

1

1 INTRODUCTION

odern day computing services are provisioned globally
through the use of Cloud datacenters. These Internet-

based virtual computing environments are distributed
systems composed by hundreds and thousands of
interconnected nodes, and are critical for fulfilling consumer
Quality of Service (QoS) demands and business objectives.
Cloud datacenters heavily exploit virtualization to form
compute clusters capable of effectively deploying
parallelizable frameworks such as MapReduce[1], Dryad[2],
and Spark[3] – all of which require vast amounts of compute
power and storage capacity to operate at scale. This has
subsequently driven enormous consumer uptake for Cloud-
based applications resulting in explosive data growth. This
has driven the formation of Cloud datacenters composed by
thousands of nodes and millions of virtualized Cloud-based
services, leading to increased system scale and complexity
amongst interacting components. Subsequently,
manifestation of previously unseen emergent system
behavior has arisen within these distributed systems, and
represents a significant threat towards providing effective
virtualized service performance.

This behavior is defined as the Long Tail problem, which
occurs when a job – composed of multiple smaller tasks
executing in parallel – incur significant delay. This delay is
resultant of a subset of tasks known as stragglers executing
abnormally slower in comparison to typical task execution
[4]. It has been demonstrated that stragglers impose a

substantive challenge towards rapid and predictable service
execution for parallelizable applications [5], and is further
aggravated by increased occurrence at growing system scale
and complexity [6]. Addressing such behavior is particularly
important when considering organizations such as VMWare
and Amazon have spent substantial effort optimizing their
virtualization technologies to operate effectively within
massive-scale systems.

There have been concentrated efforts by academia and
industry towards mitigating the effect of stragglers upon
virtualized service operation. These approaches primarily
use speculative execution based methods that create replicas
of detected stragglers which leverage redundant
computation [7][8], network congestion [9], and data locality
[10] to reduce overall job completion time. While such works
have been demonstrated to reduce the impact of stragglers
upon service operation, their effectiveness is dependent on
realistic assumptions pertaining to system behavior. An
example of one such assumption is that all stragglers are
accurately detected within the system. This is challenging in
practice due to (i) diverse task computation patterns within
the system [11], (ii) straggler detection occurring late within
the job execution lifecycle [12], and (iii) different underlying
root causes for stragglers [6][13].

While root-cause analysis is a cross-cutting challenge
across all straggler research, there is a lack of in-depth
analysis for Cloud datacenters which quantifies the
frequency and impact of stragglers and its underpinning
root-cause within the system. Such work is key for effective
fault-diagnosis for Cloud-based services, and is urgently
needed for researchers to ascertain an intrinsic
understanding of stragglers within real systems –
transitioning away from developing detection and
mitigation strategies built upon imprecise knowledge of
occurrence. In order to achieve this objective, such analysis
must come from large-scale production Cloud datacenters
that heavily exploit virtualization in order to discover
scientific understanding of straggler behavior and construct

Straggler Root-Cause and Impact Analysis for

Massive-scale Virtualized Cloud Datacenters

Abstract— Increased complexity and scale of virtualized distributed systems has resulted in the manifestation of emergent phenomena

substantially affecting overall system performance. This phenomena is known as “Long Tail”, whereby a small proportion of task stragglers

significantly impede job completion time. While work focuses on straggler detection and mitigation, there is limited work that empirically studies

straggler root-cause and quantifies its impact upon system operation. Such analysis is critical to ascertain in-depth knowledge of straggler

occurrence for focusing developmental and research efforts towards solving the Long Tail challenge. This paper provides an empirical analysis

of straggler root-cause within virtualized Cloud datacenters; we analyze two large-scale production systems to quantify the frequency and

impact stragglers impose, and propose a method for conducting root-cause analysis. Results demonstrate approximately 5% of task stragglers

impact 50% of total jobs for batch processes, and 53% of stragglers occur due to high server resource utilization. We leverage these findings

to propose a method for extreme straggler detection through a combination of offline execution patterns modeling and online analytic agents

to monitor tasks at runtime. Experiments show the approach is capable of detecting stragglers less than 11% into their execution lifecycle with

95% accuracy for short duration jobs.

Index Terms— Straggler, Distributed Systems, Root-cause analysis, Datacenter, Cloud computing.

—————————— ——————————

Peter Garraghan, Xue Ouyang, Renyu Yang, David McKee, Jie Xu Member, IEEE

M

P. Garraghan is with the School of Computing and

Communications, Lancaster University, LA1 4WA, UK

Email: p.garraghan@lancaster.ac.uk

X. Ouyang, D. McKee and J.Xu are with the School of Computing,

University of Leeds, LS2 9JT, UK

E-mail: {scxo,scdwm,j.xu}@leeds.ac.uk

R. Yang is with the School of Computing, Beihang University

Beijing, 100191, China.

E-mail: yangry@act.buaa.edu.cn

2

assumptions derived from realistic operational scenarios.
An effective application of performing this in-depth

analysis is enhancing straggler detection; it has been
identified that analyzing historical data of task execution can
be leveraged as an effective means to model task
computation patterns [14], enable effective speculative task
execution [15], and avoid scheduling tasks onto faulty nodes
[10]. However, approaches were not designed specifically
for detecting straggler occurrence; from studying existing
straggler mitigation mechanisms and historical analysis of
task execution patterns, there is an opportunity to leverage
both online and offline analytics in order to detect stragglers
as soon as possible into a tasks’ lifespan.

This work presents an in-depth root-cause and impact
analysis of stragglers in large-scale virtualized Cloud
datacenters, providing key insight for fault-diagnosis
towards reliable Cloud-based service. Our approach
statistically analyzes production systems to empirically
ascertain straggler occurrence, quantify its impact on
application execution, and determine its underlying cause.
We exploit these findings to propose a novel data-centric
approach for straggler detection combining offline and
online analytics. The three core contributions are as follows:

– Empirical analysis of straggler occurrence and impact. We
analyze two real-world large-scale production Cloud
datacenters comprising thousands of nodes, and study
the probability of straggler occurrence and quantify their
impact on service performance and system overhead.
This provides empirical evidence of straggler behavior in
modern distributed systems, and exemplifies to the
larger research community the challenge towards
designing reliable Cloud-based services at scale.

– Method of straggler root-cause analysis. We detail a method
for determining a straggler’s root-cause from vast
quantities of heterogeneous semi-structured trace data,
and provide a study on root-cause from a 12,500+ node
system, representing the first root-cause analysis of
stragglers in production. We discuss the practical
limitations and challenges in conducting root-cause
analysis, and opportunities to improve current methods.

– An approach for extreme straggler detection leveraging both
offline analysis and online agent-based monitoring. The
offline analytics comprises linear and non-linear
regression to model task execution patterns from
historical data, and is used to inform online monitoring
of task execution at runtime. The approach is evaluated
through conducting experiments and simulation, and
can be used to enhance straggler mitigation approaches.

Section 2 presents the research background; Section 3
discusses related work; Section 4 presents an empirical
analysis of straggler occurrence and impact; Section 5 details
the root-cause straggler analysis; Section 6 presents the
approach for straggler detection; Section 7 presents the
experiment setup and evaluation of the proposed approach;
Section 8 discusses conclusions and future work.

2 BACKGROUND

2.1 Stragglers

Frameworks such as MapReduce, Dryad, Hadoop and Spark
decompose jobs into tasks which are executed across
numerous nodes in order to achieve improved performance
gains through parallelization. While these frameworks have
seen extensive uptake in recent years, they all face identical
cross-cutting challenges towards effective task execution at
scale. Specifically, it has been established that it is
problematic to achieve predictable execution within Cloud
datacenter environments due to volatile network conditions,
resource interference, node heterogeneity, and scheduling
practices [9]. Such a challenge has resulted in virtualized
Cloud services requiring longer periods of time to complete
execution. This is undesirable for both consumers and
providers alike; for consumers, it results in reduced service
performance, and potential QoS violations with respect to
time (i.e. real-time applications). For providers, services that
require additional time for completion results in decreased
system availability waiting for all compute resources
assigned to a job to be released.

Furthermore, with the increased uptake of service creation
and usage in Cloud datacenters, such behavior has been
demonstrated to become increasingly frequent and
important to mitigate [6]. This is especially true for Long Tail
phenomena, manifesting within these frameworks in large-
scale computing infrastructure. Long Tail phenomena
results in ineffective job execution due to abnormally slow
task execution defined as stragglers. An example of straggler
occurrence is shown in Figure 1 recorded from a job
executing within a production Cloud datacenter, and
demonstrates how a single task straggler can impede total
job completion substantially. Stragglers significantly impede
job completion, as it is unable to finish until all respective
tasks within the job have successfully completed.

Long Tail phenomena will further aggravate performance
degradation within virtualized computing environments.
This is due to the non-negligible I/O overheads (as typical
Virtual Machines use shared-storage rather than local disk
storage). When considering virtualization benefits such as
cost reduction, simplified management and operations,
virtualized services such as Hadoop/Spark will continue to

Fig. 1. Straggler occurrence within a job for a production Cloud system.

Execution Time (s)

3

increase in scale, and thus stragglers will become an
increasing concern for virtualized infrastructure.

Stragglers stem from a number of root-causes, including
hardware heterogeneity [4], resource contention [6],
background network traffic [9], I/O discord [10], and OS and
application-level related sources [16]. There has been
considerable effort towards studying stragglers caused by
data skew categorized as either Map or Reduce skew, and
can be further subdivided into partitioning skew, record size
skew and computation skew [17-19]. How the distribution of
an input dataset causes data skew (and subsequently
introduce stragglers into the system) is detailed in [20].

As the size of computing infrastructure and submitted
jobs continues to expand, the impact of stragglers increases
dramatically. Stragglers substantially extend job execution
time, thus impacting QoS and consumer Service Level
Agreement (SLA) [21]. Even rare performance abnormalities
can affect a significant portion of all requests in large-scale
distributed systems [6][22]. As a result, analyzing stragglers
is critical in order to speed up job completion and enhance
operational efficiency of Cloud datacenters.

2.2 Straggler Mitigation & Detection

There are two approaches to mitigate stragglers; avoidance
and tolerance. Akin to the nature of faults defined within the
context of dependability [28], eliminating all sources of
stragglers in large-scale computing systems is impractical
due to system scale and complexity [29][30], as well as the
increased use of multi-tenancy to collocate tasks within the
same physical servers through virtualization.

As a result, it is typical to instead tolerate task stragglers
for mitigation through means of speculative execution.
Initially proposed in [1], this technique observes the
execution progress of tasks using a percentage score (values
ranging between 0 to 1 representing start and completion,
respectively), and will launch speculative copies (or backup
copies) for task progress 20% less than average. This
approach operates under the assumption that the
speculative copy will execute faster and complete prior to
the original task straggler, and is currently deployed within
many production clusters from Google, Facebook, Bing,
Alibaba and Yahoo. Although straggler mitigation
approaches have been demonstrated to enhance job
execution performance, their effectiveness is underpinned
by the assumption of accurate straggler detection.

Current straggler detection approaches can be classified
as either online or offline analytics and both face challenges.
The use of online analytics for detection can occur too late
within the task execution lifecycle. As a result, even after
applying speculative copies, stragglers still execute 8x
slower compared to average task duration within a job,
increasing its duration by 47% [8]. On the other hand, offline
analytics are predominantly applied for straggler avoidance,
an approach that becomes less feasible for systems at
increased scale (and are more heavily impacted in terms of
straggler behavior due to numerous underlying causes). As
a result, there is a clear opportunity to combine both online
and offline analytic techniques together to improve the
effectiveness of straggler detection in an attempt to preserve
the temporal guarantees in a Cloud system.

3 RELATED WORK

3.1 Straggler Analytics

Jeffrey et al. [6] study a real Google service to quantify the
impact stragglers impose on system performance, and
demonstrate through statistical analysis that the slowest 5%
of completed requests are responsible for half of the total
99th percentile latency. The work discusses the positive
correlation between straggler probability and cluster size,
concluding that the probability of longer latency increases
within larger systems.

Ananthanarayanan et al. [9] analyze trace data from
Microsoft Bing’s production cluster. Their analysis shows
that 80% of stragglers have a uniform probability of delay
between 150-250% compared to the median task duration,
with 10% exhibiting a delay 1000% greater than median task
duration. This work also studies the characteristics of
speculative copies within the cluster, and discover that their
dispersion from average execution duration is minimal,
however 3% of stragglers require 10 times longer to
successfully complete.

Garraghan et al. [22] study two production Cloud
datacenters to study the frequency of straggler occurrence
within Google and an anonymous large-scale e-commerce
Cloud provider. Through analysis of task execution patterns
extracted from system trace logs, they discover that a small
proportion of tasks negatively impact the execution for
approximately half the jobs within the entire system. Their
work also observes that the distribution of straggler
occurrence per server is weakly skewed, and affects 20% and
100% of nodes for each Cloud datacenter, respectively.

While these works study the characteristics of stragglers
within real systems and quantify their impact on overall
system performance – their primary objective is the proposal
of detection or mitigation approaches. This results in
analytics limited to observations pertaining to straggler
occurrence, and does not study the precise root-cause of
stragglers in detail. Work such as [9][22] only briefly discuss
the need to differentiate stragglers by dataskew, resource
contention and faulty nodes, yet provide no analysis to
support this objective.

3.2 Online Straggler Detection

There have been numerous straggler mitigation methods
proposed that are dependent on online monitoring and
speculative execution.

Zaharia et al. [4] propose LATE, a method of speculative
execution which emphasizes improved effectiveness within
a heterogeneous cluster. This work proposes a Progress Rate
matrix to calculate the estimated completion time in addition
to the absolute Progress Score for straggler detection.
Furthermore, this work also defines concepts such as a slow
node threshold to ensure speculative copies are launched on
powerful nodes, slow task threshold to avoid needless
speculation for fast tasks, and speculative cap to limit the
number of speculative tasks running simultaneously within
a system. When combined together, LATE demonstrates
improvement to default Hadoop job response times by a
factor of two, and is presently the dominant method of
straggler detection for distributed systems.

4

Ananthanarayanan et al. [9] introduce MANTRI; the
concept of preferential replication and resource constraint-
aware placement of speculative copies in LATE. Specifically,
the approach only replicates the output of tasks which are
either likely to be lost or require substantial re-computation
calculated through a cost-benefit analysis. Furthermore, the
approach also launches speculative copies based off the
present network congestion characteristics of the system.
Experiments within Bing’s production cluster demonstrate
that Mantri can improve job completion times by 32% in
comparison to LATE.

Despite improvements to straggler mitigation using
online detection, experiments conducted using production
data [12] shows that as many as 90% of launched speculative
copies are unneeded. This is due to speculative copies
launched too late within the task lifecycle, resulting in the
original task completing prior to the replica (and is
subsequently killed by the system). This behavior results in
many speculative copies producing resource overhead with
no improvement to job execution time. As a result, a critical
requirement for online mitigation is the ability to identify
stragglers as quickly and accurately as possible.

3.3 Offline Straggler Detection

There are several approaches that leverage historical data to
improve speculative execution effectiveness through offline
analytics.

Chen et al. [14] propose SAMR; a self-adaptive scheduling
algorithm. They use historical data to adjust temporal
weightings for each execution stage for calculating task
progress, with results demonstrating up to a 25% decrease in
job completion time in comparison to Hadoop default
scheduler and a 14% decrease compared to LATE. Lin et al.
[23] further augments SAMR within a multi-tenant system,
and show that their method only generates a 10% relative
mean square error for task completion prediction for reduce
tasks and 30% for map tasks.

Ananthanarayanan et al. [9] propose a smart speculative
strategy that leverages historical data to select the most
suitable node candidates for launching the replica copies
using a cost-benefit model. Their results demonstrate that
MCP can run jobs up to 39% faster and improve the cluster
throughput by up to 44% compared to Hadoop default.

Yadwadkar et al. [15] use a statistical learning technique
based on cluster resource utilization counters to select the
fewest resources needed for efficient speculation and
significantly improved the resource consumption by up to
55% while still achieving an improvement to job completion
time by 61% compared to default speculative execution.

Furthermore, there are methods that use historical data to
proactively avoid scenarios that cause stragglers:
Yadwadkar et al. [24] also propose a method for proactive
straggler avoidance that performs a regression tree
algorithm using the node-level statistics and avoid assign
tasks onto nodes that tend to cause stragglers.

All of above works show that machine learning and offline
data analytics techniques support straggler detection
preciseness. However, it is observable that offline analytics
are predominantly applied for calculating estimated task
execution times within the system instead of predicting

stragglers, which becomes less feasible when approaching
systems at increasing scale. Furthermore, both online and
offline detection is underpinned by a deep understanding of
straggler behaviour; presently there is limited work that
specifically analyses how stragglers affect system
performance, and the underlying root-cause which leads to
straggler manifestation.

4 STRAGGLER IMPACT ANALYSIS

It is necessary to first fully understand stragglers within the
context of real system operation. This enables researchers to
study frequency and impact that task stragglers impose on
Cloud datacenters, as well as focus research and
developmental effort for enhancing straggler detection.

To achieve this, we have empirically studied stragglers
within two large-scale production Cloud datacenters; the
Google cluster [25] and Cloud Datacenter B – a large-scale e-
commerce provider (for commercial reasons we are unable
to disclose the provider’s identity). Each of these systems use
OS-level virtualization (such as LXC), and vary dramatically
in terms of cluster size, server heterogeneity, business
objectives and application types as summarized in Table 1.

As operational trace data produced from these systems
are semi-structured and voluminous - composed of multiple
files detailing information concerning task resource usage,
event logs and server utilization – it is necessary to filter the
trace data within each system in order to identify different
job types. Specifically, we are particularly interested in
studying straggler manifestation within batch jobs (i.e. DAG,
MapReduce, MPI); a common type of application typically
deployed within Cloud datacenters.

The approach for filtering batch jobs within each cluster
follows the same method, varying only by bespoke
extraction from heterogeneous trace data structure.
Information pertaining to job ownership of tasks is identified
through use of recorded job IDs attached to all submitted
tasks. Once the grouping of tasks to specific jobs has been
established, their execution time is calculated through
recorded start and completion events within the trace.
Furthermore, we also consider the resource characteristics of
tasks when identifying batch jobs to avoid serial task
execution (i.e. all tasks within a job have the same requested
resources and are submitted fraction of timestamps apart
from each other). Once the execution duration for all tasks
has been determined, we calculate the difference between an
individual task’s execution duration and the average
duration of all tasks within a job. In the case for the Google
cluster, there exists multiple applications types described in
[26]. As a result, we filter all jobs with priority 4 (identified
as batch processing). Through using this filtering criteria it is

TABLE 1. STUDIED CLOUD DATACENTER CHARACTERISTICS.

System Google [20] Cloud Datacenter B

Cluster size 12,532 2,841

Time period 29 days 14 days

Application

Types

Batch, MapReduce,

Latency sensitive,

streaming, etc.

Direct Acyclic Graph

(DAG) - Multiple

MapReduce phases

5

possible to identify 3,043 jobs comprised of 252,290 tasks
within Google and 875 jobs comprised of 1,223,879 tasks for
Cloud Datacenter B.

Figures 1-2 shows the difference between an individual
task’s execution duration and the mean and median
execution of all tasks within the same job. It is observable
that the majority of tasks exhibit similar proportions for
completion situated around 100% (i.e. an individual task
execution duration is equal to the average job execution
duration for all other tasks) for both studied systems. In
accordance with [4][8][18][19] task stragglers are defined as
tasks whose execution is ≥ 150% the average execution of all
tasks within the same job.

We observe that calculating this difference using different
central tendency measurements of mean and median results
in substantially different patterns for straggler detection.
This is particularly noticeable within Cloud datacenter B
shown in Figure 2, exhibiting different dispersion patterns
for task execution. This is resultant of extremely fast or slow
tasks affecting the central tendency and dispersion for task
completion within a job when using the mean. As a result,
while existing literature use the mean task execution
duration for defining stragglers, there are additional
advantages when studying the median task duration
instead. Most notably that median job execution duration is

less affected by extreme execution times caused by task
stragglers; this is especially true when considering jobs
composed of thousands and tens of thousands of tasks. This
results in 6.54% and 3.48% of tasks to be identified as
stragglers within the two respective Cloud datacenters.

While it is intuitive to assume that such a small proportion
of task stragglers would have limited impact towards the
performance of all jobs, findings demonstrate that between
37.79% and 49.49% of all jobs are negatively affected. This
result is due to a job’s inability to complete until its
respective tasks (including stragglers) have all completed

Fig 1. Google Datacenter task - job completion difference % (a) median, (b) mean.

Fig 2. Cloud Datacenter B task - job completion difference % (a) median, (b) mean.

.

 (a) (b)

 (a) (b)

P
e

rc
e

n
t

P
e

rc
e

n
t

P
e

rc
e

n
t

P
e

rc
e

n
t

Task Completion time vs. job completion (%) Task Completion time vs. job completion (%)

Task Completion time vs. job completion (%) Task Completion time vs. job completion (%)

P
e

rc
e

n
t

P
e

rc
e

n
t

TABLE 2. STRAGGLER OCCURRENCE &
IMPACT IN PRODUCTION SYSTEMS.

Google Datacenter Cloud Datacenter B

Mean Median Mean Median

 Total tasks 252,950 1,233,879

 Task stragglers 11,210 16,543 33,322 42,925

 Task stragglers % 4.43 6.54 2.70 3.48

 Total jobs 3,043 875

 Job stragglers 1081 1150 512 433

 Job stragglers % 35.52 37.79 58.51 49.49

Median straggler

duration (s)
865 12

6

execution, with distribution of job execution delay shown in
Figure 3(a) and 3(b) for Google and Cloud Datacenter B,
respectively. Such results resonates with theorized impact of
stragglers in large-scale systems discussed in [6], and
corroborates findings in [9] demonstrating a small
proportion of jobs being delayed by up to 1000%. This
negative affect can be directly quantified in terms of system
overhead and application performance as shown in Table 2.
It is observable that task stragglers cause job completion to
be delayed on average between 12 and 865 seconds. The
reason for this large disparity is primarily driven by the
applications executing within the different Cloud systems.
Cloud datacenter B is composed of shorter lived DAG jobs,
while Google cluster is comprised of longer running batch
jobs. While it can be argued for the latter that extended job
execution lends itself to less focus on timing requirements,
this directly translates into increased system overhead and
reduced system availability, reflected by 2.49% additional
compute hours required with the entire system (and
effectively doubles to 5% when applying speculative
execution). We also studied the manifestation of task
stragglers within servers, with Figure 4(a) and 4(b) depicting
the distribution of stragglers per server, and observe that
65.07% and 99.78% of servers experience stragglers with a
weak right-skewed distribution within Google and Cloud
datacenter B, respectively.

This analysis of stragglers within production Cloud
datacenters has discovered a non-intuitive finding of
particular interest. Specifically, while stragglers occur in 3-
7% of total tasks submitted, they impact a greater proportion

of jobs by a factor of 10. By empirically demonstrating this
surprising affect stragglers impose on large-scale systems,
researchers and industry will be able to convey the scale and
importance addressing straggler behavior to the wider
community. The next step is to investigate the underlying
causes which produce these identified stragglers.

5 STRAGGLER ROOT-CAUSE ANALYSIS

This section details a method currently applied within
industry for conducting straggler root-cause analysis -
detailing straggler filtration, analysis limitations in live
systems, and presents an analysis of straggler root-cause
stemming from numerous causes. Here we focus on the
operational practices conducted within Cloud Datacenter B;
due to obfuscation of low-level system logs within the
Google trace, it is not possible to derive deep insight into
their methods for straggler root-cause analysis.

The method is composed by two components; correction
and diagnosis. Correction entails a reactive approach of direct
intervention by technical staff to perform fault correction
upon straggler detection. This is performed by periodic
execution of a health checker processes using Tsar [27] and
Nagios [28] to monitor system metrics at a specific time
interval, and alerts potential atypical system behavior to
technical staff (i.e. abnormally high CPU utilization,
extended task execution). Correction allows for technical
staff to identify and manually correct potential problems
within the system for reducing QoS violations and
catastrophic failure prevention (such as system outages).

While correction allows for rapid fault correction to

(a)

(b)

Fig 3. Job execution delay distribution
(a) Google datacenter, (b) Cloud datacenter B

1000900800700600500400300200100

25

20

15

10

5

0

Delayed job execution (%)

P
e
rc

e
n

t

1000900800700600500400300200100

40

30

20

10

0

Delayed job execution (%)

P
e
rc

e
n

t

Fig 4. Comparison of filtered stragglers from
(a) Google datacenter (b) Cloud Datacenter B,

(a)

(b)

7

reduce straggler impact towards system QoS, it is
advantageous to understand the precise operational
scenarios and causes that result in straggler occurrence. This
is important in order to focus technical and developmental
efforts towards reducing future straggler occurrence within
the system. As a result, diagnosis involves offline analysis of
system historical data to conduct in-depth investigation of
precise causes for stragglers.

A challenge when performing diagnosis is the large
quantity of stragglers detected daily within system; Figure 5
illustrates the proportion of jobs and tasks submitted daily
within the greater Cloud datacenter B cluster, comprising
over 12,000 servers over 20 days of operation. If assuming
3.48% of the 25,600,000 tasks submitted daily are detected as
stragglers (890,880), based on findings in Section 4, the
ability to perform fault correction and diagnosis becomes
infeasible due to the sheer number of occurrences. Therefore,
it is necessary to further filter and characterize straggler
behavior, thereby focusing on root-cause analysis for
stragglers towards a specific design objective. A particularly
important objective for production systems is mitigating the
impact of extreme stragglers (i.e. tasks whose execution time
far exceeds typical behavior) due to their noticeable impact
to user perception of application performance.

To achieve this, we propose a new criterion for straggler
detection termed Degree of Straggler (DoS-index) – a system
metric comprising task execution time and input size for an
individual task Ti for n tasks in a job as shown in equation 1.

DoS-Index = (
𝐷𝑢𝑟(𝑇𝑖)

𝐼𝑛𝑝(𝑇𝑖)
) ÷ (

(
∑ 𝐷𝑢𝑟(𝑇𝑗)𝑛

𝑗=1

𝑛
)

(
∑ 𝐼𝑛𝑝(𝑇𝑗)𝑛

𝑗=1

𝑛
)

)

where Dur(Ti) is the current execution duration of Ti, and
Inp(Ti) is the data volume that Ti is required to process.
Based on this definition, it is possible to control the strictness
for straggler detection. The DoS-index indicates a relative
speed of data processing (i.e., the time consumed when
processing one unit of input data) for an individual task
contrasted against all other tasks within the same job. A
higher DoS-index value indicates a task with extended
execution time and/or low input size in comparison to tasks
within the same job. DoS-index is configured by default in
Cloud datacenter B as ≥ 2.5.

Although conducting data analytics for daily straggler
reporting can be automatically deployed and generated
using Big Data techniques, there are still numerous
limitations towards automatic diagnosis – requiring fine-
grained analysis for investigating precise straggler root-
cause. Straggler diagnosis requires manual intervention
from technical staff, and is conducted on a case-by-case basis.
This is due to the requirement for technical staff to study
heterogeneous semi-structured system logs from multiple
sub-systems including kernel processes, error logs,
application logs (it is worth noting that the same system log
may be heterogeneous from each other).

This results in an inability to produce a single unified
query for straggler diagnosis, and data analysis is viewed as
one tool to support technical staff when conducting root-
cause analysis. Furthermore, data queries themselves
require considerable system resources for computation and
data mining, and will impose overhead affecting the
production system operation. Such overhead threatens the
system’s ability to provision acceptable levels of QoS, and is
produced within numerous aspects including server and
application heterogeneity (semi-structured logs), network
condition, I/O performance and remote data access (read
and write), and current system utilization. As a result of this
challenge combined with the design philosophy for Cloud
datacenter B to focus developmental efforts on the extreme
stragglers behavior within the system, the DoS-index is also
configured to ≥ 10 for conducting diagnosis.

Fig 6. Number of stragglers detected with approaches.

1

10

100

1000

10000

100000

1000000

>150% Progress DoS-Index≥2.5 DoS-Index≥10

St
ra

gg
le

rs
 D

e
te

ct
e

d

(a)

(b)

Fig 5. Workload statistics for Cloud Datacenter B
(a) Tasks, (b) Jobs.

0

10000

20000

30000

40000

50000

60000

70000

80000

1 3 5 7 9 11 13 15 17 19

N
u

m
b

e
r

o
f

Jo
b

s

Day

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

1 3 5 7 9 11 13 15 17 19

N
u

m
b

e
r

o
f

Ta
sk

s

Day

0

10000

20000

30000

40000

50000

60000

70000

80000

1 3 5 7 9 11 13 15 17 19

N
u

m
b

e
r

o
f

Jo
b

s

Day

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

1 3 5 7 9 11 13 15 17 19

N
u

m
b

e
r

o
f

Ta
sk

s

Day

(1)

8

Table 3 presents statistics for stragglers within a 20 day
period under different detection methods. It is observable
that using different straggler criteria such as >150% progress
and DoS-index strictness criteria results in filtering the
number of stragglers down from 890,880 to 7,319 (365 a day
on average) as depicted in Figure 6. It is hypothesized in [15]
that high resource usage of a server plays a key factor for
straggler occurrence. As a result from using system profiling
tools in [27][28], we monitor and collect system information
from servers which execute all tasks with DoS-Index ≥ 10.
Information collected includes server CPU utilization ≥ 80%,
Disk usage ≥ 80%, and slow Read-Write request handling (i.e.
latency from file system > 400ms).

We observe that approximately 59% and 42% of stragglers
with DoS-Index ≥ 10 occur under the presence of high server

CPU and disk overloading, respectively. This result
indicates that high server resource utilization is a common
cause for straggler occurrence. It is also observed that 34.3%
of stragglers experience slow request handling. Although it
is possible for CPU utilization and disk utilization to be
correlated, we are unable to find significance in correlation
(indicated by a Pearson Correlation Coefficient of 0.072).
This is likely result of diversity in workload characteristics
within Cloud datacenter B (i.e. CPU, memory, disk, and
network intensive tasks) imposing different server
characteristics, and requires further study of straggler
categorized by workload behavior and characteristics.

We conducted an in-depth root-cause analysis for
stragglers with DoS-Index ≥ 10 to ascertain a deeper insight
to straggler occurrence due to numerous underlying causes.

TABLE 4 CLASSIFICATION FOR STRAGGLER ROOT-CAUSE.

Type Category Specified Description Occurrence frequency

1 High CPU utilization

Low time-slice sharing and process scheduling due to certain

bad user-defined worker logic, unbalanced workload

aggregation etc.

30%

2 High disk utilization
Local disk read and write conflicts, unbalanced tasks

aggregation, disk faults etc.
23%

3
Unhandled operational

access request

Distributed file system request surging(usually read request) and

overpass the capability of request handling.
23%

4 Network package loss
Network traffic package loss, resulting in repeating intermediate

file and data transmission.
14%

5 Hardware faults Server timing-out, hang etc. 7%

6 Data skew Uneven file block input resulting in data skew. 3%

TABLE 3. CLOUD DATACENTER B STRAGGLER DETECTION WITH DOS-INDEX.

Day DoS-index≥2.5 DoS-index≥10
System Utilization at Detection

CPU Util≥80% DiskUtil≥80% Slow Req Handling

1 9,937 136 46 61 29

2 7,232 151 114 14 23

3 7,540 280 161 84 35

4 7,277 213 147 23 43

5 12,373 376 158 149 69

6 8,402 384 129 184 71

7 10,450 562 352 128 82

8 8,494 552 348 129 75

9 9,109 313 121 94 98

10 10,834 426 116 77 233

11 8,486 382 100 150 132

12 8,773 586 179 239 168

13 2,728 534 126 247 161

14 9,414 283 117 41 125

15 8,472 448 104 259 85

16 12,194 335 131 66 138

17 9,700 395 236 92 67

18 10,941 368 163 63 142

19 12,552 313 172 83 58

20 11,526 282 154 101 27

Total 186,434 7,319 3,174(58.6%) 2,284(42.1%) 1,861(34.3%)

9

This was performed from exploratory analysis of numerous
system logs within the cluster, including application errors,
kernel processes, resource managers, and system monitoring
tools. Table 4 shows the categorization of the dominant
factors that cause stragglers to occur, and their
corresponding frequency.

It is observable that high CPU utilization is the most
dominant type of cause, responsible for 30% of all straggler
occurrences, and is caused by two reasons; unbalanced
workload aggregation and poor user code. Unbalanced
aggregation is caused by inefficient scheduling causing
excessive workload co-allocation within a server. Poor user
code is inefficiently designed executable logic (i.e. orphan
processes, looping conditions) complied and executed by the
user. Both of these reasons result in CPU bursting within a
very short time period; this results to inefficient time-slice
sharing within the server kernel, resulting in slowdown in
CPU, memory and disk access.

Another straggler cause is resultant of faults within the
server, specifically late timing failures and transient disk
faults which result in slow disk I/O and file operations; task
co-located within the same machine with the same resource
characteristic (i.e. IO intensive) generate resource
interference. We discovered that it is possible for tasks to
read and write to the same disk block simultaneously,
resulting in large amount of disk resource competition
requiring conflict resolving.

Another important reason we observe is the request
handling inefficiency due to overloaded and surging file
requests. Specifically, for a typical batch job such as
MapReduce, there are a large number of read and write
operational requests to the distributed file system (such as
HDFS, GFS, etc.). Once the surging request number
surpasses the handling capability of the file system master,
it will become a bottleneck (even when the master has
multiple replicas) and therefore many requests will be
queued to await allocation. In fact, based on our analysis, we
observe that in some cases the unreasonable configuration of
Map or Reduce number or block size might lead to
unexpected request increase thereby increasing the load of
file system master with slow request handling.

Furthermore, we found that the network condition is also
a variable that will affect reliable task execution, due to all
remote copies operations after shuffle phase in Map Reduce
being sent through the network. From our analysis by using
“tsar retran” [27], 14% of stragglers were caused due to
network package loss. Higher package re-transmission
results in not only extended job end-to-end time-span, but
aggravates the network congestion as well. Finally, other
common factors include time-out faults and data skew,
comprising 10% of straggler root-cause.

The proportions of affected tasks from each identified
straggler root-cause share identified proportions similar to
Table 4 (specifically for high CPU, Disk and slow request
handling). Therefore, we are fully convinced from our
practical experience that these results could be used as
inspirable instructions to handle with different stragglers
and can cover comprehensively multiple scenarios and fault-
injection practices to simulate straggler behavior.

6 SYSTEM ARCHITECTURE

In this section we propose a method and implementation for
a straggler detection system for large-scale virtualized
distributed systems which aims to mitigate the effects of
extreme stragglers (i.e. task execution that is abnormally
long). While our approach is applicable to numerous types
of distributed systems such as Grids, Cyber-physical
systems and the Internet of Things, this work focuses on
Cloud computing datacenters; modern large-scale systems
with explicit (SLAs, QoS, availbility) and implicit (energy-
efficiency, user experience) requirements for provisioning
high performance service to users.

Figure 7 depicts the high-level system architecture for our
task straggler detection system, and is divided into two
primary components: offline analytics and online analytics. The
offline analytics component analyses historical data
detailing previous job execution to characterize and model
task execution patterns in order to calculate a threshold
parameter which determines a boundary which
distinguishes between straggler and non-straggler behavior
for an individual task at a given time interval. The online
analytics then monitors and compares the current task
execution progress at runtime against the historical patterns
using agents within each server for straggler detection.

6.1 Offline Analytics

The offline analytics component is integrated into the
straggler detection engine, and is responsible for analyzing
and modeling task patterns and straggler manifestation.
Specifically, this module is responsible for modeling task
execution patterns and supports the decision making for
straggler detection within the offline analytics components.
The module is composed of three sub-components:
Job profiler: Responsible for profiling and modeling
different types of job and task execution patterns. Such a
components is important as tasks exhibit heterogeneous task
execution lengths and resource consumption quantities

Fig 7. Cloud datacenter model with integrated Long Tail analytics

engine and agent based analytics.

Node nNode 2

Cloud Interface

VM
Manager

Longtail Analytics Engine

Job
Profiler

Straggler
Identifier

Threshold
Calculator

Resource Service
Resource Pool

Controller
Job Scheduler

Node 1

Virtual Machine
Manager

Job
Master

Straggler
Analytics Agent

Task

Task Task

Virtual Machine
Manager

Straggler
Analytics Agent

TaskTask

Resource
Pool DB

Job Event
Logs

Virtual Machine
Manager

Straggler
Analytics Agent

Job
Master

Task Task

Task
Process Log

Cloud CMS +
Offline Analytics

Physical Server
Infrastructure +
Online Analytics

Job
Constraints

10

across the system as detailed in [29]. The method for
profiling job execution patterns is independent on the task
characteristics executing within the system, and can be
performed using several techniques including clusterization
and modeling task progress execution [11]. Figure 8 shows
an approach for modeling task progress execution patterns
for 500 Reduce tasks within a 50 node cluster. It is observable
that it is possible to sub-divide the Reduce phase into
multiple stages [1][4], which can be successfully modeled
through a combination of linear and non-linear regression
analysis. Using this technique it is possible to profile task
execution progress patterns over time for specific job types.
Straggler Identifier: Responsible for quantifying the type
and impact of past stragglers within the distributed system.
Work within [6][9][19] and findings in Section 5 have
identified that there are numerous root cause for stragglers.
Therefore, it is advantageous to analyze and identify the
cause of stragglers which occur historically within a system
in order to correct identified faults following the method in
Section 5, and ascertain where developmental effort should
be applied for maximum effectiveness.
Threshold Calculator: This components exploits the task
execution patterns and regression models generated from
the job profiler component to derive the (theoretical)
minimum threshold for task progress at a certain time.
Specifically, straggler threshold S is defined as the minimum
progress of task Ti completed at time t in relation to typical
task progress Prog to avoid being identified as a straggler.
Diff is calculated as the distance between TiProg and TiS at
time t, and is used for determining violation of threshold
value S, and is expressed as a percentage determined by the
system administrator.

To give a hypothetical example, if a model expressing Ti
over period t generated from the Job Profiler component is a
linear function as shown in (2):

and Diff is defined as task execution time 50% greater than
median execution - a value commonly defined in the
literature (i.e. speculated task straggler completion time of
180 minutes against typical task completion of 120
minutes), then straggler threshold is expressed as a

function shown in (3):

As demonstrated in Figure 9, in this example TiS will equal
TiProg when t is 50% greater (thus, a task is detected as a
straggler when the time taken to reach a specific progress
score at time t is greater than 50% in comparison to typical
task execution). The developed model generated from the
offline component of the system is exploited by the online
analytics at runtime for straggler detection.

6.2 Online Analytics

The online analytics component is comprised by the
Straggler Analytics Agent which resides on each physical
server as a lightweight process within the distributed system
as shown in Figure 9. The agent is responsible for monitoring
and analyzing task execution progress and straggler
detection at runtime. When a task is scheduled onto a server,
each agent will periodically monitor task progress and
extract key parameters from data traces generated by each
task. Parameters of interest identified includes task
timestamp, time of task instantiation, current task progress
score as well as data blocks transferred and download rate
(if applicable to the current Reduce phase).

The agent compares current task progress against the
model produced by the offline analysis determined by the
threshold calculator in Long Tail Analytics Engine. The
agent then communicates with other agents in order to
compare task progress against the median progress of all
tasks within the same job at time t. The model derived from
the offline analysis is of particular importance, as it safe
guards against false positives due to (i) multiple stragglers
within the same job, and (ii) boundary sensitivity at the
beginning of job execution for low progress values. If TiProg <
TiS, as well as 50% smaller than the median task progression
at ti for its respective job, a task is identified as a straggler.
Such an approach can encounter challenges in model

(2)

543210

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

t

P
ro

g

Median Task Progress

Straggler Threshold

Fig 9. Representation of median task progress (TiProg) and straggler
threshold (TiS) at time t.

Fig 8. Example of converting empirical task progression into regression

models for task progress execution.

(3)

11

sensitivity within the first time periods due to the short
Euclidian distance between progress scores at the start of
task execution. As a result, it is necessary to combine both
offline and online analytics together into a single approach
for straggler detection.

7 STRAGGLER DETECTION EVALUATION

In this section we present the straggler detection evaluation
to study its effectiveness in real systems. Furthermore, we
demonstrate the advantages of combining online and offline
analysis together in contrast to detection in isolation.

7.1 Experiment Setup

Experiments were conducted to evaluate the effectiveness of
the proposed straggler detection method. The system was
implemented within a 50 node cluster concurrently used by
other users for research and University services, comprising
50 x quad-core Intel machines @ 3.40GHz CPU running
CentOS. We deployed two types of applications. The first is
Hive [30] – a database management system which interfaces
and translates SQL like queries into MapReduce jobs. 40 jobs
each comprising between 500-1000 Map tasks and 40-80
Reduce tasks were submitted to the cluster, with each job
configured to perform various aspects of computation (i.e.
multiplication, CEIL and FLOOR functions), JOIN clauses
between data tables, and data attribute types. The data used
to perform these functions consisted of operational trace logs
from numerous Cloud, datacenter and HPC systems,
totalling approximately 1TB of system log data. The second
application is the WordCount benchmark pre-installed
within Hadoop, and processes a 548MB file with each job
creating 15 Map tasks per execution run.

In experiments we inject tasks which exhibit straggler
behavior caused by data skew by invoking specific query
types within Hive, and larger input size within WordCount.
The probability of this occurrence per task is configured at
5%, reflecting values derived from the straggler impact
analysis in Section 4. Within experiments we define straggler
behaviour as task completion time 50% greater than median
task execution within a job, in accordance to the definition
within [4][8][18][19]. Due to model sensitivity from initial
experiments we configured for straggler detection to
commence 5 seconds after the job commences. Online
analytics agents were configured to monitor and compare
current task progress against the models generated from
Long Tail Analytics Engine at a time interval of three

seconds (in line with Hadoop MapReduce log file reading).
For evaluation we measure thresholds using the estimated
finish time as opposed to the DOS-Index, as we assume full
knowledge pertaining to extreme straggler task execution.

7.2 Experiment Results

Figure 10(a) and 10(b) depicts task progress execution over
time and the generated threshold model for HiveQL and
WordCount, respectively. It is observable within both job
that there exists a substantial difference between normal and
straggler task patterns, caused by the input size sent to a task
being considerably larger than normal. Through statistical
models generated from historical data combined with online
analysis, it is possible within HiveQL to identify over 95% of
stragglers caused by data skew which are detected 10.91%
on average into a task progress at runtime detailed in Table
5. We observe false positive rate of 5.59% which is caused by
task progress of straggler and non-straggler tasks exhibiting
similar progress scores at the start of execution as shown in
Figure 10. In contrast, WordCount jobs are characterized as
executing much longer compared to HiveQL (over 300
seconds), with 78.31% of stragglers detected 37.77% into
their execution.

The predominate reason for the occurrence of false
positives is a result of threshold sensitivity or interference

TABLE 5. STATISTICAL PROPERTIES OF STRAGGLER

DETECTION EXPERIMENTS.

 HiveQL WordCount

 Total tasks submitted 2500 350

 Total stragglers submitted (%) 6.45 5.61

 True positive rate (%) 95.71 78.31

 False positive rate (%) 5.59 21.69

 Straggler progress detection (%) 10.91 37.77

 CPU usage of agent per node 0.20% 0.21%

Maximum acceptable task completion time

00:02:3000:02:0000:01:3000:01:0000:00:3000:00:00

1.0

0.8

0.6

0.4

0.2

0.0

Task Execution Time (m)

P
ro

gr
e

ss
 C

o
m

p
le

ti
o

n

(a)

00:14:0000:12:0000:10:0000:08:0000:06:0000:04:0000:02:0000:00:00

1.0

0.8

0.6

0.4

0.2

0.0

Task Execution Time (m)

P
ro

gr
e

ss
 C

o
m

p
le

ti
o

n

(b)

Fig 10. Task Progress with Long Tail Identification Analytics Engine

(a) HiveQL, (b) WordCount.

Straggler threshold
(TiProg < TiS)

Straggler threshold
(TiProg < TiS)

Maximum acceptable task completion time

12

from other users executing jobs on the same cluster. This is
especially true for WordCount jobs, where it is possible for
task execution to commence after the initial phase has
commenced. Furthermore, it is possible for tasks to meet the
conditions for detection, however quickly recover around
the start of job execution as shown in Figure 11. While this
work focuses on detecting extreme tasks, this is a common
weakness shared across all detection systems for ‘borderline
stragglers’ which require further investigation. This result
demonstrates the need for refinement of any future detection
techniques that are configured to handle potentially
different sensitivity levels for straggler detection at different
time frames into a task’s execution. While this result
indicates high accuracy of straggler detection for jobs with
short duration and all of which start task execution at time
zero, from our experiments we observe that there is further
refinement required for longer running tasks and tasks
which start later within the job lifecycle. Such refinement
could be achieved through tuning Diff as well as data mining

additional event parameters of interest from system logs (i.e.
task process resource consumption, network usage, node
location, etc.).

Furthermore, we observe that a minority of tasks are
detected early within their execution, yet finish relatively
close to the boundary of acceptable task completion (TiS).
This behavior highlights potential issues for defining a fixed
arbitrary value for stragglers (i.e. 50% greater than median
task execution, DoS-Index ≥ 2.5), as tasks that complete just
below the threshold will be detected as false positives,
however still impede job execution completion. These results
indicate the need for more intelligent metrics for straggler
detection – transitioning away from a fixed temporal
boundary as defined in [4][8] towards an adaptive boundary
that consider metrics such as task progression, system
conditions and job QoS as detailed in [34]. We observe that
the online analytics agent produce approximately 0.2% CPU
usage for both job types, representing a fractional amounts
of server usage, and observing no indication of causing an
increment in straggler behavior caused by high CPU.

7.3 Simulation

We also conducted an evaluation to study the advantages of
combining offline and online analytics for straggler
detection in contrast to each respective component in
isolation. This was performed through simulation to study
task execution within a larger-scale system. This was
performed by simulating Cloud datacenter operation using

Fig 11. Threshold boundary sensitivity.

00:00:4000:00:3500:00:3000:00:2500:00:2000:00:1500:00:1000:00:0500:00:00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Time (m)

P
ro

g
re

s
s
 C

o
m

p
le

ti
o

n

00:00:4000:00:3500:00:3000:00:2500:00:2000:00:1500:00:1000:00:0500:00:00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Time (m)

P
ro

g
re

s
s
io

n
 C

o
m

p
le

ti
o

n

100806040200

1.0

0.8

0.6

0.4

0.2

0.0

Execution Time (s)

P
ro

g
re

s
s
 C

o
m

p
le

ti
o

n

(a)

9008007006005004003002001000

1.0

0.8

0.6

0.4

0.2

0.0

Execution Time (s)

P
ro

g
re

ss
 C

o
m

p
le

ti
o

n

(b)

Fig 12. Simulated normal and straggler task patterns for
(a) HiveQL, (b) WordCount.

TABLE 6. COMPARISON OF STRAGGLER DETECTION

APPROACHES.

Approach
Avg. Straggler

detection (s)

Straggler

detection %

True

Positive %

HiveQL

Online 61 93.27 100.00

Offline 12.62 20.44 58.97

Combined 15.84 23.24 90.63

WordCount

Online 108.92 23.58 100.00

Offline 98.3 21.37 98.76

Combined 219.11 47.63 100.00

13

SEED - an event-based simulator [36] that enables the
creation of jobs (comprising multiple tasks) onto a set of
machines for execution. In order to simulate task execution,
we modeled progress patterns extracted from the HiveQL
and WordCount workloads used in the experiments
exploiting linear regression. At each simulation time-step the
progress of task increments, and will perform straggler
detection. We selected three approaches for detection -
online, offline and combined. Online was based on the design
in [4] defined as “when a task's progress score is less than the
average for its category (map or reduce) minus 0.2, and the task
has run for at least one minute, it is marked as a straggler”. Offline
is defined as TiProg < TiS , thus omitting the requirement for
comparing against average job progress. Combined is a
combination of offline and online, and implemented using
the logic described in Section 6.2. 25 jobs of each workload
type comprising 500 tasks (with an assigned a straggler
probability of 5%) were submitted into 500 machines.

Figure 12 and Table 6 presents the task execution patterns
between normal and stragglers for HiveQL and WordCount.
We observe in HiveQL that while the online approach is
capable of successfully detecting 100% of stragglers, it occurs
93% into the execution lifecycle of the job. In contrast, the
offline approach detects straggler within 20.44%, however
incurs a false positive rate of 41.03%. This is due to major
fluctuation of progress patterns proportional to current task
progress at the start of the task lifecycle (i.e. progress score
changes are magnified). The combined approach is capable
of nullifying this fluctuation, resulting in straggler detection
in 23.24% of the task lifecycle with 90.63% accuracy.

In contrast, online and offline detection appears to achieve
greater detection effectiveness for workload that executes for
extended periods of time – capable of 100% detection
accuracy 21-24% within the lifecycle. The reason for this
behavior is due to longer running tasks will reduce the
sudden fluctuation of progress patterns each time-step. This
results in the combined approach detecting stragglers just
under 50% of task execution.

Theses result indicates that the combined approach is
effective for jobs with smaller duration due to its ability to
minimize false positives and rapid detection. In contrast for
longer running tasks it is feasible to focus on online or offline
straggler detection. This is reflected by various approaches
proposed for speculative execution based on duration or job
size [37], demonstrating that there presently does not exist a
unified approach for straggler detection.

8 CONCLUSION

This paper presents an empirical analysis of two production
large-scale virtualized Cloud datacenters to ascertain the
impact and root-cause of stragglers; emergent phenomena
found within distributed systems at scale. Findings were
leveraged to guide the development of a detection system for
extreme stragglers by combining offline analytics and agent
based monitoring. The results present key empirical insight
for stragglers in large-scale virtualized Cloud datacenters,
and can be exploited by researchers for designing their
system assumptions based on realistic operation scenarios.
Our conclusions are summarized as follows:

Stragglers non-intuitively impact a large proportion of job
within Cloud datacenters. Our empirical analysis of two
production Cloud datacenters demonstrates that 4 – 6% of
total task stragglers affect 37 – 49% of total jobs, impeding
their execution between 12-865 seconds. With the evolving
trend of computing systems growing in complexity and
scale, such findings demonstrate the threat that stragglers
phenomena imposes towards guaranteeing virtualized
service performance in next generation systems.

Straggler root-cause stems from numerous faults -
predominately from high server resource utilization. Our analysis
of a 12,000+ node production system indicates that stragglers
are produced from numerous underlying faults including
hardware faults, data skew, and network packet loss.
Importantly, 53% of straggler root-cause is resultant of high
CPU and disk server utilization stemming from unbalanced
workload aggregation and inefficient user code.

Research into automated straggler root-cause analysis is
urgently required. We discuss in detail the practical
consideration and current limitations in straggler root-cause
analysis. It is presently not possible for automated analysis
due to the requirement of expertise in exploring and
correlating heterogeneous sub-system trace data (kernel,
application, server, etc.) combined with tacit knowledge of
technical staff for identifying faults. This process is labor and
resource intensive and outlines an open challenge within the
straggler community to accelerate this process.

Holistic usage of offline and online analytics is capable of
detecting extreme straggler behavior at runtime. Through
combination of offline and online agent based analytics, we
demonstrate through experiments that it is possible to
identify 95% of task stragglers approximately 11% into a
tasks execution for short lived jobs. The approach is capable
of minimizing false positives for straggler detection caused
by sudden fluctuation in task progress scores, which appears
to be less of a concern for longer running jobs.

Future work includes integration of our approach into
established straggler mitigation techniques including
speculative execution to discover whether we can achieve
substantial gains in job completion timeliness and system
QoS. Furthermore, we intend to propose a means to
accelerate the process for root-cause analysis through
machine learning to cross-correlate heterogeneous system
traces for more intelligent failure detection such as [35].

Acknowledgments

The work is supported by National Key Research and

Development Program (2016YFB1000103), China 863

program (2015AA01A202), China Natural Science

Foundation (61421003), and the Beijing S&T Committee -

Beijing Brain Inspired Computing Program in BCBD

Innovation Center. Renyu Yang is the corresponding author.

References
[1] J.Dean, S. Ghemawat, "MapReduce: Simplified Data Processing on

Large Clusters." Communications of the ACM, pp. 107-113, 2008.
[2] M. Isard, M. Mihai, Y. Yu A. Birrell, D. Fetterly. "Dryad: Distributed

Data-parallel Programs from Seq1uential Building Blocks." ACM
SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59-72. 2007.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica.

14

"Spark: Cluster Computing with Working Sets." USENIX conference
on Hot Topics in Cloud Computing, vol. 10, pp. 10, 2010.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
"Improving MapReduce Performance in Heterogeneous
Environments." In OSDI, vol. 8, no. 4, p. 7, 2008.

[5] M. García-Valls, T. Cucinotta, and C. Lu. "Challenges in Real-time
Virtualization and Predictable Cloud Computing." Journal of
Systems Architecture 60, no. 9, pp.726-740, 2014.

[6] J. Dean, L. A. Barroso. "The Tail at Scale." Communications of the
ACM 56, no. 2, pp. 74-80, 2013..

[7] S. Huang, T. Huang, S. Lyu, C. Shieh, Y. Chou. "Improving
Speculative Execution Performance with Coworker for Cloud
Computing." in Proceedings on IEEE Intl. Conf. on Parallel and
Distributed Systems (ICPADS), pp. 1004-1009, 2011.

[8] G. Ananthanarayanan,, A. Ghodsi, S. Shenker, and I. Stoica.
"Effective Straggler Mitigation: Attack of the Clones." NSDI, vol.
13, pp. 185-198. 2013.

[9] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y.
Lu, B. Saha, and E. Harris. "Reining in the Outliers in Map-Reduce
Clusters using Mantri." OSDI, vol. 10, no. 1, pp. 24, 2010.

[10] Q. Chen, C. Liu, Z. Xiao. "Improving Mapreduce Performance
using Smart Speculative Execution Strategy." IEEE Transactions on
Computers, no. 4, pp. 954-967, 2014.

[11] I.S. Moreno, P. Garraghan, P. Townend, J. Xu. "An Approach for
Characterizing Workloads in Google Cloud to Derive Realistic
Resource Utilization Models." IEEE Intl Symp. On Service-oriented
System Engineering (SOSE), pp. 49-60, 2013.

[12] E. Bortnikov, A. Frank, E. Hillel, S. Rao. "Predicting Execution
Bottlenecks in Map-reduce Clusters." USENIX conference on Hot
Topics in Cloud Computing, pp. 18-18, 2012.

[13] K. Wang, B. Tan, J. Shi, B. Yang. "Automatic Task Slots Assignment
in Hadoop Mapreduce." in Proceedings of the ACM Workshop on
Architectures and Systems for Big Data, pp. 24-29, 2011.

[14] Q. Chen, D. Zhang, M. Guo, Q. Deng, S. Guo. "Samr: A Self-
adaptive Mapreduce Scheduling Algorithm in Heterogeneous
Environment." IEEE Intl. Conf. on Computer and Information
Technology (CIT), pp. 2736-2743, 2010.

[15] N. Yadwadkar, G. Ananthanarayanan, R. Katz. "Wrangler:
Predictable and Faster Jobs using Fewer Resources." in Proceedings
of the ACM Symposium on Cloud Computing, pp. 1-14, 2014.

[16] J. Li, N. K. Sharma, D. Ports, S. Gribble. "Tales of the Tail:
Hardware, OS, and Application-level Sources of Tail Latency." in
Proceedings of ACM Symposium on Cloud Computing, pp. 1-14, 2014.

[17] Y. Kwon, M. Balazinska, B.Howe, and J. Rolia. "A Study of Skew in
Mapreduce Applications." Open Cirrus Summit, 2011.

[18] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. "Skewtune:
Mitigating Skew in Mapreduce Applications." ACM SIGMOD
International Conference on Management of Data, pp. 25-36, 2012.

[19] J. Rosen, B. Zhao. "Fine-Grained Micro-Tasks for MapReduce
Skew-Handling.", White Paper, University of Berkeley, 2012.

[20] J. Lin, "The Curse of zipf and Limits to Parallelization: A Look at
the Stragglers problem in Mapreduce." Workshop on Large-Scale
Distributed Systems for Information Retrieval, vol. 1. 2009.

[21] P. Patel, A H. Ranabahu, A P. Sheth. "Service Level Agreement in
Cloud Computing", Cloud Workshops at OOPSLA, 2009.

[22] P. Garraghan, X. Ouyang, P. Townend, J. Xu. "Timely Long Tail
Identification through Agent Based Monitoring and Analytics."
Intl. Symp. on Real-Time Distributed Computing, pp. 19-26, 2015.

[23] C. Lin, W. Guo, and C. Lin. "Self-Learning MapReduce Scheduler
in Multi-job Environment." IEEE Intl. Conf. on Cloud Computing and
Big Data (CloudCom-Asia), pp. 610-612, 2013.

[24] N.J. Yadwadkar, W. Choi. "Proactive Straggler Avoidance using
Machine Learning", White paper, University of Berkeley, 2012.

[25] Google. Google Cluster Data V2. Available:
http://code.google.com/p/googleclusterdata/wiki/ClusterData
2011_1

[26] C. Reiss, J. Wilkes, J. L. Hellerstein. "Google cluster-usage traces:
format+ schema." Google Inc., Technical Report , 2011.

[27] Tsar tools, available: https://github.com/alibaba/tsar/
[28] Nagios, available: https://www.nagios.org/
[29] I.S. Moreno, P. Garraghan, P. Townend, J. Xu. "Analysis, Modeling

and Simulation of Workload Patterns in a Large-scale Utility
Cloud." IEEE Transactions on Cloud Computing, no. 2, 208-221, 2014.

[30] A. Thusoo et al., "Hive: a Warehousing Solution over a Map-reduce
Framework." VLDB Endowment, pp. 1626-1629, 2009.

[31] A. Avizienis, J.C. Laprie , B. Randell , C. Landwehr, "Basic Concepts

and Taxonomy of Dependable and Secure Computing", IEEE
Transactions on Dependable and Secure Computing, p.11-33, 2004.

[32] Z.Zheng, T. Zhou, M.Lyu, I.King. "FTCloud: A Component
Ranking Framework for Fault-Tolerant Cloud Applications." IEEE
21st Intl. Symp. on Software Reliability Engineering, pp. 398-407, 2010.

[33] Y.Dai, B.Yang, J.Dongorra, G.Zhang. "Cloud Service Reliability:
Modelling and Analysis." IEEE Pacific Rim International Symposium
on Dependable Computing, pp. 1-17, 2009.

[34] X.Ouyang, P.Garraghan, D.Mckee, P.Townend, J.Xu, “Straggler
Detection in Parallel Computing Systems through Dynamic
Threshold Calculation.” IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2016, pp. 414-421.

[35] Yi.Zhang, C.g Guo, D. Li, R. Chu, H. Wu, Y. Xiong, “CubicRing:
Enabling One-Hop Failure Detection and Recovery for Distributed
In-Memory Storage Systems.” USENIX NSDI, 2015.

[36] P.Garraghan, D.Mckee, X.Ouyang, D.Webster, J.Xu, “SEED: A
Scalable Approach for Cyber-Physical System Simulation.” IEEE
Transactions on Services Computing, vol.9, pp. 118-123, 2016.

[37] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I,Stoica. “Effective
Straggler Tolerance: Attack of the Clones.” In Proceedings of the 10th
USENIX conference on Networked Systems Design and Implementation
NSDI, 2013, Vol. 13., pp. 185-198.

Peter Garraghan is a Lecturer in the
School of Computing & Communications,
Lancaster University. He has industrial
experience building large-scale systems
and his research interests include
distributed systems, Cloud datacenters,
dependability, data analytics and energy-
efficient computing.

Xue Ouyang is a PhD student in the
School of Computing, University of Leeds.
She received her B.Eng. degree in
Network Engineering and M.Eng. degree
in Software Engineering from National
University of Defense Technology, China.
Her research interest is improving service
performance within distributed systems.

Renyu Yang is a PhD student at Beihang
University, China. He received his B.Sc
degree from Beihang University in 2011
and was a visiting researcher at University
of Leeds, UK in 2012. His research interests
include resource management in large
scale distributed system, system reliability
and data management.

David McKee is a PhD student in the
School of Computing, University of
Leeds, UK. He received the M.Eng. degree
in Computer Systems and Software
Engineering from the University of York,
UK. His research interests include real
world time service-orientation and large-
scale distributed system simulation.

Jie Xu is Chair of Computing at the
University of Leeds and Director of the
UK EPSRC WRG e-Science Centre. He has
worked in the field of dependable
distributed computing for over 30 years,
and is a Steering/Executive Committee
member of IEEE SRDS, ISORC, HASE,
SOSE, and co-founder of IEEE IC2E.

http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
https://github.com/alibaba/tsar/
https://www.nagios.org/

