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1 INTRODUCTION 

odern day computing services are provisioned globally 
through the use of Cloud datacenters. These Internet-

based virtual computing environments are distributed 
systems composed by hundreds and thousands of 
interconnected nodes, and are critical for fulfilling consumer 
Quality of Service (QoS) demands and business objectives. 
Cloud datacenters heavily exploit virtualization to form 
compute clusters capable of effectively deploying 
parallelizable frameworks such as MapReduce[1], Dryad[2], 
and Spark[3] – all of which require vast amounts of compute 
power and storage capacity to operate at scale. This has 
subsequently driven enormous consumer uptake for Cloud-
based applications resulting in explosive data growth. This 
has driven the formation of Cloud datacenters composed by 
thousands of nodes and millions of virtualized Cloud-based 
services, leading to increased system scale and complexity 
amongst interacting components. Subsequently, 
manifestation of previously unseen emergent system 
behavior has arisen within these distributed systems, and 
represents a significant threat towards providing effective 
virtualized service performance. 

This behavior is defined as the Long Tail problem, which 
occurs when a job – composed of multiple smaller tasks 
executing in parallel – incur significant delay. This delay is 
resultant of a subset of tasks known as stragglers executing 
abnormally slower in comparison to typical task execution 
[4]. It has been demonstrated that stragglers impose a 

substantive challenge towards rapid and predictable service 
execution for parallelizable applications [5], and is further 
aggravated by increased occurrence at growing system scale 
and complexity [6]. Addressing such behavior is particularly 
important when considering organizations such as VMWare 
and Amazon have spent substantial effort optimizing their 
virtualization technologies to operate effectively within 
massive-scale systems.  

There have been concentrated efforts by academia and 
industry towards mitigating the effect of stragglers upon 
virtualized service operation. These approaches primarily 
use speculative execution based methods that create replicas 
of detected stragglers which leverage redundant 
computation [7][8], network congestion [9], and data locality 
[10] to reduce overall job completion time. While such works 
have been demonstrated to reduce the impact of stragglers 
upon service operation, their effectiveness is dependent on 
realistic assumptions pertaining to system behavior. An 
example of one such assumption is that all stragglers are 
accurately detected within the system. This is challenging in 
practice due to (i) diverse task computation patterns within 
the system [11], (ii) straggler detection occurring late within 
the job execution lifecycle [12], and (iii) different underlying 
root causes for stragglers [6][13]. 

While root-cause analysis is a cross-cutting challenge 
across all straggler research, there is a lack of in-depth 
analysis for Cloud datacenters which quantifies the 
frequency and impact of stragglers and its underpinning 
root-cause within the system. Such work is key for effective 
fault-diagnosis for Cloud-based services, and is urgently 
needed for researchers to ascertain an intrinsic 
understanding of stragglers within real systems – 
transitioning away from developing detection and 
mitigation strategies built upon imprecise knowledge of 
occurrence. In order to achieve this objective, such analysis 
must come from large-scale production Cloud datacenters 
that heavily exploit virtualization in order to discover 
scientific understanding of straggler behavior and construct 
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assumptions derived from realistic operational scenarios.   
An effective application of performing this in-depth 

analysis is enhancing straggler detection; it has been 
identified that analyzing historical data of task execution can 
be leveraged as an effective means to model task 
computation patterns [14], enable effective speculative task 
execution [15], and avoid scheduling tasks onto faulty nodes 
[10]. However, approaches were not designed specifically 
for detecting straggler occurrence; from studying existing 
straggler mitigation mechanisms and historical analysis of 
task execution patterns, there is an opportunity to leverage 
both online and offline analytics in order to detect stragglers 
as soon as possible into a tasks’ lifespan.  

This work presents an in-depth root-cause and impact 
analysis of stragglers in large-scale virtualized Cloud 
datacenters, providing key insight for fault-diagnosis 
towards reliable Cloud-based service. Our approach 
statistically analyzes production systems to empirically 
ascertain straggler occurrence, quantify its impact on 
application execution, and determine its underlying cause. 
We exploit these findings to propose a novel data-centric 
approach for straggler detection combining offline and 
online analytics. The three core contributions are as follows: 

– Empirical analysis of straggler occurrence and impact. We 
analyze two real-world large-scale production Cloud 
datacenters comprising thousands of nodes, and study 
the probability of straggler occurrence and quantify their 
impact on service performance and system overhead. 
This provides empirical evidence of straggler behavior in 
modern distributed systems, and exemplifies to the 
larger research community the challenge towards 
designing reliable Cloud-based services at scale.    

– Method of straggler root-cause analysis. We detail a  method 
for determining a straggler’s root-cause from vast 
quantities of heterogeneous semi-structured trace data, 
and provide a study on root-cause from a 12,500+ node 
system, representing the first root-cause analysis of 
stragglers in production. We discuss the practical 
limitations and challenges in conducting root-cause 
analysis, and opportunities to improve current methods. 

– An approach for extreme straggler detection leveraging both 
offline analysis and online agent-based monitoring. The 
offline analytics comprises linear and non-linear 
regression to model task execution patterns from 
historical data, and is used to inform online monitoring 
of task execution at runtime. The approach is evaluated 
through conducting experiments and simulation, and 
can be used to enhance straggler mitigation approaches.  

Section 2 presents the research background; Section 3 
discusses related work; Section 4 presents an empirical 
analysis of straggler occurrence and impact; Section 5 details 
the root-cause straggler analysis; Section 6 presents the 
approach for straggler detection; Section 7 presents the 
experiment setup and evaluation of the proposed approach;  
Section 8 discusses conclusions and future work. 

2 BACKGROUND 

2.1 Stragglers 

Frameworks such as MapReduce, Dryad, Hadoop and Spark 
decompose jobs into tasks which are executed across 
numerous nodes in order to achieve improved performance 
gains through parallelization. While these frameworks have 
seen extensive uptake in recent years, they all face identical 
cross-cutting challenges towards effective task execution at 
scale. Specifically, it has been established that it is 
problematic to achieve predictable execution within Cloud 
datacenter environments due to volatile network conditions, 
resource interference, node heterogeneity, and scheduling 
practices [9]. Such a challenge has resulted in virtualized 
Cloud services requiring longer periods of time to complete 
execution. This is undesirable for both consumers and 
providers alike; for consumers, it results in reduced service 
performance, and potential QoS violations with respect to 
time (i.e. real-time applications). For providers, services that 
require additional time for completion results in decreased 
system availability waiting for all compute resources 
assigned to a job to be released. 

Furthermore, with the increased uptake of service creation 
and usage in Cloud datacenters, such behavior has been 
demonstrated to become increasingly frequent and 
important to mitigate [6]. This is especially true for Long Tail 
phenomena, manifesting within these frameworks in large-
scale computing infrastructure. Long Tail phenomena 
results in ineffective job execution due to abnormally slow 
task execution defined as stragglers. An example of straggler 
occurrence is shown in Figure 1 recorded from a job 
executing within a production Cloud datacenter, and 
demonstrates how a single task straggler can impede total 
job completion substantially. Stragglers significantly impede 
job completion, as it is unable to finish until all respective 
tasks within the job have successfully completed.  

Long Tail phenomena will further aggravate performance 
degradation within virtualized computing environments. 
This is due to the non-negligible I/O overheads (as typical 
Virtual Machines use shared-storage rather than local disk 
storage). When considering virtualization benefits such as 
cost reduction, simplified management and operations, 
virtualized services such as Hadoop/Spark will continue to 

 
Fig. 1. Straggler occurrence within a job for a production Cloud system. 
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increase in scale, and thus stragglers will become an 
increasing concern for virtualized infrastructure.  

Stragglers stem from a number of root-causes, including 
hardware heterogeneity [4], resource contention [6], 
background network traffic [9], I/O discord [10], and OS and 
application-level related sources [16]. There has been 
considerable effort towards studying stragglers caused by 
data skew categorized as either Map or Reduce skew, and 
can be further subdivided into partitioning skew, record size 
skew and computation skew [17-19]. How the distribution of 
an input dataset causes data skew (and subsequently 
introduce stragglers into the system) is detailed in [20]. 

As the size of computing infrastructure and submitted 
jobs continues to expand, the impact of stragglers increases 
dramatically. Stragglers substantially extend job execution 
time, thus impacting QoS and consumer Service Level 
Agreement (SLA) [21]. Even rare performance abnormalities 
can affect a significant portion of all requests in large-scale 
distributed systems [6][22]. As a result, analyzing stragglers 
is critical in order to speed up job completion and enhance 
operational efficiency of Cloud datacenters. 

2.2 Straggler Mitigation & Detection 

There are two approaches to mitigate stragglers; avoidance 
and tolerance. Akin to the nature of faults defined within the 
context of dependability [28], eliminating all sources of 
stragglers in large-scale computing systems is impractical 
due to system scale and complexity [29][30], as well as the 
increased use of multi-tenancy to collocate tasks within the 
same physical servers through virtualization. 

As a result, it is typical to instead tolerate task stragglers 
for mitigation through means of speculative execution. 
Initially proposed in [1], this technique observes the 
execution progress of tasks using a percentage score (values 
ranging between 0 to 1 representing start and completion, 
respectively), and will launch speculative copies (or backup 
copies) for task progress 20% less than average. This 
approach operates under the assumption that the 
speculative copy will execute faster and complete prior to 
the original task straggler, and is currently deployed within 
many production clusters from Google, Facebook, Bing, 
Alibaba and Yahoo. Although straggler mitigation 
approaches have been demonstrated to enhance job 
execution performance, their effectiveness is underpinned 
by the assumption of accurate straggler detection. 

Current straggler detection approaches can be classified 
as either online or offline analytics and both face challenges. 
The use of online analytics for detection can occur too late 
within the task execution lifecycle. As a result, even after 
applying speculative copies, stragglers still execute 8x 
slower compared to average task duration within a job, 
increasing its duration by 47% [8]. On the other hand, offline 
analytics are predominantly applied for straggler avoidance, 
an approach that becomes less feasible for systems at 
increased scale (and are more heavily impacted in terms of 
straggler behavior due to numerous underlying causes). As 
a result, there is a clear opportunity to combine both online 
and offline analytic techniques together to improve the 
effectiveness of straggler detection in an attempt to preserve 
the temporal guarantees in a Cloud system. 

3 RELATED WORK 

3.1 Straggler Analytics 

Jeffrey et al. [6] study a real Google service to quantify the 
impact stragglers impose on system performance, and 
demonstrate through statistical analysis that the slowest 5% 
of completed requests are responsible for half of the total 
99th percentile latency. The work discusses the positive 
correlation between straggler probability and cluster size, 
concluding that  the probability of longer latency increases 
within larger systems.  

Ananthanarayanan et al. [9] analyze trace data from 
Microsoft Bing’s production cluster. Their analysis shows 
that 80% of stragglers have a uniform probability of delay 
between 150-250% compared to the median task duration, 
with 10% exhibiting a delay 1000% greater than median task 
duration. This work also studies the characteristics of 
speculative copies within the cluster, and discover that their 
dispersion from average execution duration is minimal, 
however 3% of stragglers require 10 times longer to 
successfully complete.   

Garraghan et al. [22] study two production Cloud 
datacenters to study the frequency of straggler occurrence 
within Google and an anonymous large-scale e-commerce 
Cloud provider. Through analysis of task execution patterns 
extracted from system trace logs, they discover that a small 
proportion of tasks negatively impact the execution for 
approximately half the jobs within the entire system. Their 
work also observes that the distribution of straggler 
occurrence per server is weakly skewed, and affects 20% and 
100% of nodes for each Cloud datacenter, respectively. 

While these works study the characteristics of stragglers 
within real systems and quantify their impact on overall 
system performance – their primary objective is the proposal 
of detection or mitigation approaches. This results in 
analytics limited to observations pertaining to straggler 
occurrence, and does not study the precise root-cause of 
stragglers in detail. Work such as [9][22] only briefly discuss 
the need to differentiate stragglers by dataskew, resource 
contention and faulty nodes, yet provide no analysis to 
support this objective.   

3.2 Online Straggler Detection 

There have been numerous straggler mitigation methods 
proposed that are dependent on online monitoring and 
speculative execution.  

Zaharia et al. [4] propose LATE, a method of speculative 
execution which emphasizes improved effectiveness within 
a heterogeneous cluster. This work proposes a Progress Rate 
matrix to calculate the estimated completion time in addition 
to the absolute Progress Score for straggler detection. 
Furthermore, this work also defines concepts such as a slow 
node threshold to ensure speculative copies are launched on 
powerful nodes, slow task threshold to avoid needless 
speculation for fast tasks, and speculative cap to limit the 
number of speculative tasks running simultaneously within 
a system. When combined together, LATE demonstrates 
improvement to default Hadoop job response times by a 
factor of two, and is presently the dominant method of 
straggler detection for distributed systems.  
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Ananthanarayanan et al. [9] introduce MANTRI; the 
concept of preferential replication and resource constraint-
aware placement of speculative copies in LATE. Specifically, 
the approach only replicates the output of tasks which are 
either likely to be lost or require substantial re-computation 
calculated through a cost-benefit analysis. Furthermore, the 
approach also launches speculative copies based off the 
present network congestion characteristics of the system. 
Experiments within Bing’s production cluster demonstrate 
that Mantri can improve job completion times by 32% in 
comparison to LATE.  

Despite improvements to straggler mitigation using 
online detection, experiments conducted using production 
data [12] shows that as many as 90% of launched speculative 
copies are unneeded. This is due to speculative copies 
launched too late within the task lifecycle, resulting in the 
original task completing prior to the replica (and is 
subsequently killed by the system). This behavior results in 
many speculative copies producing resource overhead with 
no improvement to job execution time. As a result, a critical 
requirement for online mitigation is the ability to identify 
stragglers as quickly and accurately as possible.  

3.3 Offline Straggler Detection 

There are several approaches that leverage historical data to 
improve speculative execution effectiveness through offline 
analytics.  

Chen et al. [14] propose SAMR; a self-adaptive scheduling 
algorithm. They use historical data to adjust temporal 
weightings for each execution stage for calculating task 
progress, with results demonstrating up to a 25% decrease in 
job completion time in comparison to Hadoop default 
scheduler and a 14% decrease compared to LATE. Lin et al. 
[23] further augments SAMR within a multi-tenant system, 
and show that their method only generates a 10% relative 
mean square error for task completion prediction for reduce 
tasks and 30% for map tasks. 

Ananthanarayanan et al. [9] propose a smart speculative 
strategy that leverages historical data to select the most 
suitable node candidates for launching the replica copies 
using a cost-benefit model. Their results demonstrate that 
MCP can run jobs up to 39% faster and improve the cluster 
throughput by up to 44% compared to Hadoop default. 

Yadwadkar et al. [15] use a statistical learning technique 
based on cluster resource utilization counters to select the 
fewest resources needed for efficient speculation and 
significantly improved the resource consumption by up to 
55% while still achieving an improvement to job completion 
time by 61% compared to default speculative execution.  

Furthermore, there are methods that use historical data to 
proactively avoid scenarios that cause stragglers: 
Yadwadkar et al. [24] also propose a method for proactive 
straggler avoidance that performs a regression tree 
algorithm using the node-level statistics and avoid assign 
tasks onto nodes that tend to cause stragglers.  

All of above works show that machine learning and offline 
data analytics techniques support straggler detection 
preciseness. However, it is observable that offline analytics 
are predominantly applied for calculating estimated task 
execution times within the system instead of predicting 

stragglers, which becomes less feasible when approaching 
systems at increasing scale. Furthermore, both online and 
offline detection is underpinned by a deep understanding of 
straggler behaviour; presently there is limited work that 
specifically analyses how stragglers affect system 
performance, and the underlying root-cause which leads to 
straggler manifestation.   

4 STRAGGLER IMPACT ANALYSIS 

It is necessary to first fully understand stragglers within the 
context of real system operation. This enables researchers to 
study frequency and impact that task stragglers impose on 
Cloud datacenters, as well as focus research and 
developmental effort for enhancing straggler detection.  

To achieve this, we have empirically studied stragglers 
within two large-scale production Cloud datacenters; the 
Google cluster [25] and Cloud Datacenter B – a large-scale e-
commerce provider (for commercial reasons we are unable 
to disclose the provider’s identity). Each of these systems use 
OS-level virtualization (such as LXC), and vary dramatically 
in terms of cluster size, server heterogeneity, business 
objectives and application types as summarized in Table 1. 

As operational trace data produced from these systems 
are semi-structured and voluminous - composed of multiple 
files detailing information concerning task resource usage, 
event logs and server utilization – it is necessary to filter the 
trace data within each system in order to identify different 
job types. Specifically, we are particularly interested in 
studying straggler manifestation within batch jobs (i.e. DAG, 
MapReduce, MPI); a common type of application typically 
deployed within Cloud datacenters.  

The approach for filtering batch jobs within each cluster 
follows the same method, varying only by bespoke 
extraction from heterogeneous trace data structure. 
Information pertaining to job ownership of tasks is identified 
through use of recorded job IDs attached to all submitted 
tasks. Once the grouping of tasks to specific jobs has been 
established, their execution time is calculated through 
recorded start and completion events within the trace. 
Furthermore, we also consider the resource characteristics of 
tasks when identifying batch jobs to avoid serial task 
execution (i.e. all tasks within a job have the same requested 
resources and are submitted fraction of timestamps apart 
from each other). Once the execution duration for all tasks 
has been determined, we calculate the difference between an 
individual task’s execution duration and the average 
duration of all tasks within a job. In the case for the Google 
cluster, there exists multiple applications types described in 
[26]. As a result, we filter all jobs with priority 4 (identified 
as batch processing). Through using this filtering criteria it is 

TABLE 1. STUDIED CLOUD DATACENTER CHARACTERISTICS. 

System Google [20] Cloud Datacenter B 

Cluster size 12,532 2,841 

Time period 29 days 14 days 

Application 

Types 

Batch, MapReduce, 

Latency sensitive,  

streaming, etc. 

Direct Acyclic Graph 

(DAG) - Multiple 

MapReduce phases 
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possible to identify 3,043 jobs comprised of 252,290 tasks 
within Google and 875 jobs comprised of 1,223,879 tasks for 
Cloud Datacenter B. 

Figures 1-2 shows the difference between an individual 
task’s execution duration and the mean and median 
execution of all tasks within the same job. It is observable 
that the majority of tasks exhibit similar proportions for 
completion situated around 100% (i.e. an individual task 
execution duration is equal to the average job execution 
duration for all other tasks) for both studied systems. In 
accordance with [4][8][18][19] task stragglers are defined as 
tasks whose execution is ≥ 150% the average execution of all 
tasks within the same job. 

We observe that calculating this difference using different 
central tendency measurements of mean and median results 
in substantially different patterns for straggler detection. 
This is particularly noticeable within Cloud datacenter B 
shown in Figure 2, exhibiting different dispersion patterns 
for task execution. This is resultant of extremely fast or slow 
tasks affecting the central tendency and dispersion for task 
completion within a job when using the mean. As a result, 
while existing literature use the mean task execution 
duration for defining stragglers, there are additional 
advantages when studying the median task duration 
instead. Most notably that median job execution duration is 

less affected by extreme execution times caused by task 
stragglers; this is especially true when considering jobs 
composed of thousands and tens of thousands of tasks. This 
results in 6.54% and 3.48% of tasks to be identified as 
stragglers within the two respective Cloud datacenters. 

While it is intuitive to assume that such a small proportion 
of task stragglers would have limited impact towards the 
performance of all jobs, findings demonstrate that between 
37.79% and 49.49% of all jobs are negatively affected. This 
result is due to a job’s inability to complete until its 
respective tasks (including stragglers) have all completed 

         

Fig 1. Google Datacenter task - job completion difference % (a) median, (b) mean. 

      
 

Fig 2. Cloud Datacenter B task - job completion difference % (a) median, (b) mean. 
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TABLE 2. STRAGGLER OCCURRENCE &  
IMPACT IN PRODUCTION SYSTEMS. 

 
Google Datacenter Cloud Datacenter B 

Mean Median Mean Median 

 Total tasks 252,950 1,233,879 

 Task stragglers 11,210 16,543 33,322 42,925 

 Task stragglers % 4.43 6.54 2.70 3.48 

 Total jobs 3,043 875 

 Job stragglers 1081 1150 512 433 

 Job stragglers % 35.52 37.79 58.51 49.49 

Median straggler 

duration (s) 
865 12 
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execution, with distribution of job execution delay shown in 
Figure 3(a) and 3(b) for Google and Cloud Datacenter B, 
respectively. Such results resonates with theorized impact of 
stragglers in large-scale systems discussed in [6], and 
corroborates findings in [9] demonstrating a small 
proportion of jobs being delayed by up to 1000%. This 
negative affect can be directly quantified in terms of system 
overhead and application performance as shown in Table 2. 
It is observable that task stragglers cause job completion to 
be delayed on average between 12 and 865 seconds. The 
reason for this large disparity is primarily driven by the 
applications executing within the different Cloud systems. 
Cloud datacenter B is composed of shorter lived DAG jobs, 
while Google cluster is comprised of longer running batch 
jobs. While it can be argued for the latter that extended job 
execution lends itself to less focus on timing requirements, 
this directly translates into increased system overhead and 
reduced system availability, reflected by 2.49% additional 
compute hours required with the entire system (and 
effectively doubles to 5% when applying speculative 
execution). We also studied the manifestation of task 
stragglers within servers, with Figure 4(a) and 4(b) depicting 
the distribution of stragglers per server, and observe that 
65.07% and 99.78% of servers experience stragglers with a 
weak right-skewed distribution within Google and Cloud 
datacenter B, respectively. 

This analysis of stragglers within production Cloud 
datacenters has discovered a non-intuitive finding of 
particular interest. Specifically, while stragglers occur in 3-
7% of total tasks submitted, they impact a greater proportion 

of jobs by a factor of 10. By empirically demonstrating this 
surprising affect stragglers impose on large-scale systems, 
researchers and industry will be able to convey the scale and 
importance addressing straggler behavior to the wider 
community. The next step is to investigate the underlying 
causes which produce these identified stragglers. 

5 STRAGGLER ROOT-CAUSE ANALYSIS 

This section details a method currently applied within 
industry for conducting straggler root-cause analysis - 
detailing straggler filtration, analysis limitations in live 
systems, and presents an analysis of straggler root-cause 
stemming from numerous causes. Here we focus on the 
operational practices conducted within Cloud Datacenter B; 
due to obfuscation of low-level system logs within the 
Google trace, it is not possible to derive deep insight into 
their methods for straggler root-cause analysis. 

The method is composed by two components; correction 
and diagnosis. Correction entails a reactive approach of direct 
intervention by technical staff to perform fault correction 
upon straggler detection. This is performed by periodic 
execution of a health checker processes using Tsar [27] and 
Nagios [28] to monitor system metrics at a specific time 
interval, and alerts potential atypical system behavior to 
technical staff (i.e. abnormally high CPU utilization, 
extended task execution). Correction allows for technical 
staff to identify and manually correct potential problems 
within the system for reducing QoS violations and 
catastrophic failure prevention (such as system outages).  

While correction allows for rapid fault correction to 
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Fig 3. Job execution delay distribution  
(a) Google datacenter, (b) Cloud datacenter B 
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Fig 4. Comparison of filtered stragglers from  
(a) Google datacenter (b) Cloud Datacenter B, 
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reduce straggler impact towards system QoS, it is 
advantageous to understand the precise operational 
scenarios and causes that result in straggler occurrence. This 
is important in order to focus technical and developmental 
efforts towards reducing future straggler occurrence within 
the system. As a result, diagnosis involves offline analysis of 
system historical data to conduct in-depth investigation of 
precise causes for stragglers. 

A challenge when performing diagnosis is the large 
quantity of stragglers detected daily within system; Figure 5 
illustrates the proportion of jobs and tasks submitted daily 
within the greater Cloud datacenter B cluster, comprising 
over 12,000 servers over 20 days of operation. If assuming 
3.48% of the 25,600,000 tasks submitted daily are detected as 
stragglers (890,880), based on findings in Section 4, the 
ability to perform fault correction and diagnosis becomes 
infeasible due to the sheer number of occurrences. Therefore, 
it is necessary to further filter and characterize straggler 
behavior, thereby focusing on root-cause analysis for 
stragglers towards a specific design objective. A particularly 
important objective for production systems is mitigating the 
impact of extreme stragglers (i.e. tasks whose execution time 
far exceeds typical behavior) due to their noticeable impact 
to user perception of application performance.  

To achieve this, we propose a new criterion for straggler 
detection termed Degree of Straggler (DoS-index) – a system 
metric comprising task execution time and input size for an 
individual task Ti for n tasks in a job as shown in equation 1. 

DoS-Index  = (
𝐷𝑢𝑟(𝑇𝑖)

𝐼𝑛𝑝(𝑇𝑖)
) ÷ (

(
∑ 𝐷𝑢𝑟(𝑇𝑗)𝑛

𝑗=1

𝑛
)

(
∑ 𝐼𝑛𝑝(𝑇𝑗)𝑛

𝑗=1

𝑛
)

)        

 

where Dur(Ti) is the current execution duration of Ti, and 
Inp(Ti) is the data volume that Ti is required to process. 
Based on this definition, it is possible to control the strictness 
for straggler detection. The DoS-index indicates a relative 
speed of data processing (i.e., the time consumed when 
processing one unit of input data) for an individual task 
contrasted against all other tasks within the same job. A 
higher DoS-index value indicates a task with extended 
execution time and/or low input size in comparison to tasks 
within the same job. DoS-index is configured by default in 
Cloud datacenter B as ≥ 2.5.  

Although conducting data analytics for daily straggler 
reporting can be automatically deployed and generated 
using Big Data techniques, there are still numerous 
limitations towards automatic diagnosis – requiring fine-
grained analysis for investigating precise straggler root-
cause. Straggler diagnosis requires manual intervention 
from technical staff, and is conducted on a case-by-case basis. 
This is due to the requirement for technical staff to study 
heterogeneous semi-structured system logs from multiple 
sub-systems including kernel processes, error logs, 
application logs (it is worth noting that the same system log 
may be heterogeneous from each other).  

This results in an inability to produce a single unified 
query for straggler diagnosis, and data analysis is viewed as 
one tool to support technical staff when conducting root-
cause analysis. Furthermore, data queries themselves 
require considerable system resources for computation and 
data mining, and will impose overhead affecting the 
production system operation. Such overhead threatens the 
system’s ability to provision acceptable levels of QoS, and is 
produced within numerous aspects including server and 
application heterogeneity (semi-structured logs), network 
condition, I/O performance and remote data access (read 
and write), and current system utilization. As a result of this 
challenge combined with the design philosophy for Cloud 
datacenter B to focus developmental efforts on the extreme 
stragglers behavior within the system, the DoS-index is also 
configured to ≥ 10 for conducting diagnosis.  

 
Fig 6. Number of stragglers detected with approaches. 
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Fig 5. Workload statistics for Cloud Datacenter B  
(a) Tasks, (b) Jobs. 
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Table 3 presents statistics for stragglers within a 20 day 
period under different detection methods. It is observable 
that using different straggler criteria such as >150% progress 
and DoS-index strictness criteria results in filtering the 
number of stragglers down from 890,880 to 7,319 (365 a day 
on average) as depicted in Figure 6. It is hypothesized in [15] 
that high resource usage of a server plays a key factor for 
straggler occurrence. As a result from using system profiling 
tools in [27][28], we monitor and collect system information 
from servers which execute all tasks with DoS-Index ≥ 10. 
Information collected includes server CPU utilization ≥ 80%, 
Disk usage ≥ 80%, and slow Read-Write request handling (i.e. 
latency from file system > 400ms). 

We observe that approximately 59% and 42% of stragglers 
with DoS-Index ≥ 10 occur under the presence of high server 

CPU and disk overloading, respectively. This result 
indicates that high server resource utilization is a common 
cause for straggler occurrence. It is also observed that 34.3% 
of stragglers experience slow request handling. Although it 
is possible for CPU utilization and disk utilization to be 
correlated, we are unable to find significance in correlation 
(indicated by a Pearson Correlation Coefficient of 0.072). 
This is likely result of diversity in workload characteristics 
within Cloud datacenter B (i.e. CPU, memory, disk, and 
network intensive tasks) imposing different server 
characteristics, and requires further study of straggler 
categorized by workload behavior and characteristics. 

We conducted an in-depth root-cause analysis for 
stragglers with DoS-Index ≥ 10 to ascertain a deeper insight 
to straggler occurrence due to numerous underlying causes. 

TABLE 4 CLASSIFICATION FOR STRAGGLER ROOT-CAUSE. 

Type Category Specified Description Occurrence frequency 

1 High CPU utilization 

Low time-slice sharing and process scheduling due to certain 

bad user-defined worker logic, unbalanced workload 

aggregation etc. 

30% 

2 High disk utilization 
Local disk read and write conflicts, unbalanced tasks 

aggregation, disk faults etc. 
23% 

3 
Unhandled operational 

access request 

Distributed file system request surging(usually read request) and 

overpass the capability of request handling. 
23% 

4 Network package loss 
Network traffic package loss, resulting in repeating intermediate 

file and data transmission. 
14% 

5 Hardware faults Server timing-out, hang etc. 7% 

6 Data skew Uneven file block input resulting in data skew. 3% 

 

 

TABLE 3. CLOUD DATACENTER B STRAGGLER DETECTION WITH DOS-INDEX. 

Day  DoS-index≥2.5 DoS-index≥10 
System Utilization at Detection 

CPU Util≥80% DiskUtil≥80% Slow Req Handling 

1 9,937 136 46 61 29 

2 7,232 151 114 14 23 

3 7,540 280 161 84 35 

4 7,277 213 147 23 43 

5 12,373 376 158 149 69 

6 8,402 384 129 184 71 

7 10,450 562 352 128 82 

8 8,494 552 348 129 75 

9 9,109 313 121 94 98 

10 10,834 426 116 77 233 

11 8,486 382 100 150 132 

12 8,773 586 179 239 168 

13 2,728 534 126 247 161 

14 9,414 283 117 41 125 

15 8,472 448 104 259 85 

16 12,194 335 131 66 138 

17 9,700 395 236 92 67 

18 10,941 368 163 63 142 

19 12,552 313 172 83 58 

20 11,526 282 154 101 27 

Total 186,434 7,319 3,174(58.6%) 2,284(42.1%) 1,861(34.3%) 
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This was performed from exploratory analysis of numerous 
system logs within the cluster, including application errors, 
kernel processes, resource managers, and system monitoring 
tools. Table 4 shows the categorization of the dominant 
factors that cause stragglers to occur, and their 
corresponding frequency. 

It is observable that high CPU utilization is the most 
dominant type of cause, responsible for 30% of all straggler 
occurrences, and is caused by two reasons; unbalanced 
workload aggregation and poor user code. Unbalanced 
aggregation is caused by inefficient scheduling causing 
excessive workload co-allocation within a server. Poor user 
code is inefficiently designed executable logic (i.e. orphan 
processes, looping conditions) complied and executed by the 
user. Both of these reasons result in CPU bursting within a 
very short time period; this results to inefficient time-slice 
sharing within the server kernel, resulting in slowdown in 
CPU, memory and disk access.  

Another straggler cause is resultant of faults within the 
server, specifically late timing failures and transient disk 
faults which result in slow disk I/O and file operations; task 
co-located within the same machine with the same resource 
characteristic (i.e. IO intensive) generate resource 
interference. We discovered that it is possible for tasks to 
read and write to the same disk block simultaneously, 
resulting in large amount of disk resource competition 
requiring conflict resolving.  

Another important reason we observe is the request 
handling inefficiency due to overloaded and surging file 
requests. Specifically, for a typical batch job such as 
MapReduce, there are a large number of read and write 
operational requests to the distributed file system (such as 
HDFS, GFS, etc.). Once the surging request number 
surpasses the handling capability of the file system master, 
it will become a bottleneck (even when the master has 
multiple replicas) and therefore many requests will be 
queued to await allocation. In fact, based on our analysis, we 
observe that in some cases the unreasonable configuration of 
Map or Reduce number or block size might lead to 
unexpected request increase thereby increasing the load of 
file system master with slow request handling.   

Furthermore, we found that the network condition is also 
a variable that will affect reliable task execution, due to all 
remote copies operations after shuffle phase in Map Reduce 
being sent through the network. From our analysis by using 
“tsar retran” [27], 14% of stragglers were caused due to 
network package loss. Higher package re-transmission 
results in not only extended job end-to-end time-span, but 
aggravates the network congestion as well.  Finally, other 
common factors include time-out faults and data skew, 
comprising 10% of straggler root-cause. 

The proportions of affected tasks from each identified 
straggler root-cause share identified proportions similar to 
Table 4 (specifically for high CPU, Disk and slow request 
handling). Therefore, we are fully convinced from our 
practical experience that these results could be used as 
inspirable instructions to handle with different stragglers 
and can cover comprehensively multiple scenarios and fault-
injection practices to simulate straggler behavior.  

6 SYSTEM ARCHITECTURE 

In this section we propose a method and implementation for 
a straggler detection system for large-scale virtualized 
distributed systems which aims to mitigate the effects of 
extreme stragglers (i.e. task execution that is abnormally 
long). While our approach is applicable to numerous types 
of distributed systems such as Grids, Cyber-physical 
systems and the Internet of Things, this work focuses on 
Cloud computing datacenters; modern large-scale systems 
with explicit (SLAs, QoS, availbility) and implicit (energy-
efficiency, user experience) requirements for provisioning 
high performance service to users. 

Figure 7 depicts the high-level system architecture for our 
task straggler detection system, and is divided into two 
primary components: offline analytics and online analytics. The 
offline analytics component analyses historical data 
detailing previous job execution to characterize and model 
task execution patterns in order to calculate a threshold 
parameter which determines a boundary which 
distinguishes between straggler and non-straggler behavior 
for an individual task at a given time interval. The online 
analytics then monitors and compares the current task 
execution progress at runtime against the historical patterns 
using agents within each server for straggler detection.  

6.1 Offline Analytics 

The offline analytics component is integrated into the 
straggler detection engine, and is responsible for analyzing 
and modeling task patterns and straggler manifestation. 
Specifically, this module is responsible for modeling task 
execution patterns and supports the decision making for 
straggler detection within the offline analytics components. 
The module is composed of three sub-components:  
Job profiler: Responsible for profiling and modeling 
different types of job and task execution patterns. Such a 
components is important as tasks exhibit heterogeneous task 
execution lengths and resource consumption quantities 

 
Fig 7. Cloud datacenter model with integrated Long Tail analytics  

engine and agent based analytics. 
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across the system as detailed in [29]. The method for 
profiling job execution patterns is independent on the task 
characteristics executing within the system, and can be 
performed using several techniques including clusterization 
and modeling task progress execution [11]. Figure 8 shows 
an approach for modeling task progress execution patterns 
for 500 Reduce tasks within a 50 node cluster. It is observable 
that it is possible to sub-divide the Reduce phase into 
multiple stages [1][4], which can be successfully modeled 
through a combination of linear and non-linear regression 
analysis. Using this technique it is possible to profile task 
execution progress patterns over time for specific job types. 
Straggler Identifier: Responsible for quantifying the type 
and impact of past stragglers within the distributed system. 
Work within [6][9][19] and findings in Section 5 have 
identified that there are numerous root cause for stragglers. 
Therefore, it is advantageous to analyze and identify the 
cause of stragglers which occur historically within a system 
in order to correct identified faults following the method in 
Section 5, and ascertain where developmental effort should 
be applied for maximum effectiveness. 
Threshold Calculator: This components exploits the task 
execution patterns and regression models generated from 
the job profiler component to derive the (theoretical) 
minimum threshold for task progress at a certain time. 
Specifically, straggler threshold S is defined as the minimum 
progress of task Ti completed at time t in relation to typical 
task progress Prog to avoid being identified as a straggler. 
Diff is calculated as the distance between TiProg and TiS at 
time t, and is used for determining violation of threshold 
value S, and is expressed as a percentage determined by the 
system administrator. 

To give a hypothetical example, if a model expressing Ti 
over period t generated from the Job Profiler component is a 
linear function as shown in (2): 

 

and Diff is defined as task execution time 50% greater than 
median execution - a value commonly defined in the 
literature (i.e. speculated task straggler completion time of 
180 minutes against typical task completion of 120 
minutes), then straggler threshold is expressed as a 

function shown in (3): 

  

As demonstrated in Figure 9, in this example TiS will equal 
TiProg when t is 50% greater (thus, a task is detected as a 
straggler when the time taken to reach a specific progress 
score at time t is greater than 50% in comparison to typical 
task execution). The developed model generated from the 
offline component of the system is exploited by the online 
analytics at runtime for straggler detection. 

6.2 Online Analytics 

The online analytics component is comprised by the 
Straggler Analytics Agent which resides on each physical 
server as a lightweight process within the distributed system 
as shown in Figure 9. The agent is responsible for monitoring 
and analyzing task execution progress and straggler 
detection at runtime. When a task is scheduled onto a server, 
each agent will periodically monitor task progress and 
extract key parameters from data traces generated by each 
task. Parameters of interest identified includes task 
timestamp, time of task instantiation, current task progress 
score as well as data blocks transferred and download rate 
(if applicable to the current Reduce phase). 

The agent compares current task progress against the 
model produced by the offline analysis determined by the 
threshold calculator in Long Tail Analytics Engine. The 
agent then communicates with other agents in order to 
compare task progress against the median progress of all 
tasks within the same job at time t. The model derived from 
the offline analysis is of particular importance, as it safe 
guards against false positives due to (i) multiple stragglers 
within the same job, and (ii) boundary sensitivity at the 
beginning of job execution for low progress values. If TiProg < 
TiS, as well as 50% smaller than the median task progression 
at ti for its respective job, a task is identified as a straggler.  
Such an approach can encounter challenges in model 
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sensitivity within the first time periods due to the short 
Euclidian distance between progress scores at the start of 
task execution. As a result, it is necessary to combine both 
offline and online analytics together into a single approach 
for straggler detection. 

7 STRAGGLER DETECTION EVALUATION 

In this section we present the straggler detection evaluation 
to study its effectiveness in real systems. Furthermore, we 
demonstrate the advantages of combining online and offline 
analysis together in contrast to detection in isolation. 

7.1 Experiment Setup 

Experiments were conducted to evaluate the effectiveness of 
the proposed straggler detection method. The system was 
implemented within a 50 node cluster concurrently used by 
other users for research and University services, comprising 
50 x quad-core Intel machines @ 3.40GHz CPU running 
CentOS. We deployed two types of applications. The first is 
Hive [30] – a database management system which interfaces 
and translates SQL like queries into MapReduce jobs. 40 jobs 
each comprising between 500-1000 Map tasks and 40-80 
Reduce tasks were submitted to the cluster, with each job 
configured to perform various aspects of computation (i.e. 
multiplication, CEIL and FLOOR functions), JOIN clauses 
between data tables, and data attribute types. The data used 
to perform these functions consisted of operational trace logs 
from numerous Cloud, datacenter and HPC systems, 
totalling approximately 1TB of system log data. The second 
application is the WordCount benchmark pre-installed 
within Hadoop, and processes a 548MB file with each job 
creating 15 Map tasks per execution run. 

In experiments we inject tasks which exhibit straggler 
behavior caused by data skew by invoking specific query 
types within Hive, and larger input size within WordCount. 
The probability of this occurrence per task is configured at 
5%, reflecting values derived from the straggler impact 
analysis in Section 4. Within experiments we define straggler 
behaviour as task completion time 50% greater than median 
task execution within a job, in accordance to the definition 
within [4][8][18][19]. Due to model sensitivity from initial 
experiments we configured for straggler detection to 
commence 5 seconds after the job commences. Online 
analytics agents were configured to monitor and compare 
current task progress against the models generated from 
Long Tail Analytics Engine at a time interval of three 

seconds (in line with Hadoop MapReduce log file reading). 
For evaluation we measure thresholds using the estimated 
finish time as opposed to the DOS-Index, as we assume full 
knowledge pertaining to extreme straggler task execution. 

7.2 Experiment Results 

Figure 10(a) and 10(b) depicts task progress execution over 
time and the generated threshold model for HiveQL and 
WordCount, respectively. It is observable within both job 
that there exists a substantial difference between normal and 
straggler task patterns, caused by the input size sent to a task 
being considerably larger than normal. Through statistical 
models generated from historical data combined with online 
analysis, it is possible within HiveQL to identify over 95% of 
stragglers caused by data skew which are detected 10.91% 
on average into a task progress at runtime detailed in Table 
5. We observe false positive rate of 5.59% which is caused by 
task progress of straggler and non-straggler tasks exhibiting 
similar progress scores at the start of execution as shown in 
Figure 10. In contrast, WordCount jobs are characterized as 
executing much longer compared to HiveQL (over 300 
seconds), with 78.31% of stragglers detected 37.77% into 
their execution.  

The predominate reason for the occurrence of false 
positives is a result of threshold sensitivity or interference 

TABLE 5. STATISTICAL PROPERTIES OF STRAGGLER 

DETECTION EXPERIMENTS. 

 HiveQL WordCount 

  Total tasks submitted 2500 350 

  Total stragglers submitted (%) 6.45 5.61 

  True positive rate (%) 95.71 78.31 

  False positive rate (%) 5.59 21.69 

  Straggler progress detection (%) 10.91 37.77 

  CPU usage of agent per node 0.20% 0.21% 
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Fig 10. Task Progress with Long Tail Identification Analytics Engine  

(a) HiveQL, (b) WordCount. 
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from other users executing jobs on the same cluster. This is 
especially true for WordCount jobs, where it is possible for 
task execution to commence after the initial phase has 
commenced. Furthermore, it is possible for tasks to meet the 
conditions for detection, however quickly recover around 
the start of job execution as shown in Figure 11. While this 
work focuses on detecting extreme tasks, this is a common 
weakness shared across all detection systems for ‘borderline 
stragglers’ which require further investigation. This result 
demonstrates the need for refinement of any future detection 
techniques that are configured to handle potentially 
different sensitivity levels for straggler detection at different 
time frames into a task’s execution. While this result 
indicates high accuracy of straggler detection for jobs with 
short duration and all of which start task execution at time 
zero, from our experiments we observe that there is further 
refinement required for longer running tasks and tasks 
which start later within the job lifecycle.  Such refinement 
could be achieved through tuning Diff as well as data mining 

additional event parameters of interest from system logs (i.e. 
task process resource consumption, network usage, node 
location, etc.).  

Furthermore, we observe that a minority of tasks are 
detected early within their execution, yet finish relatively 
close to the boundary of acceptable task completion (TiS). 
This behavior highlights potential issues for defining a fixed 
arbitrary value for stragglers (i.e. 50% greater than median 
task execution, DoS-Index ≥ 2.5), as tasks that complete just 
below the threshold will be detected as false positives, 
however still impede job execution completion. These results 
indicate the need for more intelligent metrics for straggler 
detection – transitioning away from a fixed temporal 
boundary as defined in [4][8] towards an adaptive boundary 
that consider metrics such as task progression, system 
conditions and job QoS as detailed in [34]. We observe that 
the online analytics agent produce approximately 0.2% CPU 
usage for both job types, representing a fractional amounts 
of server usage, and observing no indication of causing an 
increment in straggler behavior caused by high CPU. 

7.3 Simulation 

We also conducted an evaluation to study the advantages of 
combining offline and online analytics for straggler 
detection in contrast to each respective component in 
isolation. This was performed through simulation to study 
task execution within a larger-scale system. This was 
performed by simulating Cloud datacenter operation using 

 
Fig 11. Threshold boundary sensitivity. 
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Fig 12. Simulated normal and straggler task patterns for  
(a) HiveQL, (b) WordCount. 

 

 

 

 

 

 

TABLE 6. COMPARISON OF STRAGGLER DETECTION  

APPROACHES. 

Approach 
Avg. Straggler 

detection (s) 

Straggler 

detection % 

True 

Positive % 

HiveQL 

Online 61 93.27 100.00 

Offline 12.62 20.44 58.97 

Combined 15.84 23.24 90.63 

WordCount 

Online 108.92 23.58 100.00 

Offline 98.3 21.37 98.76 

Combined 219.11 47.63 100.00 
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SEED - an event-based simulator [36] that enables the 
creation of jobs (comprising multiple tasks) onto a set of 
machines for execution. In order to simulate task execution, 
we modeled progress patterns extracted from the HiveQL 
and WordCount workloads used in the experiments 
exploiting linear regression. At each simulation time-step the 
progress of task increments, and will perform straggler 
detection. We selected three approaches for detection - 
online, offline and combined. Online was based on the design 
in [4] defined as “when a task's progress score is less than the 
average for its category (map or reduce) minus 0.2, and the task 
has run for at least one minute, it is marked as a straggler”. Offline 
is defined as TiProg < TiS , thus omitting the requirement for 
comparing against average job progress. Combined is a 
combination of offline and online, and implemented using 
the logic described in Section 6.2. 25 jobs of each workload 
type comprising 500 tasks (with an assigned a straggler 
probability of 5%) were submitted into 500 machines. 

Figure 12 and Table 6 presents the task execution patterns 
between normal and stragglers for HiveQL and WordCount. 
We observe in HiveQL that while the online approach is 
capable of successfully detecting 100% of stragglers, it occurs 
93% into the execution lifecycle of the job. In contrast, the 
offline approach detects straggler within 20.44%, however 
incurs a false positive rate of 41.03%. This is due to major 
fluctuation of progress patterns proportional to current task 
progress at the start of the task lifecycle (i.e. progress score 
changes are magnified). The combined approach is capable 
of nullifying this fluctuation, resulting in straggler detection 
in 23.24% of the task lifecycle with 90.63% accuracy. 

In contrast, online and offline detection appears to achieve 
greater detection effectiveness for workload that executes for 
extended periods of time – capable of 100% detection 
accuracy 21-24% within the lifecycle. The reason for this 
behavior is due to longer running tasks will reduce the 
sudden fluctuation of progress patterns each time-step. This 
results in the combined approach detecting stragglers just 
under 50% of task execution. 

Theses result indicates that the combined approach is 
effective for jobs with smaller duration due to its ability to 
minimize false positives and rapid detection. In contrast for 
longer running tasks it is feasible to focus on online or offline 
straggler detection. This is reflected by various approaches 
proposed for speculative execution based on duration or job 
size [37], demonstrating that there presently does not exist a 
unified approach for straggler detection. 

8 CONCLUSION 

This paper presents an empirical analysis of two production 
large-scale virtualized Cloud datacenters to ascertain the 
impact and root-cause of stragglers; emergent phenomena 
found within distributed systems at scale. Findings were 
leveraged to guide the development of a detection system for 
extreme stragglers by combining offline analytics and agent 
based monitoring. The results present key empirical insight 
for stragglers in large-scale virtualized Cloud datacenters, 
and can be exploited by researchers for designing their 
system assumptions based on realistic operation scenarios. 
Our conclusions are summarized as follows:  

Stragglers non-intuitively impact a large proportion of job 
within Cloud datacenters. Our empirical analysis of two 
production Cloud datacenters demonstrates that 4 – 6% of 
total task stragglers affect 37 – 49% of total jobs, impeding 
their execution between 12-865 seconds. With the evolving 
trend of computing systems growing in complexity and 
scale, such findings demonstrate the threat that stragglers 
phenomena imposes towards guaranteeing virtualized 
service performance in next generation systems. 

Straggler root-cause stems from numerous faults - 
predominately from high server resource utilization. Our analysis 
of a 12,000+ node production system indicates that stragglers 
are produced from numerous underlying faults including 
hardware faults, data skew, and network packet loss. 
Importantly, 53% of straggler root-cause is resultant of high 
CPU and disk server utilization stemming from unbalanced 
workload aggregation and inefficient user code. 

Research into automated straggler root-cause analysis is 
urgently required. We discuss in detail the practical 
consideration and current limitations in straggler root-cause 
analysis. It is presently not possible for automated analysis 
due to the requirement of expertise in exploring and 
correlating heterogeneous sub-system trace data (kernel, 
application, server, etc.) combined with tacit knowledge of 
technical staff for identifying faults. This process is labor and 
resource intensive and outlines an open challenge within the 
straggler community to accelerate this process. 

Holistic usage of offline and online analytics is capable of 
detecting extreme straggler behavior at runtime. Through 
combination of offline and online agent based analytics, we 
demonstrate through experiments that it is possible to 
identify 95% of task stragglers approximately 11% into a 
tasks execution for short lived jobs. The approach is capable 
of minimizing false positives for straggler detection caused 
by sudden fluctuation in task progress scores, which appears 
to be less of a concern for longer running jobs. 

Future work includes integration of our approach into 
established straggler mitigation techniques including 
speculative execution to discover whether we can achieve 
substantial gains in job completion timeliness and system 
QoS. Furthermore, we intend to propose a means to 
accelerate the process for root-cause analysis through 
machine learning to cross-correlate heterogeneous system 
traces for more intelligent failure detection such as [35].  
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