ε

2
L,t + β′1σ

2
L,t. (14)

In this work, we focus our analysis on the GARCH(1,1) model using an
overlapping approach in order to compare it with the Single Exponential
Smoothing model in (11). It should be noted that the model GARCH(1,1)
also includes the model GARCH(0,1) when the estimation of a′1 is equal to
zero.

3.2. Non-parametric approach

It is likely that some demand distributions present important asymme-
tries, particularly, when they are subject to promotional periods or special
events. In these cases, the typical normality assumption for the forecast er-
rors may not hold. In order to overcome this, non-parametric approaches
can be well-suited. If we want to consider non-parametric methods, safety
stocks calculation should be reformulated as:

SS = QL(CSL), (15)

where QL(CSL) is the forecast error quantile at the probability defined by
CSL. Such a quantile can be estimated non-parametrically by means of the
empirical distribution of the generated lead time forecast errors (eL). Here,
we are going to use two well-known non-parametric methods: i) Kernel Den-
sity Estimator; and ii) Empirical Percentile.

3.2.1. Kernel density estimator

This technique represents the probability density function (f(x)) of the
lead time forecast errors without the need of making assumptions about the
distribution of the data. Its formula for a series X at a point x is given by:
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f(x) =
1

Nh

N∑
j=1

K

(
x−Xj

h

)
, (16)

where N is the sample size, K(·) is the kernel smoothing function that in-
tegrates to one and h is the bandwidth (Silverman, 1986). For instance, the
CSL quantile denoted by QL(CSL) can be estimated non-parametrically by
means of the empirical distribution of the generated lead time forecast errors.

3.2.2. Empirical percentile

The well known percentile indicates the value below which a given per-
centage of observations fall. For example, the 90th percentile is the value
under which 90% of the sampled observations can be found. Typically in the
calculation of empirical percentiles the requested valued is linearly interpo-
lated from the available ones. For instance if there are 5 values available,
when sorted these will correspond to the 10th, 30th, 50th, 70th and 90th per-
centiles. The 80th percentile will be calculated using a linear interpolation
between the last two values.

4. Evaluation of the alternative approaches

In this section we present the various metrics that are used to evaluate
the performance of the approaches described above. In addition to the typ-
ical inventory metrics, in this work, we also proposed the use of prediction
interval metrics. Furthermore, we provide in this section any relevant imple-
mentation details. The specifics of the various datasets used in the evaluation
are outlined in the simulation and case study results respectively.

4.1. Point forecast

Before assessing the different alternatives to estimate the forecast error
variability, it is required to provide point forecasts. In this work the single
exponential smoothing will be used for two reasons, firstly, given its wide use
in business applications (Gardner, 1985, 2006) and secondly, for comparison
purposes since theoretical formula in (9) is based on a simple exponential
smoothing, that can be expressed as:

Ft+h = αyt + (1− α)Ft, (17)
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where 0 < α < 1. Given the recursive nature of exponential smoothing, it is
necessary to initialize the algorithm. We optimize the initial value together
with the α value by minimizing the in-sample mean squared error. Note that
the lead time forecast is FL = L · Ft+1. In order to have a fair comparison
between variance forecasting methods we will use this point forecast in all
cases.

4.2. Prediction interval metrics

The safety stock calculation problem can be seen as the problem of finding
a prediction interval such as:

[LL, UL] = [0, FL + k · σL] , (18)

where FL =
∑L

h=1 Ft+h and Ft+h is the point forecast at t+h, LL is the lower
interval set to zero and UL the upper interval that is the sum of the demand
forecast plus the safety stock for a determined lead time L. Recall that the
safety stock is SS = k · σL. Moreover, to determine k we will use one-sided
distribution because we are interested in the case where the demand is higher
than the upper limit, because it would result in a stockout.

Generally speaking, prediction intervals are assessed on the basis of two
metrics. Firstly, the forecast coverage, and secondly, the average prediction
interval width. The former measures the proportion of times that a real value
falls inside the prediction interval given a certain target confidence level. The
latter evaluates how wide or narrow is the provided prediction interval. The
ideal situation is a method that provides a forecast coverage close to the
target level with a low interval width.

4.3. Inventory performance metrics

In a supply chain context, according to Gardner (1990), Kourentzes (2014)
and Syntetos et al. (2015), trade-off curves are employed to measure the fore-
casting performance of different techniques. These trade-off curves can be
the couples formed by customer service level and inventory investment plus
backorders and inventory investment. Kourentzes (2014) transformed inven-
tory investment and backorders metrics into scale independent by dividing
them with the average in-sample demand, to allow easy summarizing of the
metrics.
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4.4. Links between prediction intervals and inventory performance metrics

Interestingly, the forecast coverage and interval width from prediction
intervals theory provide similar information to customer service level and
inventory investment, respectively, from stock control performance metrics.
In other words, if our prediction interval provides a good forecast coverage,
we expect that the customer service level is going to be good as well. Like-
wise, if the prediction interval width is narrow, we expect that the inventory
investment were low too.

It should be remarked that there is an important difference, in order to
use stock control metrics we have to define a stock control policy, whereas
prediction interval metrics are independent of such stock control policies.

In order to investigate the connection between prediction intervals and
inventory performance metrics, by the end of the next section, we are going
to simulate a typical order-up-to stock control policy and compare the results
obtained by the prediction interval metrics (forecast coverage, prediction in-
terval width) and those provided by inventory performance metrics (customer
service level, inventory investment). In fact, since we are interested in the
safety stock, the average prediction interval width is going to be measured by
the so-called scaled safety stock, which is defined as the prediction interval at
time t minus the point forecast at the same time, all divided by the in-sample
demand average. Additionally, we will also include the variable backorders
calculated in two steps: 1) the sum of units out of the prediction interval
per each SKU on the hold out sample; and 2) the average of that sum across
SKUs.

In this work the target confidence level and target customer service level
are considered equivalent and set to: 85%, 90%, 95% and 99% for both
simulations and real data.

4.5. Implementation of approaches

The analysis is carried out in MATLAB. Here we briefly list the imple-
mentation details of the approaches discussed above. The financial toolbox
from MATLAB was employed to implement the GARCH(1,1) model. We
have used Kernel density estimators from MATLAB with its default options
for the selection of the bandwidth, and Epanechnikov kernel. The empirical
percentile computed using the function “prctile” from MATLAB.
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5. Simulation results

In this section we carry out four simulation experiments to explore the
performance of the aforementioned empirical parametric and non-parametric
approaches when there are deviations from the Gaussian i.i.d assumptions.
We study what happens when: (i) the normality assumption does not hold for
different sample sizes; (ii) the homoskedastic and independence assumptions
do not hold; and (iii) how different lead times affect at those results. Those
simulations will be assessed by means of prediction interval metrics (forecast
coverage, scaled safety stock and backorders). In order to connect these
results to a supply chain context, the last simulation (iv) will analyse the
relationship between prediction interval metrics and inventory performance
metrics under an order-up-to level stock policy.

In these experiments we have divided the total sample in three parts.
The first 40% of the data is used to estimate the initial value and exponen-
tial smoothing parameter to provide the mean forecasts. The following 40%
of the data is used to estimate the initial value and exponential smoothing
parameter to produce volatility forecasts, as well as, the Kernel density es-
timate, empirical percentile and GARCH(1,1) parameters. The rest of the
data is kept as hold-out sample for evaluation purposes.

5.1. Sample size and distribution shape

In order to explore the influence of demand distribution on the safety
stock calculation we will employ two distributions: (i) normal; and (ii) log-
normal. This permits us to observe any differences found if the demand is
skewed. Note that the lognormal distribution is reasonable to appear when
products are subject to promotional periods, during which the observed de-
mand is higher than the baseline demand.

The sample size is an important variable to study, given that often prod-
ucts have short life cycles and there are not many historical observations
available. We run simulations for the following sample sizes: 50, 100 and
500. For each sample size and each distribution (normal and lognormal) we
have carried out Monte Carlo simulations with 100 repetitions. The simu-
lated population values for the mean (µ) and standard deviation (σ) of the
normal distribution were µ = 150 and σ = 25. Regarding the log-normal
distribution, the parameter values were µ = 3 and σ = 1. Note that the
log-normal distribution does not yield negative values.
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Figure 1 shows the trade-off curves for a sample size of 50 observations
and a lead time equal to 1. The upper plots show the coverage deviation from
the target in percentage. For example, for a target at 85%, denoted with the
smallest marker, the coverage deviation for SES is about -1%, i.e., it obtained
a coverage of 84%. The closer the lines are to zero, the better. Lower panels
plot the relationship between backorders and scaled safety stock. Note that
the different target coverages are organized from the smallest size marker
(85%) to the largest size (99%).

We do not show the results for the GARCH(1,1) model in Figure 1 as there
were numerical problems with its estimation. Since the simulated errors are
independent, i.e. the forecast errors do not have any structure, the GARCH
model is not adequate. The left side of that figure (upper and lower panels)
shows the trade-off curves for the normally distributed demand. As we ex-
pected, SES performs reasonably well providing a systematic under-coverage,
whereas Kernel provides a systematic over-coverage that is reduced for the
highest target coverage. In this case, the empirical percentile achieves a re-
markable lower coverage when the target is (99%), that also implies a higher
backorders volume.

On the same figure right side, we find the same trade-off curves when the
simulated demands are log-normal. Essentially, non-parametric approaches
(Kernel and Percentile) achieve the highest and lowest extreme targeted con-
fidence levels (99% and 85%), whereas parametric approach (SES) did not.
Therefore, in case the forecast errors are skewed the typical normal assump-
tion may induce lower service levels for a high confidence target (99%) and an
overcoverage for low confidence target( 85%). In this sense, non-parametric
approaches seem more robust.

Figure 2 depicts the same trade-off curves when the sample size increases
to 100 observations. Again, the non-parametric approaches are able to cap-
ture the asymmetry of the forecast errors at the highest and lowest service
levels (99% and 85%) for demands log-normally distributed. When the dis-
tribution is normal, all the methods achieve a similar performance very close
to the target confidence levels, although the Kernel provides systematically
coverage levels higher than the expected.

Figure 3 shows the same simulations if we increase the sample size to
500 observations. Again, non-parametric approaches achieve a better perfor-
mance for log-normal demand distribution, whereas the parametric approach
does not achieve the extreme service levels (85 % and 99 %). When the de-
mand is normal all the methods show a similar performance, although the
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Figure 1: Trade-off curves for a sample size of 50 observations. Upper and lower left
panels: Normal distribution. Upper and lower right panels: Log-normal distribution.
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Figure 2: Trade-off curves for a sample size of 100 observations. Upper and lower left
panels: Normal distribution. Upper and lower right panels: Log-normal distribution.
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Figure 3: Trade-off curves for a sample size of 500 observations. Upper and lower left
panels: Normal distribution. Upper and lower right panels: Log-normal distribution.

kernel provides again a higher coverage rate than the targeted.
Summarizing, non-parametric methods like Kernel and percentile can pro-

vide better trade-off curves for log-normal distributions. However, when the
sample size is small their performance deteriorates. If the distribution is
normal, parametric approaches work well as it is expected, whereas Kernel
provides over-coverage and Percentile is more sensitive to small sample sizes.
Given that these simulations do not consider correlations of the forecast er-
rors or changes of volatility, the GARCH model do not show any advantage
and may even present estimation problems.

18



5.2. Demand with time-varying volatility

In this simulation we have carried out two experiments with time-varying
volatility. In the first case, the demand follows a normal distribution with
constant mean (µ = 150), and two different standard deviations (σ1 = 25
and σ2 = 50) with a sample size of 500 observations. σ1 has been employed
for time periods corresponding to 1:100, 201:300 and 401:500. This is done
to have volatility changes in both the in-sample and hold-out sample. In the
second case, a demand with constant mean set to 50 plus a stochastic term
that follows a GARCH(1,1) model with parameters (ω = 0.01, a1 = 0.4,
β1 = 0.5) has been simulated. Both experiments have been repeated 100
times.

Figure 4 shows the 100 realizations of the simulated demand, where the
effect of the time-varying standard deviation is apparent. Upper plot in that
figure shows the simulated demands with volatility abrupt changes. The
lower plot depicts the GARCH(1,1) realisations.

Figure 5 depicts the average trade-off curves obtained by each technique
considered for both experiments. The right panels of that figure shows the
trade-off curves for the first experiment with volatility abrupt changes. Re-
garding backorders, SES and GARCH yield slightly lower backorders for
similar scaled safety stocks. With respect to coverage, SES and GARCH
provides over-coverage for lower targets and under coverage for the highest
target. Kernel produces over-coverage for each target, which it is reduced for
larger target coverages. Interestingly, Percentile provides a coverage devia-
tion close to zero.

The left panels of that figure shows the trade-off curves for the second
experiment based on a GARCH simulation. In general terms, the GARCH
provides low coverage deviations at a low scaled safety stock. Additionally,
the level of backorders provided by parametric approaches is lower than the
non-parametric counterparts even for lower scaled safety stocks. This result
can be important, since the level of backorders can be used as a signal of
potential autocorrelation in the forecast errors.

5.3. Influence of the lead time

The lead time in previous simulations was set to 1. Now we study the
influence of the lead time on the safety stock computation. The lead time
was set to 4 periods. We also set the sample size to 500 observations and use
a demand that follows an ARIMA(0,1,1) with θ = −0.75 and standard devia-
tion σ = 2. We have used that ARIMA model because the single exponential
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smoothing is optimal for such a model and thus, all the differences between
the methods considered are independent of the point forecasting model. In
fact, the value of θ = −0.75 corresponds with a theoretical α = (1+θ) = 0.25.
To have positive demand values a constant of 50 units was added to the sig-
nal. Given that the lead time is greater than 1, we can add to the previous
empirical approaches the theoretical approaches from equations (8) and (9),
which are denoted by σL(8) and σL(9), hereafter. Note that methods like
SES, Kernel, GARCH and Percentile are based on the empirical lead time
standard deviation from (10)

Figure 6 shows that σL(8) provides lower coverage and a higher number
of backorders than σL(9) given the simplifications assumed by σL(8). Per-
centile, Kernel, GARCH and σL(9) achieve coverages very close to the target
ones, although Kernel provides coverages higher than the targeted at a higher
scaled safety stock. Interestingly, regarding the coverage, SES performs worse
than the non-parametric approaches, although GARCH performs well. Re-
garding backorders, GARCH obtains a very good performance even better
than σL(9). Recalling the time-varying simulations in the previous section,
we concluded that when a parametric model like GARCH provided lower
backorders than the rest of the methods it could indicate possible autocor-
relation. Figure 6 shows a better performance from GARCH, what possibly
indicates that there is some autocorrelation that has not been considered in
the theoretical expression (9) and that GARCH can incorporate empirically.
We conjecture that such a potential autocorrelation may be induced by the
overlapping temporal demand aggregation, since our results agree with the
conclusions obtained by (Boylan and Babai, 2016), where the overlapping ap-
proach reduces the inventory backordering volumes, whilst maintaining the
same inventory holding volumes.

5.4. Stock control policies

In the previous section, we focused on measuring the performance of
prediction intervals, avoiding the use of a specific stock control policy. So
far their good or poor performance did not depend on the stock control
policy. Nonetheless, it is important to show how these techniques can be
implemented along with a stock control policy and to relate to the results
above, for the prediction interval metrics (coverage, scaled safety stock and
backorders), with conventional stock policy metrics (service level, inventory
investment and backorders). We incorporate an order up to stock control
policy following the work by (Dejonckheere et al., 2003), shown in Figure
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7. As in the previous simulations, the demand follows a constant level (50
units) plus an ARIMA(0,1,1) with θ = −0.75, standard deviation σ = 2 and
a sample size of 500 observations.

The ordering decision for an order-up-to policy is as follows:

Ot = St − IPt (19)

where Ot, St and IPt stand for the ordering decision, order-up-to level and
inventory position at time t, respectively. The inventory position can be
defined in terms of the net stock (NS) and outstanding orders (OO) as:

IPt = NSt +OOt (20)

where NSt equals inventory on hand minus backorders. We use the variable
NSt in order to compute the typical stock control metrics. In other words,
the customer service level is calculated as the proportion of times that the
NS is greater than zero. Backorders are calculated as the sum of negative val-
ues of NSt across time and subsequently averaged across SKUs, and finally,
inventory investment is the NSt average across time and SKUs.

The order-up-to level is updated every period:

St = FL + kσL (21)

where FL is the lead time forecast over L periods. Thus, for every period, the
retailer updates the order-up-to level with the current estimates of FL and
σL. Note that St coincides with the upper bound of the prediction interval
defined in (18).

The main difference of the block diagram model shown in Dejonckheere
et al. (2003) and the one shown in Figure 7 is for σL. In Dejonckheere
et al. (2003) the σL is not computed and the uncertainty is considered by
inflating the lead time in one unit. In our work, we focus on the different
ways to compute σL and how it affects at the safety stock performance. For
this simulation we use expression (9) to compute σL, although any of the
methods presented can be used, since we are analyzing the links between
prediction interval and stock control metrics. The described simulation is
implemented in SIMULINK.

Figure 8 shows the relationship between the prediction intervals perfor-
mance metrics and the conventional stock control metrics. In the three plots,
the x-axis represent the stock control metrics and the y-axis the prediction
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Figure 7: Order-up-to stock control policy plus forecasting system based on (9)

interval metrics. We can appreciate a linear relationship in all of them. In
other words, the use of prediction intervals metrics is a good approxima-
tion to predict what is going to be the stock control metrics, at least for an
order-up-to stock control policy.

6. Case study data

The data employed in this paper has been previously used by (Barrow
and Kourentzes, 2016). The data comes from a major UK fast moving con-
sumer goods manufacturer specialized in the production of household and
personal care products. In total 229 products with 173 weekly observations
per product are available. According to (Barrow and Kourentzes, 2016) the
SKUs did not present seasonality and about 21% of them presented a trend.

The data is split into three parts. The first part (20% of the data) is
used to compute both the α1 exponential smoothing parameter and the ini-
tial value to determine the point demand forecast. The second part (60%
of the data) is employed to optimize the volatility models (parametric and
non-parametric). That second part is larger than the first one to prevent
non-parametric percentile model sample size issues and to obtain a fair com-
parison. Finally, the last part (20% of the data) is devoted to test the prob-
abilistic forecasts of the alternative methods. We employ single exponential
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Figure 8: Relationship between prediction interval metrics and stock control policy metrics

smoothing to produce the point forecasts, although some SKUs were re-
ported to potentially include a trend. We use the Augmented Dickey-Fuller
test to find that first differences are adequate for these series and therefore
single exponential smoothing is still appropriate. Note that trend exponen-
tial smoothing (Holt’s linear trend method) is equivalent to ARIMA(0,2,2),
and therefore is not needed in this case.

Figure 9 shows the trade-off curves of the manufacturer data for a lead
time of 4 weeks. Considering the theoretical approaches (σL(8) and σL(9)),
σL(9) obtains a lower coverage deviation and a lower level of backorders
than σL(8), as it was expected. Regarding the empirical non-parametric ap-
proaches (Kernel and Percentile), Kernel provides a lower coverage deviation
from the target and also a lower level of backorders with a higher scaled safety
stock. Finally, the empirical parametric approaches (SES and GARCH) show
a very good performance. This is particularly true for the GARCH model. It
is clear that the lowest coverage deviation among all the methods is obtained
by GARCH, at a similar level of scaled safety stock. Additionally, it performs
very well with respect to backorders. Note that this better performance of
GARCH indicates that SKUS from this dataset, in general terms, present
important autocorrelations on the lead-time forecast errors. Thus, the use of
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Figure 9: Trade-off curves for the manufacturer data assuming a lead time equal to 4
weeks

GARCH may bring significant economic savings.

7. Conclusions

Despite the attention from both academics and practitioners on supply
chain risk management, the links between demand uncertainty and risks are
still under-research. One tool that supply chains typically employ to prevent
further risks is the safety stock. This work examines empirical approaches,
parametric and non-parametric, to estimate the variability of the forecast
errors in order to determine the appropriate safety stocks. In addition, those
empirical methods are compared to traditional theoretical methods described
in the supply chain literature. Our intention has been to provide recommen-
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dations for the case that the assumption of normal i.i.d. forecast errors does
not hold, which is the norm in practice.

Simulation results show that empirical non-parametric approaches like
Kernel can be well-suited when the forecast error statistical distribution is
fat tailed, i.e., the normality assumption is violated. Additionally, if the
independence assumption cannot be guaranteed, empirical parametric ap-
proaches like SES and GARCH offer a promising alternative. In fact, when
forecast error are autocorrelated, GARCH and SES perform well. Moreover,
we find that when GARCH or SES improve the level of backorders it might
indicate potential autocorrelation. Under such circumstances GARCH model
is capable of capturing this and provide a better performance with respect
to forecast coverage and particularly for backorders volume.

Experimental results using real data are also provided. These validate the
previous conclusions obtained by the simulations exercise. GARCH models,
in comparison with the rest of techniques, provided the best forecast coverage
with a similar safety stock and the lower level of backorders. Recall that this
latter feature could indicate that this data set has autocorrelation on the
lead time forecast errors.

These results have been assessed by means of prediction interval metrics,
like forecast coverage and prediction interval width, which have been rede-
fined as scaled safety stock. Their implications on traditional stock control
metrics like customer service level, inventory investment and backorders have
been analyzed by including a simulation with an order-up-to level stock pol-
icy. The results showed a high correlation between prediction interval metrics
independent of the stock control policy and common stock control metrics.

Further research should address some limitations of this work. Basically,
we have analyzed single exponential smoothing and GARCH(1,1) model for
point and volatility forecasts, respectively. Future works should incorpo-
rate automatic identification routines to better identify optimal point and
volatility forecasting models, apart from the ones studied here. Moreover,
the optimal selection of the kernel function and/or bandwidth also deserves
further research. We also anticipate that an analytical contribution that
could find a theoretical expression between lead time forecasting error vari-
ability resulting from the overlapping aggregation process and the GARCH
model will be important.
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