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Abstract

With the increasing power of personal computers, computational intensive

statistical methods such as approximate Bayesian computation (ABC) are

becoming an attractive and viable proposition to analyse complex statistical

problems. There are three main aspects to ABC:

• Proposing parameters.

• Simulation of the process.

• Some acceptance or approximation criteria for assessing the simulation.

Majority of the publications on ABC explores the parameter proposition

and the acceptance criteria aspects. Our work focuses on the simulation

aspect of the algorithm. Our research has led us to the development of

Data Conditioned Simulation. The data conditioned simulation utilises a

mixture of the importance sampling algorithm and data augmentation to

steer simulations towards the observed data with a corresponding weight to

take account of the steering. The consequence of the steering is that even

though each simulation takes more time than the unconditioned simulation,

fewer simulations are required to make reasonable inference. Without the

steering in the simulation, the acceptance rate can be extremely small. We

demonstrate the data conditioned simulation through the data conditioned

approximate Bayesian Computation (dcABC) and the grouped independence

Metropolis-Hastings (GIMH) algorithm. The methodology is demonstrated

through three examples, a homogeneous mixing SIR epidemic model, a time

inhomogeneous Markov chain model and the stochastic Ricker model. The

implementation of the methodology is problem-specific and we demonstrate

the benefits of our approach in all three examples.
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Chapter 1

Introduction

1.1 Research objective

The standard rsABC algorithm can be very inefficient in complex models.

Most rsABC algorithms can be broken down into three parts: sampling of the

parameters, sampling of the model, and rejection criterion. Much research

effort has gone into improving the efficiency of the rsABC algorithm. We

identified that most of the research has focused on an MCMC based approach

for sampling of the parameters or improving the acceptance criterion, and

there is little discussion on the simulation of the model itself, which we believe

is an important element to all ABC related algorithms. Our aim in this work

is to find a stable, robust, and efficient model simulation algorithm. The

main innovation of our research is the data conditioned simulation, which

uses a mixture of data augmentation algorithm and importance sampling

algorithm to steer the simulation so that the simulated data matches with

the observed data either in the full data form or some summary statistics.

The advantage of this method is that every simulation contributes to the

final estimation of the likelihood, and no information is thrown away which

is the case for the rejection sampling based algorithm. We demonstrate the

16



idea of the data conditioned simulation in the data condition ABC algorithm

(dcABC algorithm), and we also show how the dcABC algorithm can be

applied to three very different types of problems: Susceptible - Infectious -

Recovered (SIR) model, time inhomogeneous Markov chain mode and the

Ricker model (a stochastic non-linear dynamic model).

1.2 Thesis structure

This thesis comprises 6 further chapters (Chapters 2 - 7); one literature

review chapter, one theory chapter, three example chapters, and finally the

conclusion.

In chapter 2, we being by laying the ground work for the literature review with

the introduction of the EBC and rsABC and a toy example. It follows with

a discussion of classification of ABC-related algorithms depending on which

stage the innovations are made compared to the EBC algorithm. Finally, we

provide an extensive review of some of the major ABC-related algorithms.

In chapter 3, we introduce the core idea of this thesis, the data conditioned

simulation, through the dcABC with two toy examples: a discrete data model

(Poisson distribution) and a continuous data model (exponential distribu-

tion).

In chapter 4, we look at the first of the three problems: the SIR model. We

begin by introducing the SIR model and its properties. We then apply the

rsABC algorithm, the dcABC algorithm, the GIMH, the data augmented

GIMH to the problem. Finally, the outcomes of the analysis are presented

and discussed.

In chapter 5, we look at a Susceptible - Infectious - Susceptible (SIS) model,

which is in essence a time inhomogeneous Markov chain model. We begin

with an involved discussion of time inhomogeneous Markov chain model,

17



which paves the way to the implementation of both the unconditioned simu-

lation and the data conditioned simulation. We apply the rsABC algorithm,

dcABC algorithm, and the GIMH algorithm on some simulated data as well

as the true data. Finally, outcomes of the analysis are presented and dis-

cussed.

In chapter 6, we look at the Ricker model, which is a stochastic non-linear

dynamic system devised for predicting fish stock in a fishery. We start with

the model description and then an extensive exploratory research in order

to establish what summary statistics to use. It follows by the description of

the unconditioned simulation and the data conditioned simulation. We then

apply the dcABC algorithm and the GIMH algorithm to some simulated

data. Finally, outcomes of the analysis are presented and discussed.

In chapter 7, we discuss our findings from the three examples and identify

possible areas for future research.

18



Chapter 2

A Review of Approximate

Bayesian Computation

In this chapter, we give an overview of current developments in the ABC

algorithm. We start by defining some notation and providing background

knowledge in order to assist the examination of the EBC (Section 2.2), and

rsABC (Section 2.3) in detail. We will then look at some variants of the ABC

algorithm including the sequential Monte Carlo ABC (SMC-ABC) algorithm

(Section 2.5), the Markov Chain Monte Carlo ABC (MCMC-ABC) algorithm

(Section 2.6), the semi-automatic ABC algorithm (Section 2.7), the piecewise

ABC algorithm (Section 2.8), the ABC algorithm with regression correction

(Section 2.9), the Monte Carlo within Metropolis (MCWM) (Section 2.10),

and the GIMH algorithm (Section 2.11).

2.1 Background knowledge

We assume that there exists a parametric model which gives rise to data

x∗, which are observed from a parametric model parameterised by θ. Let

19



π(θ) denote the prior distribution of the parameters θ, π(x∗|θ) denote the

likelihood of the observed data given θ, and π(θ|x∗) denote the posterior

distribution of the parameters θ given x∗.

Then by Bayes’ theorem:

π(θ|x∗) =
π(θ)π(x∗|θ)

π(x∗)

=
π(θ)π(x∗|θ)∫

∀θ
π(x∗|θ)π(θ)dθ

∝ π(θ)π(x∗|θ).

Our primary interest is in obtaining samples from the posterior distribution,

π(θ|x∗), to estimate posterior quantities of interest such as E[θ|x∗].

The likelihood, π(x∗|θ), can be difficult to calculate or intractable in many

complex statistical problems. In situations where the likelihood can be cal-

culated either directly or through data augmentation, MCMC is usually the

answer to obtain such samples (see Algorithm 6 below for an outline of the

MCMC algorithm). The MCMC algorithm will, if started from π(θ|x∗), pro-

duce an exact dependent sample from the posterior distribution. However,

MCMC is computationally intensive and can be prohibitively slow or com-

plicated for complex models with intractable likelihoods. Thus alternatives

are required to estimate π(x∗|θ) and π(θ|x∗).

Approximate Bayesian computation is a methodology to circumvent evalua-

tion of likelihoods directly through simulation of the likelihood. The idea is

that the likelihood can be approximated by simulation and hence obtaining

samples from the posterior distribution.

The ABC algorithm can be applied to a broad range of models, and the

details of the algorithm depend heavily on the nature of the models and

data. This flexibility of ABC has contributed to the growing interest and

20



development of this methodology.

2.2 Exact Bayesian computation algorithm

2.2.1 The Algorithm

The exact Bayesian computation algorithm is the simplest form of the Bayesian

computation algorithm with no approximation [White et al., 2013] and is a

rejection sampling algorithm. It is generally a restrictive and inefficient al-

gorithm, but nonetheless it is a good starting point for understanding the

ABC algorithm.

Algorithm 1 (EBC Algorithm).

1. Set i = 1.

2. Sample θ from π(θ).

3. Generate data x from π(x|θ), the model with parameters θ.

4. If x = x∗, then set θi = θ and increment i by 1.

5. Let m be the desired sample size. If i < m, go to 2.

6. {θ1, . . . ,θm} is an independent and identically distributed

sample from π(θ|x∗).

This version of the algorithm requires the simulated data to be precisely

matched to the observed data before an acceptance. Thus, it requires the

model to be a discrete data model. Otherwise P(xi = x∗) = 0, and no accep-

tance is possible. Even for a discrete data model, P(xi = x∗) is often very

small and hence the acceptance rate is prohibitively low, see Section 2.2.3.

One upside is that this algorithm will produce independent and independent

and identically distributed (I.I.D.) samples from the exact posterior distri-

bution rather than the approximated posterior distribution.
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2.2.2 Why does EBC work?

To show why the EBC algorithm works, we utilise the uniqueness property

of cumulative density functions. That is, we have to show that∫
θ∈A

π(θ|Accepted)dθ =

∫
θ∈A

π(θ|x∗)dθ (2.1)

where A ⊆ Rd, and d is the dimension of the parameters, θ, then we have

the proof.

Given A ⊆ Rd, to compute the cumulative density function on the left hand

side of (2.1) is equivalent to computing P
(
(θ ∈ A)|Accepted

)
. Thus, starting

from the left hand side of (2.1):

∫
θ∈A

π(θ|Accepted)dθ = P
(
(θ ∈ A)|Accepted

)
=

P
(
(θ ∈ A) ∩ Accepted

)
P(Accepted)

=

∫
θ∈A

P(X = x∗|θ)π(θ)dθ∫
∀θ

P(X = x∗|θ)π(θ)dθ

=

∫
θ∈A

P(X = x∗|θ)π(θ)dθ

P(X = x∗)

=

∫
θ∈A

P(X = x∗|θ)π(θ)dθ

π(x∗)

=

∫
θ∈A

π(x∗|θ)π(θ)

π(x∗)
dθ

=

∫
θ∈A

π(θ|x∗)dθ,
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as required.

2.2.3 A toy example

Consider a data set, x∗, consisting of 10 observations from a Poisson distri-

bution, Poisson(θ∗), with θ∗ = 5, i.e.

x∗ = {2, 4, 5, 5, 5, 6, 7, 7, 8, 10}.

Since the Gamma distribution is the conjugate prior of the Poisson distri-

bution, it is only natural to use Γ(α, β) as the prior distribution of θ, where

α > 0 is the shape parameter and β > 0 is the rate parameter. We choose

α = 1 and β = 0.1 to represent a fairly diffused prior to simulate a lack of

prior knowledge.

Algorithm 2 (The EBC algorithm for the Poisson example).

1. Set i = 1

2. Sample θ from Γ(1, 0.1).

3. Sample 10 values, x = {x1, . . . , x10} from Poisson(θ).

4. If x = x∗, we accept θ and increment i by 1. Otherwise we

discard θ.

5. Let m be the desired sample size. If i < m, go to 2.

In this example, we set the desired sample size to be 100. It took 8.74× 106

iterations to achieve that using Algorithm 2. That means an acceptance rate

in the region of 1.14× 10−5, which is low for such a simple model. However,

in practice this magnitude of acceptance rate is good compared with using

ABC for real life problems.
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2.3 Rejection sampling ABC

2.3.1 Motivation

From the toy example in Section 2.2.3, we see that even for such a simple

model, the EBC algorithm is inefficient. Suppose that we know sufficient

statistics of the parameter, then we can improve on the efficiency of the

algorithm while still obtaining a sample from the exact posterior distribution.

Below we will demonstrate using the toy example from Section 2.2.3.

Throughout this chapter, we will let T (·) denote sufficient statistics, which

can be either a scalar or a vector. In the context of the toy example from

Section 2.2.3, we can identify a sufficient statistic for θ. By the factorisation

theorem, the sufficient statistic for the parameter of a Poisson distribution

with n identically independent distributed samples is
∑n

i=1 Xi. Furthermore,

the sum of independent Poisson random variables is itself a Poisson distri-

bution with the parameter being the sum of all the parameters of the random

variables. Thus T (X) ∼ Poisson(10θ).

Given any θ, we want to compare P(x = x∗) and P
(
T (x) = T (x∗)

)
. This

is not always possible, but in this example we can compute the probability

exactly. Note that these are the marginal likelihoods, and correspond to the

probabilities of getting an exact match (matching all 10 terms or the sum of

the terms).
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For P(x = x∗):

P(x = x∗) =

∫ ∞
0

P(x = x∗|θ)π(θ)dθ

=

∫ ∞
0

10!

3!2!

10∏
i=1

P(xi = x∗i |θ)π(θ)dθ

=

∫ ∞
0

10!

3!2!
∏10

i=1(x∗i !)
θ
∑10
i=1 x

∗
i e−10θ0.1e−0.1θdθ

=
9!

3!2!
∏10

i=1(x∗i !)

∫ ∞
0

θ
∑10
i=1 x

∗
i e−10.1θdθ

=
9!

3!2!
∏10

i=1(x∗i !)

Γ(
∑10

i=1 x
∗
i + 1)

10.1
∑10
i=1 x

∗
i+1

∫ ∞
0

10.1
∑10
i=1 x

∗
i+1

Γ(
∑10

i=1 x
∗
i + 1)

θ
∑10
i=1 x

∗
i e−10.1θdθ

=
9!

3!2!
∏10

i=1(x∗i !)

Γ(
∑10

i=1 x
∗
i + 1)

10.1
∑10
i=1 x

∗
i

= 1.04× 10−5.

The combinatorial term, 10!
3!2!

, is to account for the ordering of the sample.

We consider x = x∗ as long as all elements match up regardless of the order.

And for P
(
T (x) = T (x∗)

)
:

P
(
T (x) = T (x∗)

)
=

∫ ∞
0

P
(
T (x) = T (x∗)|θ

)
π(θ)dθ

=

∫ ∞
0

(10θ)T (x∗)e−10θ

T (x∗)!
0.1e−0.1θdθ

=
10T (x∗)

10(T (x∗)!)

Γ(T (x∗) + 1)

10.1T (x∗)+1

∫ ∞
0

10.1T (x∗)+1

Γ(T (x∗) + 1)
θT (x∗)e−10.1θdθ

=
10T (x∗)

10(T (x∗)!)

Γ(T (x∗) + 1)

10.1T (x∗)+1

= 5.50× 10−3
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From the computation above, we can see that the algorithm using the suf-

ficient statistics, T (X), is 530 times more likely to have a match than the

algorithm using the raw data, X. This is a dramatic improvement of 2 or-

ders of magnitude. However, in practice, finding sufficient statistics is often

difficult and therefore non-sufficient summary statistics are often used. This

leads to the next algorithm: the rsABC algorithm.

The version of rsABC that will be discussed in this section first appeared in

[Pritchard et al., 1999]’s work on population genetics. This version of rsABC

makes two modifications to the EBC algorithm (Algorithm 1):

• It adopts summary statistics instead of the raw data.

• It relaxes the acceptance criterion: for an acceptance, we only require

the generated data to be “close” to the observed data rather than an

exact match.

These two modifications introduce “approximation” into the EBC algorithm,

hence the name Approximate Bayesian Computation.

2.3.2 The use of sufficient statistics

Suppose that sufficient statistics, T (x), can be identified for a model.

Recall Bayes’ theorem:

π(θ|x∗) =
π(θ)π(x∗|θ)∫

∀θ
π(x∗|θ)π(θ)dθ

= Kπ(θ)π(x∗|θ),

where K =
[ ∫
∀θ π(x∗|θ)π(θ)dθ

]−1
.
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Let t∗ denote the sufficient statistic of the observed data, where t∗ = T (x∗),

then:

π(θ|x∗) = π(θ|x∗, t∗)

= π(θ|t∗)

=
π(θ)π(t∗|θ)

π(t∗)
,

hence π(θ|x∗) ∝ π(θ)π(t∗|θ).

This shows that Bayes’ theorem still holds after substituting the raw data

with a sufficient statistic. If we further substitute the sufficient statistic with

some approximating summary statistic, it will then allow us to work with

the modifications made to the rsABC algorithm in comparison to the EBC

algorithm.

2.3.3 The algorithm

We use S(x) denote summary statistics of x, in order to distinguish summary

statistics from sufficient statistics. Let d(·, ·) denote the Euclidean metric,

and let h denote a non-negative real number. The rsABC algorithm is as

follows:
Algorithm 3 (rsABC algorithm).

1. Set i = 1

2. Sample θ from π(θ).

3. Generate data x from π(x|θ).

4. If d(S(x),S(x∗)) ≤ h, then set θi = θ and increment i by 1.

5. Let m be the desired sample size. If i < m, go to 2.

6. {θ1, . . . ,θm} is an independent and identically distributed

sample from an approximation of π(θ|x∗)

Algorithm 3 is very similar to Algorithm 1 with the only difference being

step 4., which is the comparing and deciding stage of the algorithm. This
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modification compares summary statistics between the generated data and

the observed data instead of the raw data and it also makes allowance for

not requiring an exact match. Furthermore, it allows Algorithm 3 to be used

with continuous data.

Samples produced using Algorithm 3 are from an approximation of the pos-

terior distribution, but if we were able to identify the sufficient statistics and

let h→ 0, then we have samples from the exact posterior distribution. The

“closer” S(x) is to sufficiency,s and the smaller h is, the closer the generated

sample will be to being a sample from the posterior distribution. However,

often it is not possible to identify useful low order sufficient statistics for

complex models, and thus we have to use alternative summary statistics.

2.3.4 Justification of the rsABC algorithm

To justify the rsABC algorithm, a similar argument to that used for the

EBC algorithm can be made. Due to the two modifications made to the

EBC algorithm, we will be looking at the limiting behaviour of the cummu-

lative density function (CDF) of the sampled θi that is indeed the same or

approximately the same as the CDF of the posterior distribution.

Suppose that for a given region A ⊆ Rd, where d is the dimension of the

parameter. The goal for the next step is to establish that:

P(θ ∈ A|Accepted) =

∫
θ∈A

π(θ|x∗)dθ. (2.2)

We proceed in the similar manner as in Section 2.2. Starting from the left

hand side of (2.2):
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P
(
(θ ∈ A)|Accepted

)
=

∫
θ∈A P

(
d
(
S(x),S(x∗)

)
≤ h

∣∣∣θ)π(θ)dθ

P
(
d
(
S(x),S(x∗)

)
≤ h

)

=

∫
θ∈A

P
(
d
(
S(x),S(x∗)

)
≤ h

∣∣∣θ)π(θ)

P
(
d
(
S(x),S(x∗)

)
≤ h

) dθ.

Suppose that the posterior is continuous in h and S(·), but not necessarily

continuous in X, so that we know the limit,

lim
h→0,S(·)→T (·)

P
(
(θ ∈ A)|Accepted

)
,

exists. Further suppose that the likelihood is continuous in h and S(·), but

not necessarily continuous in X, so that we can swap the order of integral

and limit, then we have:
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lim
h→0,S(·)→T (·)

P
(
(θ ∈ A)|Accepted

)

= lim
h→0,S(·)→T (·)

∫
θ∈A

P
(
d
(
S(x),S(x∗)

)
< h

∣∣∣θ)π(θ)

P
(
d
(
S(x),S(x∗)

)
< h

) dθ

=

∫
θ∈A

lim
h→0,S(·)→T (·)

P
(
d
(
S(x),S(x∗)

)
< h

∣∣∣θ)π(θ)

P
(
d
(
S(x),S(x∗)

)
< h

) dθ

=

∫
θ∈A

P
(
T (x) = T (x∗)

∣∣θ)π(θ)

P
(
T (x) = T (x∗)

) dθ

=

∫
θ∈A

π
(
T (x∗)

∣∣θ)π(θ)

π
(
T (x∗)

) dθ

=

∫
θ∈A

π(θ|t∗)dθ

=

∫
θ∈A

π(θ|x∗)dθ,

as required.

2.3.5 Revisiting the Poisson toy example

To demonstrate the rsABC algorithm, we use the same data from Sec-

tion 2.2.3. We know from Section 2.2.3 that T (X) ∼ Poisson(10θ).

Now suppose that h = 1, θ ∼ Γ(1, 0.1), d(a, b) = (a2 + b2)1/2, and s∗ =∑10
i=1 xi = 66, then the rsABC algorithm is as follows:
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Algorithm 4 (rsABC algorithm for the Poisson example).

1. Set i = 1

2. Sample θ from Γ(1, 0.1).

3. Sample a value s from Poisson(10θ).

4. Accept θ if d(s, s∗) ≤ 1 and increment i by 1.

5. Let m be the desired sample size. If i < m, go to 2.

6. {θ1, . . . ,θm} is an independent and identically distributed

sample from an approximation of π(θ|x∗)

The rsABC algorithm achieved the desired 100 sample size with 5609 itera-

tions. That means an acceptance rate of 1.78 × 10−2, which is about 1561

times more efficient than the EBC algorithm.

2.4 A quick ABC summary

Section 2.3 provides a good example for the general framework of ABC al-

gorithms, and indeed many ABC algorithms fall under the rsABC umbrella.

However, there are other algorithms which do not fall under this category.

For the more general ABC algorithm, there are still three key stages to any

ABC algorithm:

1. Sampling of the parameters, θ

2. Sampling data x from π(x|θ)

3. Comparing x and x∗

The majority of the research on ABC algorithms is focused on Stages 1.

(SMC-ABC, MCMC-ABC) and 3.(semi-automatic ABC, ABC with regres-

sion correction), whereas this thesis concentrate on Stage 2. We will discuss

some of these algorithms in the following sections before going into our re-

search.
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2.5 Sequential Monte Carlo ABC

There had been many studies on applying sequential techniques with ABC

framework. [Bortot et al., 2007, Sisson et al., 2007, Robert et al., 2008, Toni

et al., 2009, Beskos et al., 2011, Peters et al., 2012, Del Moral et al., 2012,

Silk et al., 2012, Bonassi et al., 2015, Filippi et al., 2013]. In particular,

SMC-ABC algorithm is probably the most studied algorithm under the se-

quential approach to the ABC algorithm. It is an algorithm which make an

innovation at the parameter sampling stage. Although in the toy example,

the acceptance rate is reasonably high even with a small error tolerance, this

is often not the case in practice. Therefore, as the name suggests, SMC-ABC

approaches the approximation via a sequence of approximations. Instead of

trying to hit the best result at once as rsABC does, it starts by allowing a

large tolerance, h, and hence a higher acceptance rate, and then gradually

reduce h and samples only from the region of the previously accepted val-

ues. Although this may seem to duplicate the work at each stage, it allows

the algorithm to explore and exclude unlikely parameter regions quickly, and

therefore more computational effort can be concentrated on the important

regions. Thus, the SMC-ABC algorithm is useful when there is a lack of

prior knowledge about the parameters. Algorithm 5 is an early development

of SMC-ABC proposed in [Bortot et al., 2007], which only considers the fi-

nal set of the sample for inference. In the later development, see [Sisson

et al., 2007], SMC-ABC considers samples from each stage with adjustment

weights. Although Algorithm 5 is less efficient, but it serves as a good ex-

ample to understand the sequential approach to SMC-ABC.

2.5.1 The algorithm

Letm denote the desired sample size, ε ∼ D(µ,σ2) denote some perturbation

distribution with mean µ and variance σ2, and h1 > . . . > hk ≥ 0 denote a

sequence of decreasing error tolerance.
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Algorithm 5 ( SMC-ABC algorithm).

1. Set i = 1

2. Perform the rsABC algorithm with h = h1 to get m accepted

values {θ(i)1 , . . . ,θ
(i)
m }.

3. Increment i by 1.

4. Let the proposal distribution q(θ) = 1
m
D(θ

(i−1)
1 ,σ2) + . . . +

1
m
D(θ

(i−1)
m ,σ2), i.e. the mixture distribution based on the

previously accepted values.

5. Perform the rsABC algorithm with h = hi and the new pro-

posal distribution to get a new set of {θ(i)1 , . . . ,θ
(i)
m }

6. If i < k, then repeat 3. - 5., or else {θ(k)1 , . . . ,θ
(k)
m } is a sample

from the posterior distribution.

NOTE 1. Let Θ(i) = {θ(i)1 , . . . ,θ
(i)
m }, then Θ(1), . . . ,Θ(k) are sequentially

generated with conditionally independent components {θ(i)1 , . . . ,θ
(i)
m } given

Θ(i−1).

There are three key parts to SMC-ABC:

1. the reducing error tolerance (h1, . . . , hk),

2. the proposal distribution (also called the perturbation) q(θ),

3. the weights (omitted in Algorithm 5).

Careful choices of the error tolerance, the proposal distribution and the

weights will improve the efficiency of the algorithm. In [Silk et al., 2012], an

automated and adaptive scheme for choosing h1, . . . , hk is proposed, which

balances between the need for minimising the error tolerance and the compu-

tation efficiency. In [Filippi et al., 2013], a locally adapted kernel (proposal

distribution) is discussed which improves the acceptance rate with little com-

putation cost. An adaptive weights scheme is proposed in [Bonassi et al.,

2015], which also improves on the acceptance rate, and hence the efficiency

of the algorithm.
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2.6 MCMC-ABC

In rsABC, drawing θ from π(θ) can lead to a very inefficient algorithm,

especially with an uninformative prior. By combining the idea of the MCMC

algorithm with likelihood simulation, it gives an algorithm that often explores

the parameter space more efficiently at the expense of having dependent

samples. [Marjoram et al., 2003, Bortot et al., 2007, Ratmann et al., 2007]

We will start by looking at the MCMC algorithm and then extend it to

include a simulation based approximation of the likelihood. The idea is that

once we establish that the MCMC algorithm can give us samples from the

desired posterior distribution, we approximate the likelihood by an unbiased

approximation. We will show later that the algorithm produces samples from

the posterior distribution.

MCMC algorithm may be used to mean an array of different algorithms.

However, we consider only the Metropolis-Hastings (MH) algorithm here.

The core of any MCMC algorithm is to construct a Markov chain so that the

corresponding stationary distribution is the posterior distribution we wish to

sample from. Algorithm 6 is a generic MH algorithm for simulating from the

posterior distribution.

Algorithm 6 (MH Algorithm).

1. Let q(θ,θ′) be the proposal distribution. q(θ,θ′) gives the

density of moving from θ to θ′

2. Initiate θ1 with an arbitrary number, and ideally from the

posterior distribution if possible.

3. Propose a move from θi to θ′ according to q(θi,θ
′)

4. Set θi+1 = θ′ with probability

min

{
1,
q(θ′,θi)π(x∗|θ′)π(θ′)

q(θi,θ′)π(x∗|θi)π(θi)

}
, or else θi+1 = θi.

5. Repeat 2. to 4. until desired sample size is reached.

A sketch proof of MH algorithm. In order to show that the MH algorithm
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does indeed gives us samples from the desired distribution we start by stating

two well known Markov chain theorems, detailed balance and ergodicity, and

then we will show how these two theorems are utilised in the algorithm.

Our argument is based on the discrete time Markov chains, and we will let

θ1, θ2, . . . represent observations from a Markov chain.

Theorem 1 (Detailed balance - existence of stationary distribution [Norris,

1997]). Let f(a) be some probability density, and P (a, b) be the transition

density of a discrete time and continuous state Markov chain, i.e. the density

of jumping from state a to state b, then the detailed balance condition states

that: f(a) is the stationary density of the Markov chain, if f(a)P (a, b) =

f(b)P (b, a) for all a, b.

Theorem 2 (Ergodicity - uniqueness of stationary distribution[Norris, 1997]).

The stationary distribution is unique, if P (a, b), the transition density is er-

godic meaning: 1) aperiodic and 2) positive recurrent.

We are going to show that the transition density of the Markov chain con-

structed using the MH algorithm satisfies both the detailed balance and

ergodicity with the correct stationary density (the posterior distribution).

We will prove the case for continuous state Markov chain since this is usually

the case required with MCMC. To begin, we will firstly establish the transi-

tion density, P (θ,θ′) of the Markov chain constructed by the MH algorithm.

Our distribution of interest is the posterior distribution, which proportional

to the product of the likelihood and the prior, i.e. π(x∗|θ)π(θ), so for con-

venience, we will let φ(θ) = π(x∗|θ)π(θ). The posterior distribution can

then be expressed as π(θ|x∗) = Cφ(θ), where C =
∫
∀θ π(x∗|θ)π(θ)dθ is the

normalising constant for the posterior distribution.

The MH algorithm can be viewed as two Markov chains coupled together to

form one new Markov chain. The two Markov chains in play here are asso-

ciated with the new move proposal step and the acceptance-rejection step,

and their transition density are q(θ,θ′) and min

{
1,
q(θ′,θi)π(x∗|θ′)π(θ′)

q(θi,θ′)π(x∗|θi)π(θi)

}
for accepting the proposed move respectively.
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Let P (a, b) denote the transition density of the MH algorithm, where a, b ∈
Θ. To establish the transition density of the MH algorithm, we want to

show that P (a, b) is indeed ergodic and detailed balanced with the stationary

distribution being φ(θ). We will consider P (θ,θ′) for θ′ 6= θ and P (θ,θ).

We start with the case of P (θ,θ′). For θ 6= θ′:

P (θ,θ′) =f(θt+1 = θ′|θt = θ)

=f(θt+1 = θ′,Accepted θ′|θt = θ)

+ f(θt+1 = θ′, not Accepted θ′|θt = θ)

=f(θt+1 = θ′,Accepted θ′|θt = θ)

=f(θt+1 = θ′|Accepted θ′,θt = θ)f(Accepted|θt = θ)

=q(θ,θ′) min

(
1,
φ(θ′)q(θ′,θ)

φ(θ)q(θ,θ′)

)
by the MH algorithm

=q(θ,θ′) min

(
1,
π(θ′|x∗)q(θ′,θ)

π(θ|x∗)q(θ,θ′)

)
. (2.3)

The detailed balance follows since:

φ(θ)P (θ,θ′) = φ(θ)q(θ,θ′) min

(
1,
π(θ′|x∗)q(θ′,θ)

π(θ|x∗)q(θ,θ′)

)

= φ(θ)q(θ,θ′) min

(
1,
φ(θ′)q(θ′,θ)

φ(θ)q(θ,θ′)

)
= min

(
φ(θ)q(θ,θ′), φ(θ′)q(θ′,θ)

)
= φ(θ′)q(θ′,θ) min

(
1,
φ(θ)q(θ,θ′)

φ(θ′)q(θ′,θ)

)
= φ(θ′)P (θ′,θ)

Next, by choosing an appropriate proposal distribution q(·, ·) which allows

us to get from anywhere to anywhere (irreducible), we can ensure ergodicity.

We will now look at P (θ,θ).
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P (θ,θ) =f(θt+1 = θ|θt = θ)

=f(θ′ = θ,Accepted θ′|θt = θ)

+ f(θ′ 6= θ,Rejected θ′|θt = θ)

=q(θ,θ) min

{
1,
q(θ′,θi)π(x∗|θ′)π(θ′)

q(θi,θ′)π(x∗|θi)π(θi)

}

+

∫
θ′ 6=θ

q(θ,θ′)

(
1−min

{
1,
q(θ′,θi)π(x∗|θ′)π(θ′)

q(θi,θ′)π(x∗|θi)π(θi)

})
dθ′.

(2.4)

In this case, it is trivial to show that the detailed balance is satisfied:

φ(θ)P (θ,θ) = P (θ,θ)φ(θ),

and the ergodicity is also ensured by irreducible q(·, ·). Therefore, we have

established that the transition density, P (·, ·), of the MH algorithm does in-

deed satisfies the detailed balance and ergodicity with the desired stationary

distribution, φ(θ).

We can replace the likelihood π(x|θ) in the MH algorithm with an unbiased

and non-negative estimator π̂(x|θ) and still get a sample from the posterior

distribution [Andrieu and Roberts, 2009], which gives us the MCMC-ABC

algorithm in Algorithm 7.
Algorithm 7 (MCMC-ABC).

1. Let q(θ,θ′) be the proposal distribution. q(θ,θ′) gives the

density of moving from θ to θ′

2. Initiate θ1 using the rsABC algorithm so that

{d
(
S(x),S(x∗)

)
≤ h}

3. Propose a move from θi to θ′

4. Set θi+1 = θ′ with probability

min

{
1,
q(θ′,θi)π(θ′) ̂π(x∗|θ′)
q(θi,θ′)π(θi) ̂π(x∗|θ)

}
, or else θi+1 = θi

5. Repeat 3. to 4. until desired sample size is reached
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where, S(·) denote some summary statistics. Let x′ denote some data gener-

ated form π(x|θ′). In step 4., if we replace
̂π(x∗|θ′)
̂π(x∗|θ)

with
1{

d
(
S(x′),S(x∗)

)
≤h
}

1{
d
(
S(x∗),S(x′)

)
≤h
} ,

then we will get samples from an approximate posterior.

Justification. We have shown that Algorithm 7 will generate a sample with

probability density function (PDF) proportional to

π(θ)1{
d
(
S(x∗),S(x′)

)
≤h
}

in the earlier proof for the MH algorithm, and from Section 2.3, we know that

such a sample is indeed a sample from the approximate posterior distribution

π(θ|x∗).

2.7 Semi-automatic ABC

All the algorithms discussed so far require choosing summary statistics that

are reasonable approximation of the sufficient statistics, which can be a

challenging task when the model is complex and low order sufficient statis-

tics cannot be identified. The Semi-automatic ABC algorithm discussed in

[Fearnhead and Prangle, 2012] systemises the summary statistics selection

somewhat by transforming the problem of selecting “appropriate” summary

statistics into a more standard model selection problem.

[Fearnhead and Prangle, 2012] suggests that instead of using well approxi-

mated (to the sufficient statistics) summary statistics, they construct a vector

valued regression model based on a larger set of (possibly) less well approx-

imated summary statistics, for which the summary statistics are used as

independent variables in the model and the dependent variable is used as the

new summary statistics.

This is an algorithm that improves on the comparison stage of the algorithm.
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2.8 Piecewise ABC

The piecewise ABC algorithm or pwABC algorithm suggested by [White

et al., 2013], is a comparatively efficient algorithm for analysing discretely

observed data with the Markov property, i.e. π(xi|x1, . . . , xi−1) = π(xi|xi−1).

The main innovation of the pwABC algorithm is that it utilises the Markov

property to factorise the posterior distribution of the whole observed data

into products of posterior distributions of connected data pairs. If there are n

observations, then the full posterior distribution will be factorised into n− 1

factors. After the factorisation stage, each of the posterior factors can be

treated as independent problem given the observed data and any of the ABC

sampling technique can be adopted. rsABC algorithm was used in [White

et al., 2013]. The process is then repeated for each posterior factor and at

the end of the process, a set of accepted parameters will be collected. To

estimate the overall posterior, a kernel smoothing method is performed on

the parameter estimates from each sample.

The major benefit of the factorisation is that it greatly increases the accep-

tance probability at each sub problem. The higher acceptance probability

also means that the acceptance tolerance, h, can be reduced and in some

cases circumvent the need to use lower order summary statistics.

The advantage of pwABC algorithm is that it only requires the likelihood

to be factorisable with respect to the data, and [White et al., 2013] demon-

strated in the paper that a broad class of models fit in this framework includ-

ing: stochastic differential equation model, autoregressive time-series mode,

and dynamical predator-prey model.
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2.9 ABC with regression correction

A major drawback of the standard rsABC algorithm (Section 2.3) is that

the efficiency of the algorithm decreases rapidly as the number of summary

statistics increases. As the number of summary statistics increases, we are

forced to increase the tolerance, h, otherwise the acceptance rate will be

prohibitively low.

In [Beaumont et al., 2002], a regression correction step is added to the rsABC

algorithm which allows it to run with a more relaxed choice of the tolerance

h but with a correction afterwards. In order to implement the regression

correction step, the rsABC algorithm is modified to record both the accepted

values, θi as well as its corresponding summary statistics, si = S(xi). The

regression correction step assumes a local-linear relationship in the vinivity

of s∗. The correction uses the discrepancy between the sample summary

statistics and the observed summary statistics, i.e. |si − s∗|, as weights to

construct a local-linear regression model.

2.10 Monte Carlo within Metropolis algorithm

MCWM algorithm [O’Neill et al., 2000] is an algorithm closely related to

the MCMC-ABC algorithm. The key difference between the two algorithm

is that the MCWM algorithm uses data augmentation and importance sam-

pling algorithm to approximate the likelihood π
(
S(x∗)|θ

)
, which is otherwise

difficult to calculate. Let Y denote some latent random variable, such that

π
(
S(x∗)

∣∣y,θ) is easily computable for some value of Y . Probability theory

tells us that:

π
(
S(x∗)

∣∣θ) =

∫
∀y
π
(
S(x∗)

∣∣y,θ)π(y∣∣θ)dy.
If π
(
S(x∗)

∣∣y,θ) is computable for any Y , then the estimation of π
(
S(x∗)

∣∣θ)
can be achieved by applying Monte Carlo integration. If π

(
S(x∗)

∣∣y,θ) is
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only computable for a specific set of Y , then we can use the importance

sampling algorithm to ensure that we only sample from these computable

values. Given θ, importance sampling algorithm allows to us to estimate the

likelihood as below:

̂π
(
S(x∗)

∣∣θ) =
1

N

N∑
i=1

π
(
S(x∗)

∣∣yi,θ)π(yi∣∣θ)
r(yi|θ)

(2.5)

where r(y), is the density function of the importance sampling proposal

distribution with respect to y. In some cases, by choosing the proposal

distribution carefully, we can ensure that π
(
S(x∗)

∣∣yi,θ) = 1. The quantity
π(yi|θ)
r(yi|θ)

is the importance sampling weight, which is also the measurement

of the amount of “steering”. The closer the importance sampling weight is

to 1, the less the steering. This idea of data augmentation and importance

sampling play a crucial role in this thesis, and we will explore this further in

Chapter 3. Below is the MCWM algorithm.

Algorithm 8 (MCWM).

1. Let q(θ,θ′) be the proposal distribution. q(θ,θ′) gives the

density of moving from θ to θ′

2. Initiate θ1 with an arbitrary number, and ideally from the

posterior distribution if possible.

3. Propose a move from θi to θ′ according to q(θi,θ
′)

4. Generate data {x′1, . . . ,x′N} from r(y|θ′).
5. Calculate ̂π

(
S(x∗)

∣∣θi) and ̂π
(
S(x∗)

∣∣θ′) according to (2.5).

6. Set θi+1 = θ′ with probability

min

1,
q(θ′,θi)π(θ′) ̂π

(
S(x∗)

∣∣θ′)
q(θi,θ′)π(θi)

̂π
(
S(x∗)

∣∣θi)
, or else θi+1 = θi.

7. Repeat 3. to 6. until desired sample size is reached.

Often steps 4. and 5. are done as one single step because ̂π
(
S(x∗)

∣∣θi) and

̂π
(
S(x∗)

∣∣θ′) need to be calculated iteratively.

Theoretical properties of the MCWM are well studied in [Andrieu and Roberts,

2009, Medina-Aguayo et al., 2015, Alquier et al., 2016]. The MCWM algo-
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rithm is also referred to as the noisy MH algorithm in [Medina-Aguayo et al.,

2015]. Because both ̂π
(
S(x∗)

∣∣θi) and ̂π
(
S(x∗)

∣∣θ′) are re-estimated at each

iteration, which means that they are independently samples between itera-

tions, the resulting Markov chain is still {θ1,θ2,θ3, . . .}. However, the target

distribution of the MCWM, when exists, is

π(θ) ̂π
(
S(x∗)

∣∣θ),
i.e. the target invariant density is an approximation of the posterior up to

a constant proportionality. An appropriate choice of the importance sam-

pling distribution is required for MCWM to inherent the ergodicity and the

detailed balance and therefore to have an invariant distribution, see [Medina-

Aguayo et al., 2015] for details. Next, we will look at another closely related

algorithm, Grouped Independence Metropolis Hastings algorithm.

2.11 Grouped independence Metropolis Hast-

ings algorithm

The GIMH algorithm is firstly introduced in [Beaumont, 2003]. Below is the

general GIMH algorithm:
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Algorithm 9 (GIMH).

1. Let q(θ,θ′) be the proposal distribution. q(θ,θ′) gives the

density of moving from θ to θ′

2. Initiate θ1 with an arbitrary number, and ideally from the

posterior distribution if possible. Calculate ̂π
(
S(x∗)

∣∣θ) ac-

cording to (2.5).

3. Propose a move from θi to θ′ according to q(θi,θ
′)

4. Generate data {x′1, . . . ,x′N} from r(x|θ′).
5. Calculate ̂π

(
S(x∗)

∣∣θ′) according to (2.5).

6. Set θi+1 = θ′ and ̂π
(
S(x∗)

∣∣θi) = ̂π
(
S(x∗)

∣∣θ′) with proba-

bility min

1,
q(θ′,θi)π(θ′) ̂π

(
S(x∗)

∣∣θ′)
q(θi,θ′)π(θi)

̂π
(
S(x∗)

∣∣θi)
, or else set θi+1 =

θi and ̂π
(
S(x∗)

∣∣θi+1

)
= ̂π

(
S(x∗)

∣∣θi).
7. Repeat 3. to 6. until desired sample size is reached.

In MCWM, ̂π
(
S(x∗)

∣∣θ) and ̂π
(
S(x∗)

∣∣θ′) are calculated using new {x′1, . . . ,x′N}
at each iteration; in the GIMH algorithm, ̂π

(
S(x∗)

∣∣θi) is inherited from

the previous iteration. If θ′ is accepted, then we set ̂π
(
S(x∗)

∣∣θi+1

)
=

̂π
(
S(x∗)

∣∣θ′), otherwise ̂π
(
S(x∗)

∣∣θi+1

)
= ̂π

(
S(x∗)

∣∣θi). This give a clear

advantage of GIMH over MCWM is the computation time, because the like-

lihood approximation step is usually the most computationally intensive.

Both MCWM and GIMH are special cases of pseudo-marginal methods.GIMH

have been studied in some depth usually under the umbrella of pseudo

marginal methods, see [Andrieu and Vihola, 2014, Andrieu and Roberts,

2009, Andrieu et al., 2015, Beaumont, 2003]. For notation simplicity, we let

wi = ̂π
(
S(x∗)

∣∣θi). Because in GIMH we recycle wi between iterations, the

resulting Markov chain is in the pairs of {θi, wi} for i = 1, 2, 3, . . .. The

remarkable property of GIMH is that the target invariant distribution is in

fact the exact posterior, provided that ̂π
(
S(x∗)

∣∣θ) is an unbiased and non-

negative estimator of the likelihood, see [Andrieu and Roberts, 2009]. The

GIMH algorithm is computationally advantageous, but vulnerable to being
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stuck, see [Medina-Aguayo et al., 2015]. In practice, often more computation

power are given to sampling through θ’s than estimating wi at a particular

θ, which means that the estimation can have a large Monte Carlo error. If

by chance that an wi is large, then the algorithm is very likely to reject most

most θ’s afterwards, and therefore the Markov chain gets stuck in one place.

However, this is less of a problem in MCWM because at each iteration wi

and w′ are calculated afresh.
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Chapter 3

Data conditioned simulation

methodology

In this chapter we introduce the core idea of the thesis, data conditioned

simulation. Most of the ABC algorithms discussed so far have their focus

on either the exploration of the parameter space or the acceptance criterion

stage (Stages 1 and 3 in Section 2.4). Here we explore a selective approach to

the likelihood simulation stage (Stage 2). In particular, we control the simu-

lation of the likelihood dynamically depending on the data sampled so that

we can steer the sampled data to closely match the observed data. We first

introduce what we term, the data conditioned simulation. We then introduce

the data conditioned ABC (dcABC) algorithm, which is in essence the rsABC

algorithm in Section 2.3, but modified to incorporate the data conditioned

simulation. Two toy examples are used to illustrate the data conditioned

simulation and dcABC algorithm in practice. Three applications of the algo-

rithm in a homogeneous mixing SIR epidemic model, a time-inhomogeneous

Markov model, and a stochastic population model, are discussed later in

Chapters 4, 5 and 6 respectively.
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3.1 Data conditioned simulation

The data conditioned simulation is a method of reaching an estimate for

the likelihood through steered simulation. We steer the simulation to ensure

that the outcome of the simulation matches closely, if not exactly, with the

observed data through the application of data augmentation and importance

sampling. Let x∗ denote some observed data from a model parameterised by

θ with an intractable likelihood π(x∗|θ).

Suppose that there exists some latent random variables Y with density

π(y|θ), such that if we have a realisation y from Y , then π(x∗|y,θ) is

tractable. This allows us to apply the data augmentation algorithm:

π
(
x∗|θ

)
=

∫
π
(
x∗|y,θ

)
π(y|θ)dy (3.1)

Applying Monte Carlo integration, (3.1) can be approximated by

1

k

k∑
i=1

π
(
x∗|yi,θ

)
, (3.2)

where k is some positive integer. As k →∞, (3.2) converges to π
(
x∗|θ

)
.

The simulation step in EBC and rsABC algorithm can be seen as a special

case of this framework, where we treat the outcome of the model under

consideration as the “latent” variable. Given θ, we simulate some data, y,

from the model, then π
(
x∗|y,θ

)
= 1{y=x∗}. 1{y=x∗} is an indicator function

such that if y = x∗ then it returns 1, otherwise 0. We can do better than

waiting for a match between y and x∗ by adding an importance sampling

step which ensures a match and therefore that 1{y=x∗} is always 1.

The importance sampling step added here is to ensure that when we simulate

from the model, we only simulate from the region where the simulated data

matches the observed data. Suppose that we can find such a proposal dis-

tribution for the importance sampling. We denote this proposal distribution
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as q(y|x∗,θ), then:

π
(
x∗|θ

)
=

∫
π
(
x∗|y,θ

)
π(y|θ)dy

=

∫
π
(
x∗|y,θ

) π(y|θ)

q
(
y|x∗,θ

)q(y|x∗,θ)dy
=

∫
1× π(y|θ)

q
(
y|x∗,θ

)q(y|x∗,θ)dy. (3.3)

Again, by Monte Carlo integration, we can approximate (3.3) by

1

k

k∑
i=1

π(yi|θ)

q
(
yi|x∗,θ

) , (3.4)

where k is some positive integer.

q
(
yi|x∗,θ

)
is essentially the truncated density of π(y|θ) over a smaller re-

gion. It is the flexibility in the choice of π(y|θ) and the definition of the trun-

cated region that allows us to “steer” the simulation to match the observed

data and perform data conditioned simulation. The problem of choosing

π(y|θ) and the truncated region is problem specific and it will be discussed

in detail for each case. The likelihood estimation can be calculated using

(3.5). The same argument can be applied when we substitute the raw ob-

served data, x∗, with some summary statistics S(x∗), and therefore the

likelihood of the summary statistics can be estimated using the following:

π
(
S(x∗)|θ

)
=

1

k

k∑
i=1

π(yi|θ)

q
(
yi|S(x∗),θ

) . (3.5)

Even though for large k, we can achieve a better likelihood estimate, in

practice, often k is taken to be 1.
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3.2 Data conditioned ABC (dcABC) Algo-

rithm

Let x∗ denote some observed data from a model parameterised by θ with an

intractable likelihood π(x∗|θ). The augmented random variable Y is defined

as in section 3.1. We wish to estimate the posterior distribution π(θ|x∗). The

dcABC algorithm produces a weighted sample from the posterior distribu-

tion, which we can use to estimate posterior statistics using a weighted mean.

We now use the data conditioned likelihood estimation to help us define a

generic dcABC algorithm below.

Algorithm 10 (dcABC algorithm).

1. Set i = 1.

2. Sample θi from the prior π(θ).

3. Sample k y’s from Y |θi,S(x∗), the model sample space

which satisfies the summary statistics.

4. Let pi =
1

k

k∑
j=1

π(yj|θi)
q
(
yj |S(x∗),θi

) .

5. Record (θi, pi).

6. Increment i and repeat 2. to 5. until desired number of sam-

ples.

The weighted sample is used to estimate statistics of interest using a weighted

mean. For example, let λΦ = Eθ|x∗
[
Φ(θ)

]
and var(λΦ) is finite, then we

estimate λΦ by

λ̂Φ =

∑m
i=1 Φ(θi)pi∑m

i=1 pi
. (3.6)

We will show that the weighted mean yields a consistent estimator for the

statistic of interest with respect to the posterior distribution. Consider
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Eθ|x∗
[
Φ(θ)

]
:

Eθ|x∗ [Φ(θ)] =

∫
Φ(θ)π(θ|x∗)dθ

=

∫
Φ(θ)

π(x∗|θ)π(θ)

π(x∗)
dθ

=

∫
Φ(θ)π(x∗|θ)π(θ)dθ∫
π(x∗|θ)π(θ)dθ

=
Eθ
[
Φ(θ)π(x∗|θ)

]
Eθ
[
π(x∗|θ)

] . (3.7)

Returning to (3.6), we multiply both numerator and denominator of (3.6) by
1
m

, where m is the sample size, we have

λ̂Φ =
1
m

∑m
i=1 Φ(θi)pi

1
m

∑m
i=1 pi

. (3.8)

We want to establish that the numerator and the denominator of (3.8) are

unbiased and consistent estimators of the numerator and the denominator of

(3.7) respectively.

For the unbiasedness of the numberator, we look at the expectation of the

numerator of the weighted mean. Since θi’s are identically independently

distributed, we have Eθ
[
Φ(θ1)p1

]
= Eθ

[
Φ(θ2)p2

]
= . . . = Eθ

[
Φ(θm)pm

]
.

From section 3.1, we know that pi ≈ π(x∗|θi), and therefore:

Eθ
[

1

m

m∑
i=1

Φ(θi)pi

]
= Eθ

[
Φ(θ1)π(x∗|θ1)

]
= Eθ

[
Φ(θ)π(x∗|θ)

]
.

The above demonstrates that the numerator of the weighted mean is an

unbiased estimator.
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For consistency, we will look at the variance,

var

(
1

m

m∑
i=1

Φ(θi)pi

)
=

1

m2

m∑
i=1

var
(
Φ(θi)pi

)
=

1

m
var
(
Φ(θ1)p1

)
=

1

m

(
E
[
Φ(θ1)2p2

1

]
− E

[
Φ(θ1)p1

]2)
.

Then since var(λΦ) is assumed finite, we have

1

m

(
E
[
Φ(θ1)2p2

1

]
− E

[
Φ(θ1)p1

]2)→ 0 as m→∞.

⇒var
(

1

m

m∑
i=1

Φ(θi)pi

)
→ 0 as m→∞.

That means 1
m

∑m
i=1 Φ(θi)pi is a consistent (and unbiased) estimator of the

numerator in (3.7). We will treat 1
m

∑m
1 pi similarly. Again, we first look at

the expected value of the denominator:

Eθ
[

1

m

m∑
i=1

pi

]
=Eθ[p1]

=Eθ
[
π(x∗)|θ

]
.

i.e. the denominator is an unbiased estimator of π(x∗)|θ. Next, we will

examine the variance of the denominator:

var

(
1

m

m∑
1

pi

)
=

1

m2

m∑
i=1

var(pi)

=
1

m
var(p1)

Since p1 ∈ [0, 1], var(p1) is also bounded and therefore:

1

m
var(p1)→ 0 as m→∞

⇒var
(

1

m

m∑
i=1

pi

)
→ 0 as m→∞.
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1
m

∑m
1 pi is therefore a consistent (and unbiased) estimator of Eθ

[
π(x∗|θ)

]
.

Hence:

1

m

m∑
1

Φ(θi)pi

1

m

m∑
i

pi

=

m∑
i

Φ(θi)pi

m∑
i

pi

→
Eθ
[
Φ(θ)π(x∗|θ)

]
Eθ
[
π(x∗|θ)

] as m→∞

= Eθ|x∗
[
Φ(θ)

]
by (3.7)

In order to sample from Y |θi,S(x∗) so that it matches the observed data, we

need to be able to find the appropriate proposal distribution q(·). We were

able to find the appropriate q(·), so that π
(
S(x∗)

∣∣y,θ) = 1 for all the ex-

amples in this thesis. However, it is possible that the augmented data allows

us to calculate π
(
S(x∗)

∣∣y,θ) explicitly, see [Neal and Huang, 2015]. The

link between the steering mechanism and the importance sampling proposal

distribution is demonstrated in sections 3.4.2 and 3.3.2 with relatively simple

proposal distributions. The idea is easily generalised to accommodate for a

more complex proposal distribution. We also see that the total amount of

steering is quantified by the importance sampling weight. The exact mecha-

nism of steering the simulation is problem dependent, and varies greatly from

problem to problem. However, the general approach is to use the conditional

distribution of the underlying model, for which, sometimes it involves in-

troducing further latent variables to the model. In practice, because of the

nature of the conditioning we placed, the conditional distributions used are

the truncated versions of the unconditional distributions. This will become

apparent in the toy examples. Steps 3. and 4. are often one single step as the

sample of y from Y |θi,S(x∗) are done iteratively. We can further generalise

the algorithm by sampling θi from a probability densityr(θ) other than the

prior with attached weight π(θ)
r(θ)

at Step 2.
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3.3 Example 1: Poisson distribution

Here we revisit the toy example in Section 2.2.3 but modifying the algorithm

to fit the dcABC framework. This is an example where the likelihood can be

calculated easily without requiring a data augmentation step, but it is useful

to demonstrate the idea of the weighted samples of the posterior distribu-

tion. Consider a data set, x∗, consisting of 10 observations from a Poisson

distribution, Poisson(θ∗), with θ∗ = 5.

Given that:

x∗ = {2, 3, 5, 6, 7, 7, 7, 8, 9, 12}

Suppose θ has the prior distribution Γ(1, 0.1).

3.3.1 Data condition simulation

Although the likelihood can be calculated directly here, we can still imple-

ment the data conditioned simulation. Given any θ, the likelihood can be

calculated as in section 2.3:

P(x = x∗|θ) =
10!

3!

10∏
i=1

P(xi = x∗i |θ)

=
10!

3!

θ
∑10
i=1 x

∗
i e−10θ∏10

i=1 x
∗
i !

.

We can use this to compare the likelihoods estimate from the data condi-

tioned simulation.

In order to implement the data conditioned simulation, we need to decide

on two things: Y the data to be augmented, and q(y|x∗, θ) the importance

proposal density. In this scenario, Y is set to be the output of the model

itself, which is 10 Poisson realisations. We want to design q(y|x∗, θ) such
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that we can ensure that y = x∗. To achieve this, we will utilise a series of

truncated Poisson distributions.

We start by defining regions of importance, which we will restrict the sam-

pling over these “important” region only. Let A1 = {2, 3, 5, 6, 7, 8, 9, 12}, a

set contains only unique members of x∗, then Y1|A1 ∼ Poisson(θ)|Y1 ∈ A1

and the corresponding density function is defined as:

fY1|A1(y) =


θye−θ

y!∑
∀z∈A1

θze−θ

z!

if y ∈ A1

0 otherwise

where z is a dummy variable for summation.

Let Ai denote subsequent importance region, then Ai = x∗ \ {y1, . . . , yi−1}
and Yi|Ai ∼ Poisson(θ)|Yi ∈ Ai. We can now write down the importance

proposal density as below:

q(y|x∗, θ) =
10∏
i=1

fYi|Ai(yi).

Using (3.3) setting k = 1, we can write down the data conditioned likelihood

estimate as:

π
(
x∗|θ

)
=

10∏
i=1

∑
∀x∈Ai

θxe−θ

x!
, (3.9)

i.e. the product of the normalising factors of the truncated Poisson distribu-

tions.

The data conditioned simulation is now straightforward. There are 10 ob-

servations in total, and therefore Yi’s are defined for i = 1, . . . , 10. The data

conditioned simulation is as follow:
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Algorithm 11 (Data conditioned simulation for the Poisson example).

1. For i = 1, . . . , 10.

2. Sample a yi from Poisson(θ)|Yi ∈ Ai.
3. Calculate the likelihood estimate using (3.9).

4. Repeat steps 1. to 3. k times.

5. For the data conditioned simulation estimate, we simply take

the mean of the k estimates.

Figure 3.1 show a comparison between the true likelihood and the data con-

ditioned likelihood estimates. The figure is based on 100 θ’s drawn from

U(4, 10), and k = 1, 50, 250, 500. The uniform distribution is used because it

allows to compare the estimate evenly across the parameter space, whereas

using the Gamma distribution will produce a more heavy tailed sample of θ’s.

We can observe that as k increases, the data conditioned estimate gets closer

to the true likelihood with decreasing variability. Even though at k = 1 the

data conditioned estimate does not resemble the true likelihood, the data

conditioned estimates place most of the weights at the desired area (between

5 - 8). This allows us to still use the data conditioned estimates as weights

when making inference later.
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Figure 3.1: Comparison between the real likelihood and the data conditioned

likelihood estimates.
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3.3.2 dcABC algorithm

Armed with the data conditioned simulation in section 3.3.1, the dcABC

algorithm is straightforward.
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Algorithm 12 (dcABC algorithm with the full observed data).

1. Set i = 1.

2. Sample a θi from Γ(1, 0.1).

3. Calculate pi, the likelihood estimate, using algorithm 11.

4. Record (θi, pi).

5. If i < m, increment i by 1 and go to step 2, where m is the

desired sample size.

Since we used the raw data in the data conditioned simulation with no toler-

ance for discrepency, the resulting algorithm gives a sample from the exact

posterior distribution rather than the approximate posterior distribution. We

can write down the posterior distribution as follow:

π(θ|x∗) = Γ

(
1 +

10∑
i=1

xi, 0.1 + 10

)

= Γ

(
67, 10.1

)
.

3.4 Example 2: exponential distribution

The next example we will look at is a set of observations from an exponential

distribution. We use exponential distribution to demonstrate how the data

conditioned simulation is adapted to continuous random variables. We will

also be using the sufficient statistic of the exponential distribution parameter

in this example. Consider x∗, a set of identically independently observed

data from an exponentially distributed random variable X ∼ Exp(θ∗), with

θ∗ = 1. We wish to estimate θ given x∗.

Suppose x∗ = {1.5334, 0.5060, 0.6447, 1.0254, 0.5944,

2.3562, 0.9453, 1.0464, 0.1113, 0.0440}, are 10 samples drawn from Exp(1).

For the exponential distribution, we can identify the sufficient statistic to
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be T (x∗) =
∑10

i=1 x
∗
i . Let t∗ denote the sufficient statistic, and therefore

t∗ = 8.8071. We will follow a similar structure in this example to that in

the section 3.3.2 and demonstrate how we can utilise the sufficient statistics

in the data conditioned simulation. For which, we will first look at the data

conditioned simulation to estimate the likelihood, and then utilise that to

help us define the dcABC algorithm for the exponential model.

3.4.1 Data conditioned simulation

The aim for the data conditioned simulation for this example is to produce

weighted samples such that they have the same sufficient statistic as x∗. We

know that the sufficient statistic of an exponential distribution is the sum of

all observations. A similar process to that used in section 3.3.1 is used here.

For the data augmentation, we set the augmented data, Y to be output

from the model itself as before. For the importance regions, we start by

letting A1 =
∑10

i=1 x
∗
i = 8.8071 and given any θ, Y1|A1 ∼ Exp(θ)|Y1 ≤ A1.

Exp(θ)|Y1 ≤ A1 is the truncated exponential distribution. Let Z ∼ Exp(θ),

we define qi = P(z ≤ Ai) = 1 − e−θAi . Then the density function of the

conditioned Yi’s is as follow:

fYi|Ai(y) =


θe−θy

qi
if y ≤ A1

0 otherwise

.

For i = 2, . . . , 9, we letAi = 8.8071−
∑i−1

j=1 Yj, and hence Yi|Ai ∼ Exp(θ)|Yi ≤
Ai. For the last term i = 10, a different treatment is required because once

Y1, . . . , Y9 are sampled, then Y10 is fully determined. For i = 10, A10 is

defined the same way as before, but in order to have the desired sufficient

statistic we must have Y10 = A10. Therefore, Y10|A10, θ is in fact a determin-

57



istic distribution, which has the density function:

fY10|A10(y) =

1 if y10 = A10

0 otherwise
.

And therefore (3.5) for the exponential example is as follow:

π(Y |θ)
π(Y |T (x∗), θ)

=
π(Y1|θ)

π(Y1|T (x∗), θ)
. . .

π(Y9|Y1, . . . , Y8, θ)

π(Y9|Y1, . . . , Y8, T (x∗), θ)

π(Y10|Y1, . . . , Y9, θ)

π(Y10|Y1, . . . , Y9, T (x∗), θ)

=
π(Y1|θ)

π(Y1|A1, θ)
. . .

π(Y9|θ)
π(Y9|A9, θ)

π(Y10|θ)
π(Y10|A10, θ)

=
9∏
i=1

π(Yi|θ)
π(Yi|Ai, θ)

× π(Y10|θ)
π(Y10|A10, θ)

=
9∏
i=1

θe−θYi

θe−θYi
qi

× π(Y10|θ)
π(Y10|A10, θ)

=
9∏
i=1

qi × θe−θ(T (x∗)−
∑9
j=1 Yj). (3.10)

Following from the above, the data conditioned algorithm is simple.

Algorithm 13 (Data conditioned simulation for the exponential example).

1. For i = 1, . . . , 9, sample a yi from Exp(θ)|Yi ≤ Ai, and calcu-

late qi.

2. For i = 10, set y10 = A10, and let q10 = π(Y10 = A10|θ).
3. Calculate the likelihood estimate using

∏10
j=1 qj

4. Repeat steps 1. to 3. k times.

5. For the data conditioned simulation estimate, we simply take

the mean of the k estimates.

We will now see how the data conditioned simulation estimates compare with

the true likelihood. Utilise the fact that sum of identically independently
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distributed exponential random variables has a gamma distribution [Feller,

1957, Chapter 1], we can write down the likelihood for sufficient statistic

given θ:
10∑
i=1

Xi ∼ Γ(10, θ−1),

and therefore the likelihood is:

π
(
T (x∗), θ

)
=

θ10

Γ(10)
T (x∗)9e−θT (x∗).

Figure 3.2 show the likelihood estimates of the data conditioned simulation

and the true likelihood for k = 1, 50, 250, 500. It is apparent that as k in-

creases, the two estimates match more closely. Although, it appears that the

data conditioned estimates has a slightly heavier tail than the true likelihood.
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Figure 3.2: Comparison between the real likelihood and the data conditioned

likelihood estimates.
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3.4.2 dcABC algoritm

The dcABC algorithm for the exponential distribution example is very sim-

ilar to the one in section 3.3.2. The main difference is in step 3., where the

likelihood estimate is calculated using algorithm 13. We choose to use the

same prior distribution, Γ(1, 0.1), because the conjugate prior of an exponen-
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tial distribution is also the Gamma distribution. It is therefore the natural

choice for the prior. For purpose of demonstrating the effectiveness of the

algorithm, we want to choose a prior so that the corresponding posterior has

a mean that is fairly far from the true value. We let θ ∼ Γ(1, 0.1), where the

parameters are the shape parameter and rate parameter respectively. The

corresponding posterior distribution, π(x∗|θ∗), is Γ
(

11, 0.1+
∑10

i=1 x
∗
i

)
. Note

that the posterior distribution for the exponential distribution has a different

format to the one for the Poisson distribution.

Algorithm 14 (dcABC algorithm for the exponential distribution example).

1. Set i = 1.

2. Sample a θi from Γ(1, 0.1).

3. Calculate pi, the likelihood estimate, using algorithm 11.

4. Record (θi, pi).

5. If i < m, increment i by 1 and go to step 2, where m is the

desired sample size.

3.5 A note on practical applications

Both examples in this chapter are chosen for the illustrative purpose. In both

cases, the data conditioned estimates of the likelihood are in the magnitude

of 10−5 and 10−1. As the size of data increases or the complexity of the

model increases, the data conditioned estimates quickly decreases to the lower

accuracy limit of the system. This could be a problem because in which case,

all estimates are 0. Since we are considering the data conditioned estimates

as weights, one solution is to apply a constant factor to each estimate, which

we have done in chapters 4, 5, and 6. Applying a constant factor does not

alter the outcome of the weighted mean calculation. However, if one were

overly generous with the factor, then we are soon faced with reaching the

upper accuracy limit of the system. We will discuss this further in chapter

7.
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Chapter 4

SIR Model

4.1 Introduction

In this chapter we will apply the dcABC algorithm to a homogeneously mix-

ing SIR epidemic model. The data of interest are the final size from a small-

pox outbreak in Abakiliki, Nigeria in 1967. It is a well studied outbreak

report [Thompson et al., 1968] from the epidemic literatures. For example

see [Bailey, 1975, page 125] and [Neal, 2012]. It is worth noting that the final

size of the epidemic is a sufficient statistic and therefore the algorithm will

produce a parameter estimates from the exact posterior distribution rather

than an approximation. The study of the SIR model in this chapter forms

part of [Neal and Huang, 2015] Section 3.

We start with an introduction to the homogeneous mixing SIR epidemic

model (Section 4.2). This is followed by the dcABC algorithm devised for

analysing the SIR model (Section 4.3). Finally we will compare the results

of a number of different ABC algorithms to demonstrate the benefits of the

dcABC algorithm on the smallpox data (Section 4.3.4).
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4.2 Model description

The model we will be investigating here is one of the simplest epidemic mod-

els, the homogeneously mixing SIR model. It has the following properties:

• The population is assumed to be closed. This means that no indi-

vidual can enter (e.g. births or immigration) or leave (e.g. death or

emigration).

• Each individual can only be in one of the three states: susceptible,

infectious, or recovered.

• The status of each individual can only move in one direction from sus-

ceptible to infectious and to recovered. Once an individual is recovered,

the individual stays completely immune throughout the remainder of

the epidemic.

• We assume that a susceptible individual becomes immediately infec-

tious when they come into contact with an infectious individual. Such

an assumption does not affect the validity of our analysis since we are

focusing on the final size data. As the final size data does not pro-

vide any information about the latent period (exposed period), we are

unable to distinguish between an SIR and SEIR (susceptible, exposed,

infectious, recovered) model, see [Ludwig, 1975].

• Every individual is equally likely to come into contact with every other

(homogeneous mixing).

• Each individual stays infectious for a pre-determined period of time,

which is called the infectious period. Infectious periods may differ be-

tween individuals but are assumed to be independently and identically

distributed.

• Throughout this chapter we assume that at the beginning of the epi-

demic, there is only one infectious individual. This work can easily be

generalised to multiple initial infectious individuals.
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• We assume that individuals whilst infectious make contact at the points

of a homogeneous Poisson point process. Any contact made during the

infectious period is an infectious contact. A consequence of that is the

number of infectious contacts made for a given length of the infectious

period is Poisson distributed. If the recipient is in the susceptible state,

then they will become infectious, and if the recipient is either infectious

or recovered, then the contact has no effect on the recipient.

• The final size of the epidemic is the total number of individuals infected

during the course of the epidemic. This is the total number of recovered

individuals at the end of the epidemic when there are no more infectives

remaining in the population.

For the epidemic model described above, the final size of the data can be

simulated as follow. We label the initial infectious individual 1, and the

rest of the population 2, . . . , N . Then the kth individual is characterised by

(Ik, ηk), where Ik is the infectious period should k become infected, and ηk

is the history of infectious contacts made by k during its infectious period

respectively. We are free to arbitrarily choose any Ik ≥ 0. ηk represents a

Poisson point process with rate θ. We will illustrate the simulation method

using the General Stochastic epidemic model from [Bailey, 1975], which as-

sumes an Exponentially distributed infectious period. Note that, we cannot

distinguish between multiplying the infectious rate by a constant factor c > 0

and dividing the infectious period by the same constant factor, and therefore

we assume without loss of generality the infectious period is distributed as

Exp(1). Given the infectious rate θ, let Xk denote the total number of infec-

tious contacts made by the kth individual during its infectious period, then

Xk ∼ Poisson(θIk) and E[Xk] = θE[Ik] = θ. Thus θ represents the basic

reproduction number. The basic reproduction number of an epidemic is de-

fined to be the average number of secondary infections made by one infectious

individual in a completely susceptible population, see [Dietz, 1993].

Suppose that there are currently N − l susceptible individuals in the pop-

ulation, then the probability that an infectious contact is made with a sus-
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ceptible individual is N−l
N

. Considering the population as a whole, the total

number of infectious contacts from the lth individual being infected to the

l + 1th individual being infected follows a geometric distribution with suc-

cess probability N−l
N

. Let Gl ∼ Geometric(N−l
N

) for l ∈ (1, . . . , N − 1) and

GN =∞. The final size, M , of the epidemic is given by:

M = min

{
m ≥ 1;

m∑
k=1

Xk <
m∑
l=1

Gl

}
(4.1)

An alternative construction for the above epidemic model is described in

[Sellke, 1983]. The Selke construction gives us a more convenient frame-

work to implement the dcABC algorithm. This alternative construction is

also used in [Neal, 2012] for the purpose of Bayesian analysis, and we will

adopt the same notation here. Under this construction, the ith individual is

characterised by (Ii, Ti), an infectious period and an infectious threshold (or

resistance to infection) respectively. Ii is defined the same way as before. The

Ti for all i ∈ {1, . . . , N} are independently and identically distributed and

follow an Exp(1/N) distribution. Individual i becomes infected once the in-

fectious pressure in the population during the course of the epidemic exceeds

Ti. For an infectious individual j, its contribution to the infectious pressure

is θIj, and therefore the total population infectious pressure is
∑

j∈G θIj,

where G denotes the set of all infectious individuals. Hence, individual i

becomes infectious if Ti <
∑

j∈G θIj, and the probability that individual i

avoid infection is P(Ti >
∑

j∈G θIj) = e−θ
∑
j∈G Ij/N .

In the original SIR model construction, let Yji denote the number of infec-

tious contacts made by an infectious individual j with a particular individual,

i, in the population, then Yji ∼ Poisson(
θIj
N

). Hence the probability that an

infectious individual j with infectious period Ij fails to make an infectious

contact with a given individual i is P(Yji = 0) = e(−θIj/N). Then the prob-

ability that a particular individual i avoids all infectious contacts from the

set of infectives G is P(YGi = 0) = e−θ
∑
j∈G Ij/N . Therefore we can conclude

that the two constructions are indeed equivalent for the final size of the data

of the SIR model.
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Under the Sellke construction, suppose that there is only one infectious in-

dividual at the beginning of the process, we can order individuals in in-

creasing order of their infectious threshold, and relabel the population as

{(T̃1 = 0, Ĩ1), . . . , (T̃N , ĨN)}. Then the final size, M , the number of removed

individuals at the end of the infection process satisfies:

M = min

{
m : T̃m+1 > θ

m∑
j=1

Ĩj

}
(4.2)

Note that T̃j is dependent on T̃j−1 in (4.2). We can write, exploiting the

memoryless property of exponential distributions, that T̃i =
∑i−1

j=1 Lj, where

Lj ∼ Exp
(
N−j
N

)
. For the jth threshold, we are looking for the minimum

time of N − j exponentials with mean N and hence Lj. Then:

M = min

{
m :

∑m
j=1 Lj∑m
j=1 Ĩj

> θ

}
(4.3)

The formulation in (4.3) allows us to break up the dependency between T̃j’s

into independently distributed Lj’s. This is important to our implementation

of the dcABC algorithm, as it allows us to simulate the epidemic process

iteratively.

For homogeneous mixing SIR, it is possible to write down the exact likelihood

as a recursive relation, see [Britton, 2010, Ball, 1986]. Let N denote the

population size as before, M denote the final size as before, ι0 denote the

number of infectious individual presented in the population at time 0, δ =

M − ι0, and p
(N−ι0)
δ denote the likelihood of δ individuals infected during the

epidemic excluding the initially infected individuals (ι0). Therefore ι0 can

be any integer between [1,M ], but in this chapter we only consider ι0 = 1; δ

can be any integer between [0,M − ι0]. Then:

p
(N−ι0)
δ =

(
N − ι0
δ

)
L
(

(N − ι0 − δ)θ
N

)ι0+δ

−
δ−1∑
i=0

(
N − ι0 − i
δ − i

)
L
(

(N − ι0 − δ)θ
N

)δ−i
p

(N−ι0)
i , (4.4)
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where L(η) = EI(e−ηI) for η ≥ 0, is the moment generating function of the

infectious period. Let p(M) denote the likelihood of the epidemic having

final size M , then p(M) = p
(N−ι0)
M−ι0 . The challenge in evaluating (4.4) is that

the binomial factor reaches the system accuracy limit (≈ 10308 for R on OSX

10 operating system) for N > 1050 and δ > 500. Also, in order to calculate

p
(N−ι0)
δ , we need to calculate p

(N−ι0)
0 , p

(N−ι0)
1 , . . . , p

(N−ι0)
δ−1 . We will look data

conditioned methods of estimating the likelihood in the next section.

4.3 Algorithm implementation

Four different algorithms will be discussed in this section, namely: rsABC,

dcABC, GIMH, and a data augmentation GIMH.

4.3.1 The rsABC algorithm

We begin by outlining the rsABC algorithm.
Algorithm 15 (rsABC algorithm for the SIR model).

1. Sample a θ from its prior: Exp(1).

2. Simulate Ij ∼ Exp(1) unconditionally for j = 1, . . . , N , where

N is the size of the population.

3. Simulate Lj ∼ Exp(N−j
N

) for j = 1, . . . , N .

4. Determine the final size of the simulated output using equa-

tion (4.3), {I1, . . . , IN}, and {L1, . . . , LN}.
5. If the final size of the simulated output matches the observed

data, then accept θ.

6. Repeat 1. to 5. until a desired number, m, of iterations are

completed.

Note that, we have defined step 6. of the algorithm to be the number of

iterations completed instead of the number of accepted values. Although it
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is a less conventional implementation to the rsABC algorithm, it is useful in

comparing the rsABC algorithm with other algorithms in this section. We

can ensure that all algorithms have the same number of iterations.

The final size of the data is a discrete value random variable and we have

constructed an rsABC algorithm with zero error tolerance and therefore the

above algorithm will allow us to generate a sample from the exact posterior

distribution.

4.3.2 The dcABC algorithm

We start with the dcABC algorithm for the SIR model, and then we will use

a numerical example to demonstrate the algorithm.

Algorithm 16 (dcABC algorithm for the SIR model).

1. Set i = 1

2. Sample θi from its prior: Exp(1).

3. Simulate Ij ∼ Exp(1) unconditionally for j = 1, . . . ,M ,

where M is the size of the infected population.

4. Importance sampling is used to simulate Lj ∼ Exp
(
N−j
N

)
subject to constraints imposed by (4.3) for j = 1, . . . ,M . We

denote the final importance sampling weight as Pi (See section

below for a numerical walk-through).

5. Record (θi, Pi).

6. Increment i and repeat 2. to 5. until desired number of sample

is reached, say m.

Then, E
[
θ
]

or any other statistics of interest, E
[
Φ(θ)

]
, can be estimated

using Φ̂(θ) =
∑m
i=1 PiΦ(θi)∑m

i=1 Pi
.
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A numerical walk-through of the dcABC algorithm

Suppose that the population size N = 10, and the final size of the epidemic

m = 4. Our aim is to simulate an epidemic that will result in a final size of 4

in a population of size 10 for a given θ. There are many ways to achieve this.

We choose to simulate the infectious periods freely from Exp(1) distribution

and then simulate the infectious threshold conditionally given θ and infectious

periods {I1, . . . , I10}.

Utilising (4.3), we want to generate Lj such that
∑m
j=1 Lj∑m
j=1 Ij

< θ for m = 1, . . . , 3

and
∑m
j=1 Lj∑m
j=1 Ij

> θ for m = 4. For the purpose of this algorithm, simulation of

L4 is not necessary, and we will demonstrate why later. For m = 5, . . . , 10,

Li’s are unconstrained and their values are unimportant to the purpose of

the dcABC algorithm. The dcABC algorithm is demonstrated below.
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Algorithm 17 (A numerical walk-through of the dcABC algorithm).

1. Sample a θ from its prior Exp(1), say θ = 0.1245.

2. Generate the infectious periods from the infectious period dis-

tribution Exp(1), say:

{I1, . . . , I10} = {3.2826, 0.6872, 1.5217, 0.6123, 0.1554,

1.0467, 1.1264, 2.1385, 2.6168, 0.4713}

Note that we are free to choose the infectious period distribu-

tion.

3. Sample Lj’s conditioning on θ and {I1, . . . , I10}. By rearrang-

ing (4.3), we can deduce that Lj ∼ Exp(N−j
j

)
∣∣∣θ∑j

k=1 Ii −∑j−1
i=1 Li < θ for j = 1, 2, 3 and Lj ∼ Exp(N−j

j
)
∣∣∣θ∑j

k=1 Ii −∑j−1
i=1 Li > θ for j = 4. We don’t need to consider Lj for

j = 5, . . . , 10 at this step, because they are unconstrained

and therefore the contribution to the final estimate of the

likelihood is of factor 1, i.e. no effect under multiplication.

An example of the simulation is demonstrated below:

1. For j = 1: Sample L1 ∼ Exp(N−1
N

)
∣∣∣L1 < 0.4087. Say

l1 = 0.2614 then p1 = P[L1 < 0.4087] = 0.3078.

2. For j = 2: Sample L2 ∼ Exp(N−2
N

)
∣∣∣L2 < 0.2328. Say

l2 = 0.0199 then p2 = P[L2 < 0.2328] = 0.1699.

3. For j = 3: Sample L3 ∼ Exp(N−3
N

)
∣∣∣L3 < 0.4023. Say

l3 = 0.3921 then p3 = P[L3 < 0.4023] = 0.2454.

4. For j = 4: L4 ∼ Exp(N−4
N

)
∣∣∣L4 > 0.0864. We don’t

need to generate an actual realisation for l4 as the data

simulation ends at this step, and the contribution to the

importance sampling weight is p4 = P[L4 > 0.0864] =

0.9494.

5. The importance sampling weight for the given θ is then

P = Π4
j=1pj = 0.01219.

4. Record the data pair (θ, P ). For a sample of size m, repeat

steps 1. to 3. m times.
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We will next look at the implementation of the GIMH algorithm for the SIR

model.

4.3.3 The GIMH algorithm

Algorithm 18 (GIMH algorithm for the SIR model).

1. An ideal initial value for θ1 is to be drawn from the pos-

terior distribution, and therefore to ensure that we can use

the rsABC algorithm to initialise the first value. This can

be achieved by running the rsABC algorithm until the first

acceptance.

2. Estimate ̂π(x∗|θ1) using steps 3. and 4. of algorithm 16 with

a given importance sampling size, g say.

3. Let θ
′ ∼ |N(θ, σ2)|, then we propose a move from θ to θ

′

by taking a sample from |N(θ, σ2)|. |N(θ, σ2)| is the folded

Normal distribution with mean = θ and variance = σ2.

4. Estimate ̂π(x∗|θ′) using steps 2. and 3. of the dcABC algo-

rithm in Section 4.3.2 with a given importance sampling size,

g say.

5. Set θi+1 = θ
′

and ̂π(x∗|θi+1) = ̂π(x∗|θ′) with probability

min

{
1,
q(θ

′
, θi) ̂π(x∗|θ′)π(θ

′
)

q(θi, θ
′) ̂π(x∗|θi)π(θi)

}
, or else set θi+1 = θi and

̂π(x∗|θi+1) = ̂π(x∗|θi). Note that we do not re-estimate
̂π(x∗|θi) for each iteration, and we simply record it from the

previous iteration. Here, any unbiased estimator of π(x∗|θ)
can be used for π(x∗|θ′) and π(x∗|θi) ([Andrieu and Roberts,

2009]). We use step 3. and 4. of the dcABC algorithm for

their estimations and denoted using the ·̂ sign. π(·) is the

density function of Exp(1).

6. Repeat 3. to 5. m− 1 times for a sample of size m.
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This algorithm is in its core a Metropolis-Hasting random walk algorithm,

with the only difference being that the exact likelihood is replaced with an im-

portance sampling approximation. Since we are able to identify the sufficient

statistics, as the group size, g, increases, the estimation of the likelihood will

better reflect the true likelihood with decreasing variance that is proportional

to 1/g.

Data augmented GIMH algorithm

In the context of earlier GIMH implementation 4.3.3, the infection periods

Ijs are treated as latent variables which are independently and identically

generated for each θi’s. One variation of the GIMH algorithm is adding

an extra layer of data augmentation alternating between updating I and

updating θ. The resulting algorithm is as follow.
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Algorithm 19 (data augmented GIMH algorithm for the SIR model).

1. An ideal initial value for θ1 is to be drawn from the pos-

terior distribution, and therefore to ensure that we can use

the rsABC algorithm to initialise the first value. This can

be achieved by running the rsABC algorithm until the first

acceptance.

2. Initialise I1 by taking N independent samples from their pe-

riod distribution Exp(1).

3. Estimate ̂π(x∗|θ1, I1) using steps 3. and 4. of algorithm 16

with a given importance sampling size, g say.

4. Again, we use the Folded Normal Distribution as the pro-

posal distribution. Let q(θ, θ
′
) = fN(θ,σ2)(θ

′
) be the proposal

distribution. q(θ, θ
′
) gives the density of moving from θ to θ

′
.

5. Propose a move from θ to θ
′

according to q(θ, θ
′
). Again,

we estimate ̂π(x∗|θ′ , Ii) using steps 2. and 3. of the sABC

algorithm with a given importance sampling size, g say.

Set θi+1 = θ
′
and ̂π(x∗|θi+1, Ii) = ̂π(x∗|θ′ , Ii) with probability

min

{
1,
q(θ

′
, θi) ̂π(x∗|θ′ , Ii)π(θ

′
)

q(θi, θ
′) ̂π(x∗|θi, Ii)π(θi)

}
, or else set θi+1 = θi and

̂π(x∗|θi+1, Ii) = ̂π(x∗|θi, Ii).

Proposal I ′ by taking N independent samples from Exp(1).

We chose the proposal distribution to be the same as the prior

distribution so that they would cancel each other out in the

calculation of the acceptance probability and hence saving on

computational.

6. Estimate ̂π(x∗|θi+1, I
′
) as before.

7. Set Ii+1 = I ′ and and ̂π(x∗|θi+1, Ii+1) = ̂π(x∗|θi+1, I
′
) with

probability min

{
1,
π(x∗|θi+1, I

′)

π(x∗|θi+1, Ii)

}
, or else set Ii+1 = Ii and

̂π(x∗|θi+1, Ii+1) = ̂π(x∗|θi+1, Ii).

8. Repeat 4. to 7. m− 1 times for a sample of size m.
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The added variability from the importance sampling makes most of the stud-

ies in choosing the optimal σ2 for the random walk Metropolis inapplicable.

We will be using the effective sample size and the expected squared jumping

distance to help us determine the choice of σ2. In the results section, we will

use σ instead of σ2.

The effective sample size (ESS) of an MCMC output estimates the equivalent

number of independent samples from the chain. Therefore, given the same

number of iterations [Gamerman and Lopes, 2006, p.126], the higher the ESS

the better the efficiency of the algorithm. The effective sample size for an

MCMC output is defined as below:

ESS =
n

1 + 2
∑∞

1 ρk

where n is the size of X and ρk is the autocorrelation at lag k.

The expected square jumping distance (ESJD) is examining the distance

between consecutive jumps. Large ESJD means good mixing of the chain

and large ESJD also indicates small first order autocorrelation and therefore

large ESS. In random walk Metropolis algorithms, ρk is often approximately

ρk1, see [Neal and Roberts, 2008]. The ESJD is defined as below:

ESJD =
1

n− 1

n−1∑
1

(Xi+1 −Xi)
2

4.3.4 Results

In this section, we start with diagnostic analysis of the GIMH algorithm

and the data augmentation GIMH algorithm to support our choice of σ

(standard deviation of the normally distributed proposal distribution) and

group size. Then, we will make a comparative analysis between the four

algorithms discussed in this chapter. Throughout, we also use Exp(1) as the

prior distribution for θ.
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The GIMH algorithm

We start by looking at the effect of groups size and then follow by the effect

of σ. The group sizes tested were 1, 20, 40, 60, 80, 100 with σ = 1, and each

group size was repeated 100 times with burnin set at 10%. The σ values

tested were 0.10, 0.25, 0.40, . . . , 3.70, 3.85, 4.00, and as before, each value is

repeated 100 times with 10% burnin.

Figure 4.1c shows a significant difference between the time taken for group

size of 1 and time taken for the larger group sizes. This is most likely to be

caused by the overhead of function calls. Overall, Figure 4.1 indicates that

group size at around 20 gives the highest ESS per second, which implies that

it is the most time efficient choice, and overall Figure 4.2 show that σ at

around 1 is the most efficient choice as it has the highest ESS per second.
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Figure 4.1: Effects of groups sizes on different aspects of the performance of

the GIMH algorithm.

(a) ESS v.s. group size
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Figure 4.2: Effects of σ on different aspects of the performance of the GIMH

algorithm.

(a) ESJD v.s. σ
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The data augmented GIMH algorithm

Figure 4.3: Effects of groups sizes on different aspects of the performance of

the data augmented GIMH algorithm.

(a) ESS v.s. group size
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Figure 4.4: Effects of σ on different aspects of the performance of the data

augmentated GIMH algorithm.

(a) ESJD v.s. σ
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It can be observed that the data augmented GIMH algorithm favours a slight

different set of group size and σ. Firgure 4.3 shows that group size 1 is the

more efficient, and Figure 4.4 indicates that σ is most efficient at around 0.7.

It is worth noting that even at its best, the data augmented GIMH is almost
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5 times less efficient comparing to the GIMH algorithm measuring by ESS

per second.

The dcABC algorithm

Figure 4.5: Effects of groups sizes on different aspects of the performance of

the dcABC algorithm.
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It is clear from Figure 4.5, that the most efficient group size for the dcABC

algorithm is also at around 20.

Comparison across all algorithms

To achieve a computationally fair comparison, the rsABC algorithm was ran

with 1,000,000 samples, and the dcABC algorithm, the GIMH algorithm

and data-augmentation MCMC are all ran with the condition that sample

size × importance sampling sample size (group size) = 106. For the dcABC

algorithm, we chose the group size to be 20. For the GIMH algorithm, we

used group size 20 and σ = 1. For the data augmented GIMH algorithm, we

used group size 1 and σ = 0.75.

Table 4.1: The mean estimates, effective sample sizes, and computation times

over 100 runs for all algorithms.

rsABC dcABC GIMH daGIMH

E[θ|x∗] 1.1582 1.1626 1.1588 1.1579

ESS 15539 6675.4 4011.0 7477.2

Duration (s) 996.06 1957.4 2037.3 3927.0
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Figure 4.6: Boxplot of 100 estimates from all four algorithms
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From Table 4.1 and Figure 4.6, we can see that all four algorithms give rea-

sonable mean estimate. Although the rsABC is the fastest, the dcABC gives

the most consistent estimates whilst maintaining a reasonable computation

time when comparing to the GIMH algorithm. A somewhat surprising obser-

vation is that the daGIMH algorithm is least consistent and gives estimations

with large variation.

4.4 Chapter Conclusion

The SIR model has served as a good demonstration for the application of

the dcABC algorithm, and provide a useful comparison between the rsABC

algorithm, the dcABC algorithm, and the GIMH algorithm. The dcABC al-
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gorithm has a clear advantage when compared to the other algorithms in the

example. Although the dcABC algorithm is not the fastest, but we can see

that the extra computation time is well spent on giving consistent estimates

with small variation. In order to have a more mathematically objective com-

parison, all algorithms are ran in series, even though the dcABC algorithm

falls under the embarrassingly parallel type of algorithms. Embarrassingly

parallel type of algorithms means that certain part of the algorithm can be

executed independently, see [Foster, 1995]. In the case of dcABC algorithm,

θ’s are sampled independently and therefore the likelihood of each sampled

θ can be estimated independently and simultaneously. Whereas in MCMC

type of algorithms, the dependence of between θ’s means that one would

have to wait for the acceptance/rejection of θ before moving onto the next

iteration. That means, in theory, the efficiency of dcABC is linear depen-

dent on the number of computer available, with the limit of the time taken

to estimate the likelihood of one θ, and it happens when there are as many

computers as the number of θ’s.
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Chapter 5

Time Inhomogeneous Markov

Chain

5.1 Introduction

In this chapter will look at a different class of problem to the one in Chapter

4. In the SIR model, we view the population collectively and model the

entire population at once. Whereas in this chapter, we are using a time

inhomogeneous Markov chain to model individual’s disease progression. It

is in essence a Susceptible - Infectious - Susceptible (SIS) model with time

dependent infectious rate and constant recovery rate.

We start by providing some background knowledge for continuous time Markov

chain and defining the model in Section 5.2, which includes the implementa-

tion of both unconditioned and data conditioned simulation in Section 5.2.4,

and then the implementation of the dcABC algorithm and the GIMH algo-

rithm in Section 5.3. Finally, we conclude our findings in Section 5.4.
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5.2 Model description

5.2.1 Data

The data of interest here was from a longitudinal study of five related diseases

on animals in the Tanga region of Tanzania. The study tested 381 animals

from 81 farms and each was tested between 1 to 11 times for the presence of

five diseases. Our main interest is in one of the five diseases because this is

illustrative of the effect for the other diseases. In our data, each record has

the farm identifier, the animal identifier, age of the animal in days when the

test was carried out, and presence of the disease. There are other covariates

in the study, which can be used for further analysis.

5.2.2 The model

The disease progression can be modelled as a SIS epidemic model. It is

believed that the chance of an animal catching the disease is dependent on its

age, and the chance of an animal recovering from the disease is not dependent

on age, and thus constant over time. Each animal can be in either of the

two states, susceptible or infectious and the status of each animal can switch

between susceptible and infectious multiple times. Each entry in the data set

consists of 4 values: (X0, Xt, t, a0). X0 represents the state of the individual

at the start. Xt represents the state of the individual time t. The state of each

individual can be either 0 or 1. 0 denotes that the individual is susceptible

and 1 denotes that the individual is infectious. t denotes the time interval

between the first observation of the individual and the second observation.

a0 is the age of the animal at the start.

To model the disease progression on an animal, a time-inhomogeneous Markov
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model is proposed with the following infinitesimal generator matrix:

Q(u; β0, β1, ρ) =

( 0 1

0 −eβ0+β1au eβ0+β1au

1 ρ −ρ

)
where 0 indicates susceptible and 1 indicates infectious, and 0→ 1 is called

infection, 1 → 0 is called recovery. au is the age of the subject at time u,

and au = a0 + u. We assume that β0 < 0, β1 > 0, and ρ > 0 are common

parameters shared by all individuals. We are interested in estimating the

values of β0, β1, and ρ from the observed data.

For each animal, we only observe at time 0 and at time t. However, a series

of unobserved infections and recoveries may occur between time 0 and time

t. We are only interested in time when the last of these unobserved event

occurred before t, and we denote this time as s, where 0 < s < t. The reason

for that is because the final status of the individual is fully determined by

what happened at time s.

In order to estimate the parameters using ABC algorithms, data augmented

simulation of the model is required because the last event time, s, is unob-

served. In the next section, we will derive an expression for the time to the

first event in a time inhomogeneous Markov chain which will help us per-

form the data augmentation required and therefore enable us to simulate the

model.

5.2.3 Time to the last event

In this section, we start with a short introduction to continuous time Markov

chain. This is followed by a derivation of the distribution for the time between

the last transition and the final observation. We will show how the distribu-

tion of the holding time in continuous time, time-homogeneous Markov chain

(CTTHMC) can help us to derive the distribution for the time between the

last transition and the final observation, and we follow the work done by
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[Whitt, Amir] for the derivation of the CTTHMC. We then extend this to

binary state continuous time, time-inhomogeneous Markov chain (CTTIMC),

and the general theory of the CTTIMC we follow the work on [Mereacre].

Continuous time Markov chain

The two building blocks of a continuous time Markov chain are the distri-

bution of the holding times in each state and the transition probability of

the embedded Markov chain. The holding time of a continuous time Markov

chain (CTMC) is defined as the amount of time that the Markov chain will

remain in a given state. Suppose that X(0) = x, and let Tx denote the time

that the Markov chain moves away from state x. For the distribution of Tx,

we let a, b ∈ R+ and consider:

P
(
Tx > a+ b

∣∣∣Tx > a
)

= P
(
X(t) = x; t ∈ [0, a+ b]

∣∣∣X(t) = x; t ∈ [0, a]
)

= P
(
X(t) = x; t ∈ [a, a+ b]

∣∣∣X(a) = x
)

(by Markov property)

= P
(
X(t) = x; t ∈ [0, b]

∣∣∣X(0) = x
)

(by time homogeneity)

= P
(
Tx > b

)
We observe that the holding time satisfies the memoryless property and there-

fore that the holding time must be exponentially distributed. We let λ(x)

denote the parameter for the exponential distribution of the holding time of

state x, i.e. Tx ∼ Exp(λ(x)). Tx tells us when the Markov chain is moving

away from state x, but it does not tell us where it is going to. We will look

at this next, which leads us to defining the transition probability of the em-

bedded Markov chain and behaviour of the continuous time Markov chain in

an infinitesimal time interval.
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For y 6= x, we let pxy = P
(
X(Tx) = y

∣∣X(0) = x
)

be the probability of the

chain entering state y after leaving x. We also let λ(x, y) = λ(x)pxy be the

rate for going from state x to state y.

We will examine the behaviour of the chain in an infinitesimal time interval.

For small h > 0, we have:

P(Tx < h) = 1− e−λ(x)h

= λ(x)h+ o(h)

where the o(h) above represents the higher order terms of the Taylor expan-

sion.

An important remark to make here is that from the Markov property of the

continuous time Markov chain, we can deduce that the holding time and the

transition probability of the embedded Markov chain are two independent

random variables, which will become useful in the following. Considering a

small h, for y 6= x:

P
(
X(h) = y

∣∣X(0) = x
)

= P
(
Tx < h,X(Tx) = y

∣∣X(0) = x
)

+ o(h)

= λ(x)hpxy + o(h)

= λ(x, y)h+ o(h)

where the o(h) in the above equation represents the probability of two or more

transitions occurred between the time [0, h]. Therefore λ(x, y) represents

the local rate of transitioning from state x to y. It is easy to show that
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∑
y 6=x λ(x, y) =

∑
y 6=x λ(x)pxy = λ(x). And therefore:

P
(
X(h) = x

∣∣X(0) = x
)

= 1−
∑
y 6=x

P
(
X(h) = y

∣∣X(0) = x
)

= 1−
∑
y 6=x

λ(x, y)h+ o(h)

= 1− λ(x)h+ o(h)as

Equipped with the above, a CTTHMC with transition rate λ(x, y) can be

defined to be a stochastic process X(t) taking values in a finite or countably

infinite state space S satisfying

P
(
X(t+ h) = x

∣∣X(t) = x
)

= 1− λ(x)h+ o(h).

and

P
(
X(t+ h) = y

∣∣X(t) = x
)

= λ(x, y)h+ o(h).

The transition probabilities can be calculated using the equation below:

pxy =
λ(x, y)

λ(x)
=

λ(x, y)∑
y 6=x λ(x, y)

.

We now look at how the local behaviour construction of the CTTHMC re-

lates to the infinitesimal generator matrix, and this is achieved through Kol-

mogorov equations, and in particular the forward equations. Kolmogorov

equations are a set of differential equations developed by Andrei Kolmogorov

to characterise continuous time Markov processes [Norris, 1997] . We begin

by defining the matrix P (t), which has components satisfying:

Pij(t) = P
(
X(t) = j

∣∣X(0) = i
)

for i, j ∈ S, the state space and t > 0.

We further assume that the Markov chain is non-explosive with finite state

space, so that there are no problems with interchanging the order of summa-

tion and limit. For non-explosive, we meant that there is only a finite number
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of transitions in a finite amount of time. The Kolmogorov forward equations

state that P
′
(t) = P (t)Q, where Q is the infinitesimal generating matrix,

P
′
(t) = d

dt
P (t), and P is defined below. We investigate how Pij(t) changes

over time by studying its derivative from first principals conditioning on the

last jump before our time of interest:

P
′

ij(t) = lim
h→0

Pij(t+ h)− Pij(t)
h

= lim
h→0

1

h

(
P
(
X(t+ h) = j

∣∣X(0) = i
)
− P

(
X(t) = j

∣∣X(0) = i
))

= lim
h→0

1

h

(∑
y∈S

P
(
X(t+ h) = j

∣∣X(t) = y,X(0) = i
)
P
(
X(t) = y

∣∣X(0) = i
)

− P
(
X(t) = j

∣∣X(0) = i
))

= lim
h→0

1

h

(
P
(
X(t+ h) = j

∣∣X(t) = j,X(0) = i
)
P
(
X(t) = j

∣∣X(0) = i
)

+
∑
y 6=j

P
(
X(t+ h) = j

∣∣X(t) = y,X(0) = i
)
P
(
X(t) = y

∣∣X(0) = i
)

− P
(
X(t) = j

∣∣X(0) = i
))

= lim
h→0

1

h

((
1− λ(j)h+ o(h)

)
Pij(t) +

∑
y 6=j

(
λ(y, j)h+ o(h)

)
Piy(t)− Pij

)

= lim
h→0

1

h

(
− λ(j)hPij(t) +

∑
y 6=j

λ(y, j)hPij(t) +
∑
y∈S

Piy(t)o(h)
)

=− λ(j)Pij(t) +
∑
y 6=j

Piy(t)λ(y, j)

Note that the non-explosive assumption ensures that∑
y∈S Piy(t)o(h)

h
→ 0 as h→ 0.
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We can now define the infinitesimal generator matrix, Q, as follow:

Qij =

−λ(i), for i = j

λ(i, j), for i 6= j

This allows us to write down the matrix differential equation for P (t):

P
′
(t) = P (t)Q

and we can easily validate the matrix differential equation above by looking

at its components. Using the initial condition that P (0) = I, the identity

matrix, the system of differential equation has the following solution:

P (t) = P (0)etQ = etQ

where etQ is the matrix exponential defined as:

etQ =
∞∑
k=0

tkQk

k!
.

This concludes the derivation for the Kolmogorov forward equations, and we

will now turn to the Kolmogorov backward equations. The Kolmogorov back-

ward equations are a system of equations that satisfy the identity: P
′
(t) =

QP (t), and valid on general Markov processes. There are only subtle differ-

ences between the forward and backward equations. Both sets of equations

start by considering the same problem: finding an expression for Pij(t) =

P
(
X(t) = j

∣∣X(0) = i
)
. The forward equations achieves its solution by con-

sidering the last jump as having occurred between the time [0, t], and the

backward equations achieves its solution by considering the first jump as

having occurred between the time [0, t]. To recover the backward equations,
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suppose J1 is the time of the first jump, and consider:

P
′

ij(t) = lim
h→0

Pij(t+ h)− Pij(t)
h

= lim
h→0

1

h

(∑
k∈S

(
Pik(h)Pkj(t)

)
− Pij(t)

)

= lim
h→0

1

h

(∑
k∈S

(
Pik(h)− δ(i, k)

)
Pkj(t)

)

= lim
h→0

1

h

(∑
k 6=i

(
λ(i, k)h+ o(h)

)
Pkj(t)−

(
λ(i)h+ o(h)

)
Pij(t)

)
=
∑
k 6=i

λ(i, k)Pkj(t)− λ(i)Pij(t)

=QikPkj(t)

We have the Kolmogorov backward equation:

P
′
(t) = QP (t)

where Q is the infinitesimal generating matrix defined as before.

Using the same initial condition as the forward equations case, the backward

equation has the same solution as the forward equations:

P (t) = etQ.

Time to the last event - CTTHMC

We now consider the time to the last event in a continuous time time homo-

geneous binary state Markov chain with non-zeroQ matrix, which echoes the

model proposed in section 5.2.2. Binary state Markov chain makes our ap-

proach of representing the Markov chain with a marked Poisson process easy

to define. The guaranteed reversibility of a binary state Markov chain also
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allows us to translate the first jump time to last event time (to be defined

later). A similar approach can be taken for some special cases of Markov

chains with more than 2 states, but they are beyond the scope of this thesis.

Let X(t) denote the states of a CTTHMC at time t with states {0, 1} and

infinitesimal generator matrix:

QX =

( 0 1

0 −αX αX

1 βX −βX

)

An alternative representation to the two state CTTHMC above is a marked

Poisson point process with events occurring at rate αX + βX . Each point

(event) on the Poisson process has a mark either 1 or 0 with probability
αX

αX+βX
or βX

αX+βX
respectively. Then X(t) denotes the state of the last event

(point) prior to time t. We use the word “event” because in this alternative

representation, an event does not always changes the state of the process.

For example, it is possible that the process was in state 0, and an event

occurred which sets the process to being in state 0 again and therefore no

change takes place.

To show that the Poisson process representation is indeed equivalent to the

CTTHMC, we start by looking at the first jump time. Let T denote the

random variable of the first jump time, then T can be described as below:

T = min{s > 0 : X(s) 6= X(0)}.

Further, let T0 and T1 denote the holding time at state 0 and 1 respectively.

For the two states CTTHMC above, we can rewrite T in terms of T0 and T1:

T = min{T0, T1}.

Given the fact that T0 ∼ Exp(αX) and T1 ∼ Exp(βX), using the property of

exponential distributions, we can write down the distribution of T :

T ∼ Exp(αX + βX).

T tells us when the first jump occurs, and to know where it jumps to, we
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turn to the following probabilities P(T = T0) and P(T = T1).

P
(
T = T0

)
=P
(
T1 > T0

)
=

∫ ∞
0

P
(
T1 > T0

∣∣T0 = t
)
fT0(t)dt

=

∫ ∞
0

P
(
T1 > t

)
fT0(t)dt

=1−
∫ ∞

0

P
(
T1 < t

)
fT0(t)dt

=1−
∫ ∞

0

(
1− e−βX t

)
αXe

−αX tdt

=1−
∫ ∞

0

αXe
−αX tdt−

∫ ∞
0

αXe
−(αX+βX)tdt

=1− 1 +
[ αX
αX + βX

e−(αX + βX)t
]∞

0

=
αX

αX + βX
.

Similarly we can show that P(T = T1) = βX
αX+βX

. Combining the first jump

time and probabilities derived here, we can reconstruct the two-state CT-

THMC without conditioning on the current state. By using the first jump

time, we can imagine the process starts afresh after each jump, and the two

probabilities help us to determine the nature of each jump. To conclude,

this is a stochastic process with exponentially distributed waiting time. The

above process is reversible (see below), so that the distribution of the time

from the start to the first event is the same as the time from the end to

the last event. We will explore another angle of the Poisson process which

relaxes the homogeneous rate assumption, and will allow us to simulate the

time point of the last even between [0, t].
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We check for reversibility of X(t) by solving the following for π:

π1Q1,2 = π2Q2,1

⇒π1αX = π2βX .

Since there are two unknowns (π1, π2), but we can only form 1 equations.

There are infinite many solutions. However, one simple solution would be

that π1 = βX and π2 = αX . Hence we have the reversibility. This allows us

to reverse the Markov chain, and what we derived for the first jump time can

also be used for the last event time. Let SX denote the time point of the last

event on the interval [0, tX ] of the process X(t), where tX denotes the end

time of the process. Let NX(a, b) denote the number of events that occurred

between time interval [a, b]. Then

NX(a, b) ∼ Poisson
(∫ b

a

αX + βXdu
)
.

We observe that P(SX < s) = P(NX(s, tX) = 0). Therefore,

P
(
SX < s

)
=P
(
NX(s, tX) = 0

)
=e−

∫ tX
s (αX+βX)du.

To simulate SX , we use the inversion of the CDF method. Let U ∼ U(0, 1),

and we can obtain a sample of SX by rearranging:

e−
∫ tX
s (αX+βX)du = U.

Further, if we let V ∼ Exp(1). We can again apply inversion of the CDF

method, using e−V
D
= U , i.e. e−V ∼ U(0, 1). Then:

e−
∫ tX
s (αX+βX)du = e−V

⇒
∫ tX

s

αX + βXdu = V

⇒s = tX −
V

αX + βX

We will consider the time inhomogeneous case below.
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Time to the last event - CTTIMC

For the CTTIMC, the idea is similar. We will construct an equivalent Pois-

son process and then analyse it based on properties of the Poisson process.

However, the constructive argument given in the CTTHMC case does not

work here. The time dependence of the infinitesimal generating matrix com-

plicates the process. However, when considering a two-state Markov chain,

we can still find a Poisson process that has the same distribution. Firstly,

we let Y (t) denote the state of a CTTIMC at time t with transition matrix:

QY (t) =

( 0 1

0 −αY (t) αY (t)

1 βY (t) −βY (t)

)

We propose an equivalent marked Poisson process with points (events) oc-

curring at rate αY (t)+βY (t). There are two types of events 1 and 0 and each

happens with probability αY (t)
αY (t)+βY (t)

and βY (t)
αY (t)+βY (t)

respectively. To show

that the type of the last event (mark) in the Poisson process prior to time t

is equivalent to Y (t), we want to show that the rate of the event 0→ 1 and

1 → 0 are αY (t) and βY (t) respectively. We can achieve this by the idea of

thinning. We will look at the case of 0→ 1 transition in particular, and the

other way round can be achieved similarly. The process Z(t) has two states

and the idea of thinning is to look at the process of a particular type of event,

Z(t) = 1 say. Let Z1(t) denote such a process. To construct Z1(t), we simply

let the Z(t) run its course and only accept events such that Z(t) = 1. Then

the rate for Z1(t) is simply
(
αY (t) + βY (t)

) αY (t)
αY (t)+βY (t)

= αY (t), i.e. rate of

events occurring × Probability an event is of type 1. Similarly Z0(t) has rate

βY (t). Given Z(t) = 0, process Z0(t) would promote no change and therefore

Z1(t) dictate when the next transition will happen, which means αY (t) is the

transition rate for 0→ 1. We can do the same for the 1→ 0 transition. We

have shown that process Z(t) and Y (t) have the same distribution.

Let SY denote the time point where the last event occurred for process Y (t),

tY denote the time of the end of the process, and NY (a, b) denote the number
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of events that occurred between time interval [a, b] for b > a > 0. Then

NY (a, b) ∼ Poisson
(∫ b

a

αY (u) + βY (u)du
)
.

We proceed as before, and we have

P
(
SY < s

)
=P
(
NY (s, tY ) = 0

)
=e−

∫ tY
s αY (u)+βY (u)du.

Again, to sample for s, we apply the inversion of the CDF method to simulate

SY . Let V ∼ Exp(1), and we know that e−V ∼ U(0, 1), and therefore to

obtain SY , we rearrange

e−
∫ tY
s αY (u)+βY (u)du = e−V

⇒
∫ tY

s

αY (u) + βY (u)du = V.

To obtain s, we rearrange and solve the above for s. We will see how this

can help us to simulate the desired data in the next section.

5.2.4 Data simulation

We start by looking at the straightforward data simulation based on what we

developed in the previous section, and then we will look at data conditioned

simulation.

Unconditioned data simulation

We recall that each data point consists of 4 values (X0, Xt, t, a0), status

at time 0, status at time t, time elapsed between X0 and Xt, and age at

time 0 respectively. Although in practice, each animal may have their first
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observation taken at different times, we can assume that they all started at

the same time, because we know the age when the first observation is made.

We also recall that the proposed Markov chain has the following infinitesimal

generating matrix:

Q(u; β0, β1, ρ) =

( 0 1

0 −eβ0+β1au eβ0+β1au

1 ρ −ρ

)
.

Given X0, t, a0, α, β, ρ, we want to simulate Xt, which is simply the event

occurred last before time t. Suppose V ∼ Exp(1), consider∫ t

s

(
eβ0+β1(a0+u) + ρ

)
du = V

⇒eβ0+β1a0

β1

(
eβ1t − eβ1s

)
+ ρ(t− s) = V

⇒eβ0+β1a0+β1s

β1

+ ρs =
eβ0+β1a0+β1t

β1

+ ρt− V. (5.1)

The above equation cannot be solved directly, and therefore some form of

numerical method should be employed. We observe that eβ0+β1a0+β1s

β1
+ ρs is

a strictly decreasing as s decreases, and therefore it can only have at most

one solution. We are only interested if the solution is in (0, t), and therefore

a simple binary search will be able to locate the solution to the desired

accuracy quickly. Once we have the solution for s, we can determine whether

it was an infection or recovery with probability eβ0+β1(a0+s)

eβ0+β1(a0+s)+ρ
and ρ

eβ0+β1(a0+s)+ρ

respectively using a Bernoulli trial. We can now fully determine Xt. We

repeat the above for each individual for the unconditioned data simulation.

To implement the EBCrsABC algorithm is simple from here. For EBC,

we only accept β0, β1, ρ, if (X(t|X∗0 , t∗, a∗0) = (X∗t |X∗0 , t∗, a∗0) for all animals,

which is very rare. For rsABC, we allow an acceptance for a certain number

of matches instead of matching everything.
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Data conditioned simulation (steered simulation)

In the unconditioned case above, we sample V and the Bernoulli distribution

freely to determine the final value of Xt. Whereas here in the data condi-

tioned simulation we use the observed Xt to steer the simulation so that the

simulation is always in agreement with the observation. To achieve this, we

consider all 4 possible cases of (X0, Xt) for every individual: (X0, Xt) = (0, 0),

(X0, Xt) = (0, 1), (X0, Xt) = (1, 0), and (X0, Xt) = (1, 1). We will be refer-

ring to the amount of steering required for each individual as weight, which

is the importance sampling weight in section 3.1. The total importance sam-

pling weight is the product of weights contributed by every individual. The

total importance sampling weight is also an estimate of the likelihood. Re-

call section 3.1, the two elements of the data conditioned simulation are data

augmentation and importance sampling. In simpler models, we can sample

from the model directly and then by applying importance sampling to the

model, we can ensure a close match between the sampled outcome and the

observed data. When the model is more complicated, like we have now, extra

steps may be required in order to sample from the model. In the two states

CTTIMC case, we require the additional information of the last event time,

s, in order to determine the state of Xt. We will see how this is implemented

in the data conditioned simulation below.

For (X0, Xt) = (0, 0) We cannot deduce if an event occurred during (0, t),

and therefore place no restriction on the last event time s, and hence no

restriction on the sampling of V . The weight contribution from the sampling

of V is therefore 1 (integrating over the whole sample space). Given V we

solve for s, if s < 0, then there no event occurred between interval [0, t],

and therefore the weight is 1. If 0 ≤ s ≤ t, then we want the last event to

be a recovery, and therefore the we choose the last event to be a recovery

which has probability ρ

eβ0+β1(a0+s)+ρ
. The total weight is then 1× ρ

eβ0+β1(a0+s)+ρ
.

Similarly, it can be deduced that the sampling weight for (X0, Xt) = (1, 1) is

either 1 or eβ0+β1(a0+s)

eβ0+β1(a0+s)+ρ
depending on whether s < 0 or 0 < s < t.
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For (X0, Xt) = (0, 1) We can deduce that at least one event occurred

during (0, t), and therefore s must be 0 ≤ s ≤ t, and therefore 0 ≤ V ≤ U ,

where U is an upper bound. We can find U by substituting s with 0 in (5.1)

and solving for U . We know V must lay between the two bounds because

of the strictly decreasing property of V with respect to s. Therefore, the

weight contributed from the steered sampling of V is P(0 < V < U) =∫ U
0
e−vdv. We can calculate this probability explicitly: P(0 < V < U) = 1−

exp

{
exp
(
β0+β1(a0+t)

)
−exp

(
β0+β1a0

)
β1

+ ρt

}
. Given V , we choose the last event

to be an infection which has probability eβ0+β1(a0+s)

eβ0+β1(a0+s)+ρ
. The final weight is then∫ U

0
e−vdv× eβ0+β1(a0+s)

eβ0+β1(a0+s)+ρ
. Similarly, the sampling weight for (X0, Xt) = (1, 0)

is
∫ U

0
e−vdv × ρ

eβ0+β1(a0+s)+ρ
.

To find the total sampling weight for the whole data set, we perform the

above steered sampling for each observation. Let pi denote the sampling

weight for the ith observation. The total sampling weight, denoted by P , of

the data given parameters β0, β1, and ρ is P =
∏N

1 pi, where N is the total

number of data points in the observed data. N may be greater than the

number of animals. Because of the Markov property, if an animal had more

than two observations, we can take any pair combination of the observations

and consider them as an independent observation from another animal. Note

that by design, we have ensured that π(X∗|X, β0, β1, ρ) = 1. We will see

how the steered simulation is applied in the next section.

5.3 Algorithm implementation

In this section, we will look at the implementation of three algorithms:

rsABC, dcABC, and GIMH. Let (X
(i)
0 , X

(i)
t , t(i), a

(i)
0 ) denote the ith data

point, and N denote the data size. We also let X0 = {X(1)
0 , . . . , X

(N)
0 }, and

Xt, t,a0 are defined similarly. As before, superscript ∗ is used to indicate

the observed data. We assume that β0 ∼ U(−8, 0), β1 ∼ U(0, 8), ρ ∼ U(0, 6).

Uniform priors are used to indicate the lack of prior knowledge and the
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boundaries are chosen based on the stability of the algorithm.

5.3.1 The rsABC algorithm

Algorithm 20 (rsABC algorithm for the TIMC model).

1. Sample β0, β1, ρ from their corresponding prior.

2. Take X∗0 , t
∗, a∗0 and sampled β0, β1, ρ in the unconditioned

data simulation described in Section 5.2.4 to generate Xt.

3. If Xt = X∗t , then we accept β0, β1, ρ. Otherwise, we reject.

4. Repeat 1. to 3. until a desired number, m, of iterations are

completed.

During testing, we ran the algorithm for up to 36 iterations without any

acceptance, and therefore the rsABC algorithm is excluded in the final com-

parison.

5.3.2 The dcABC algorithm

Algorithm 21 (dcABC algorithm for the TIMC model).

1. Sample β0, β1, ρ from their corresponding prior.

2. Take X∗0 ,X
∗
t , t
∗, a∗0 and sampled β0, β1, ρ in the data condi-

tioned simulation described in Section 5.2.4 to estimate the

importance sampling weight P .

3. Record {β0, β1, ρ, P}. We are safe to use P as the estimate

for likelihood because by design π(X∗|X, β0, β1, ρ) = 1.

4. Repeat 1. to 3. until a desired number, m, of iterations are

completed.
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5.3.3 The GIMH algorithm

We have chosen to use three independent folded normal distributions as

the proposal distribution for the three parameters. Let |N(µ, σ2)| denote

the folded normal distribution, which means that the corresponding random

variable only lies in R+ ∪ {0}. For β0, we use −
∣∣N(µ, 0.25)

∣∣ as the proposal,

because β0 < 0. For β1, we use
∣∣N(µ, 0.25)

∣∣ as the proposal. Finally, for ρ

we use
∣∣N(µ, 0.64)

∣∣ as the proposal. We let qβ0(a, b), qβ1(a, b) and qρ(a, b) de-

note the density functions of the folded normal proposal distributions. Then

qβ0(a, b) = fµ=b,σ2=0.25(a) + fµ=b,σ2=0.25(−a), where fµ=b,σ2=0.25(x) is the den-

sity function of N(b, 0.25). qβ1(a, b) and qρ(a, b) can be defined similarly.

There are two main reasons for choosing the folded normal distribution as

the proposal distribution. The folded normal distribution still preserves the

symmetrical property. Take qβ0(a, b) as an example:

qβ0(a, b) =fµ=b,σ2=0.25(a) + fµ=b,σ2=0.25(−a)

=fµ=a,σ2=0.25(b) + fµ=a,σ2=0.25(−b)

=qβ0(b, a).

As the result, when it comes to calculating the acceptance probability, the

proposal distribution cancels each other out and therefore we save on com-

putation time. The second advantage is that the folded normal distribution

allows faster sampling when we only wish to sample from R+ or R− than re-

jecting samples that fall in the undesired region, which also helps to improve

on computation time. As discussed in section 5.2.4, the missing data for

implementing the data conditioned simulation (or pseudo-marginal method)

are the last event time, s, and the state of the animal at time t, Xt.
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Algorithm 22 (The GIMH algorithm for the TIMC model).

1. Initialise {β0, β1, ρ} with the mean of their corresponding

prior distributions. Although, one could achieve a better

initial point, by conducting a short run of the dcABC

algorithm. We then calculate the likelihood estimate

(importance sampling weight), P , using the initial

parameters and the observed data.

2. Propose a new set of parameters, {β′0, β′1, ρ′} from

{β0,i, β1,i, ρi}.
3. Calculate the corresponding likelihood estimate P ′ using

Section 5.2.4.

4. Set {β0,i+1, β1,i+1, ρi+1} = {β′0, β′1, ρ′} and Pi+1 = P ′ with

probability

min

{
1,

qβ0(β
′
0, β0,i)qβ1(β

′
1, β1,i)qρ(ρ

′, ρi)π(β′0)π(β′1)π(ρ′)P ′

qβ0(β0,i, β′0)qβ1(β1,i, β′1)qρ(ρi, ρ′)π(β0,i)π(β1,i)π(ρi)Pi

}
,

otherwise set {β0,i+1, β1,i+1, ρi+1} = {β0,i, β1,i, ρi} and

Pi+1 = Pi.

5. Repeat 2. to 4. until a desired sample size, m say, is reached.

5.3.4 Results

Our analysis is delivered in two sections. The first one we test the dcABC

algorithms and the GIMH algorithm on simulated data, so that we can see

how the two algorithms compare both in terms of efficiency and accuracy.

We then use both algorithms to analyse the actual data described in section

5.2.

On simulated data

We draw 250 distinct sets of parameters from their corresponding prior dis-

tributions and for each set of parameters, a data of size 500 is generated.
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We analyse these data using both the dcABC algorithm and the GIMH algo-

rithm with group size 20 and sample size 50000. Out preliminary test showed

that the rsABC algorithm showed 0 acceptance for the same sample size, and

therefore we leave out the rsABC algorithm.

Figure 5.1: dcABC estimations v.s. True values
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(c) ρ
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In Figure 5.1, we can observe clear linear correlations in all three parameters.

β0 has higher accuracy when the true β0 > −4. β1 has the most consistent

estimations with one obvious outlier, but the results seem best when the true

β1 < 4. ρ looks like the least correlated parameter between the estimation

and the true value. It can be observed that the algorithm does not perform

well for ρ > 4.
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Figure 5.2: GIMH estimations v.s. True values
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(b) β1
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(c) ρ
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In Figure 5.2, we can observe very similar trend to the output of the dcABC

algorithm. β0 estimations perform well for true β0 > −4, β1 estimations

perform well overall but worsen slightly when true β1 > 4, and estimations

of ρ are lease correlated of the three with better correlation when true ρ < 4.

In order to assess the performance of the algorithms, we fitted a simple linear

model (an intercept term, and one coefficient) between the estimations and

true values for each parameters from both algorithms. For a good parameter

estimating algorithm, we should observe that the intercept term is close to

0, the coefficient is close to 1, and R2 value is close to 1. The models fitted

is presented in Table 5.2.
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Table 5.1: Reporting the fitted linear models between the estimated values

and the true values.

intercept regression coefficient adj. R2

β0 from dcABC -0.5880 0.7584 0.7975

β0 from GIMH -0.6333 0.7555 0.7828

β1 from dcABC 0.0473 0.9701 0.9141

β1 from GIMH 0.0670 0.9653 0.9079

ρ from dcABC 1.1199 0.6822 0.6460

ρ from GIMH 1.0518 0.6893 0.6628

It can be observed in Table 5.2 that there is very little difference in terms of

the models fitted for both the dcABC algorithm and the GIMH algorithm.

Both algorithms have very similar model coefficient estimation as well as the

adjusted R2 value.

In terms of the computation time, the two algorithms are comparable with

mean time elapsed of dcABC being 18,582s and mean time elapsed GIMH

being 17,529s.

On the original data

Again, we repeat both algorithms 250 times with the group size 20 and

sample size 50000.
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Figure 5.3: dcABC estimations v.s. GIMH estimations
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Table 5.2: Summary of output from the dcABC algorithm and the GIMH

algorithm.

E(β̂0) V ar(β̂0) E[β̂1] V ar(β̂1) E[ρ̂] V ar(ρ̂) Time elapsed (s)

dcABC -0.3442 0.0311 0.7476 0.0210 4.4479 0.3595 30,912

GIMH -0.3224 0.0160 0.7214 0.0129 4.4396 0.2067 29,075

In Figure 5.3, the dcABC algorithm has consistently wider inter quartile

range than the GIMH algorithm. However, both algorithm agree well enough

on their mean estimate. We can further confirm this in Table 5.2. The means

of the parameter estimates for both algorithms are in close agreement. How-

ever, the Monte Carlo error is clearly higher for the dcABC algorithm. Again,

the GIMH algorithm has slightly lower computation time. The big discrep-

ancy between the computation time for the real data and the simulated data

is due to the data size. The real data has just over 1000 data points, and

we only used 500 data points in the simulated data case, which explains the

increase in the computation time.
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5.4 Chapter Conclusion

From the results above we can see that the dcABC algorithm and the GIMH

algorithm perform almost equally well especially in the simulated data case.

However, the GIMH algorithm achieved a more consistent parameter esti-

mates for the real data case as well as the being more time efficient.
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Chapter 6

Ricker Model

6.1 Introduction

In this chapter, we will look at a completely different class of problem,

stochastic dynamic model, and in particular the Ricker model. The Ricker

model has been well studied under the synthetic likelihood context in [Wood,

2010] and under the semi-automatic ABC context in [Fearnhead and Pran-

gle, 2012]. We will see how the data conditioned simulation can be adapted

in this situation and eventually make estimations on its parameters. This is

probably the most challenging problem of the three examples.

This chapter follows a similar structure as before. We begin by introducing

the Ricker model in Section 6.2, follow by an exploratory research of the

Ricker model in Section 6.3. We dedicate Section 6.4 for finding the suitable

summary statistics. Unconditioned simulation and data conditioned simula-

tion are discussed in Section 6.5, and follow by the implementation of the

dcABC algorithm and the GIMH algorithm in Section 6.6. Finally, we have

the chapter conclusion on Section 6.7.
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6.2 Model description

The Ricker model is a non-linear difference equation which was devised by

[Ricker, 1954] to model stock and recruitment in fisheries. The Ricker model,

equation (6.1), can be used to predict the expected number of fish population

in a fishery. Due to its non-linearity, it exhibits a chaotic behaviour for some

choices of parameter values, and in which case the model is very sensitive to

small perturbations of the initial condition.

Nt+1 = rNte
−Nt for t = 0, 1, 2, 3, . . . (6.1)

A noisy version of the Ricker model incorporating a Gaussian error term and a

Poisson observation process is considered in [Wood, 2010] and [Fearnhead and

Prangle, 2012] where MCMC with synthetic likelihood and semi-automatic

ABC, respectively, are used to estimate the model parameters.

The noisy version of the Ricker model is described as follow:

Nt = rNt−1e
−Nt−1+et−1

Yt ∼ Poisson(φNt)

(6.2)

where et−1 ∼ N(0, σ2), {Nt} is the underlying population dynamics which

of primary interest, and {Yt} is the Poissonised observations of the under-

lying population dynamics {Nt}. We are interested in estimating the three

parameters of the model r, σ, φ based on observations {Yt}.

The non-linearity in the dynamics of the Ricker model means that applying

standard likelihood or data augmentation methods on the plain data would

not be appropriate, see Section 6.3 for further details. The problem with

the standard likelihood approach is that only {Yt}s are observed and the

{Nt}s are not. In order to calculate the likelihood, π(Y |r, σ, φ), we are

required to calculate
∫
π(Y |r, σ, φ,N )dN , which is intractable in this case.

An initial idea is to apply Monte Carlo integration to estimate the integral,
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however, computation of the quantity π(Y |r, σ, φ,N ) is highly variable and

often computed to 0 at machine accuracy. The reason for this is because the

Ricker model is chaotic. For the same parameters, the overall trajectories

between two independently generated N can be very different, again see

Section 6.3. The objective of our research is to infer the parameters, {r, σ, φ}
,from the observed {yT−L+1, . . . , yT}, which are assumed to be generated as

follow:

Note that, the subscripts of the observed data starts from T − L + 1 and

ends on T . T is time since reference point time 0 which we assume starts at

N0 = 1, and L is the total number of observations made.

Given r, σ, φ and initial population size, N0 (we assume that N0 = 1), the

population process, {Nt}, is generated for T periods with Y observed on the

last L time points (the observation period).

6.3 Exploratory research

Upon examining the model, the standard rsABC algorithm seems straight-

forward to implement for this model as it is easy to simulate from the model.

However, the Ricker model is chaotic, and therefore even given the true pa-

rameters, the trajectories of the population in two simulations could be very

different. Hence, ABC algorithms based on matching observed data term by

term is unlikely to yield fruitful result, and therefore carefully chosen sum-

mary statistics is required. We will demonstrate this problem in the graph

below.

Figure 6.1 are three sets of observations generated using equation (6.1) with

the same parameters and initial conditions. It can be observed that the

peaks and troughs in each plot do not coinside at the same time point. The

similarity in trajectories is crucial if we were to employ point by point data

matching ABC algorithms, as we would expect the outcome of the model
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with the same parameters and initial conditions to follow similar trajectories,

i.e. the peaks and troughs coinsides, so that algorithms such as rsABC

will have a good chance of accepting the parameters when they are close

to the true values. However, with the mismatching trajectories, the vanilla

application of the rsABC algorithms and alike would be unlikely to yield

a meaningful results. Further, let the first plot of Figure 6.1 represent the

observed data, and given theN of the first plot, the probabilities of producing

samples that matches the other two plots are both 0. This means that even

with the true parameters, the importance sampling weight assigned to the

parameters is 0, which means that the dcABC algorithm would not work

either. This statements will become clear in Section 6.5. The main reason for

these failure is because of the correlation disparity between data trajectories

and the parameters. The disparity is prevalent in most values of parameters,

and only improves if σ is close to 0. In the this section, we will focus on

examining the dynamics of the model in the view to find better correlated

summary statistics to the model parameters.
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Figure 6.1: Three sets of observations simulated with r = e3.8, σ = 0.25, φ =

10, N0 = 1, T = 100 and L = 50
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Apart from the disparity between the population trajectories and parameters,

there are some common features that can be observed in Figure 6.1. The

trajectories stay in roughly the same order of magnitude. The number of

peaks and troughs are similar, although some peaks and troughs are less well

defined. The total number of 0 observations are similar too. We will next

look at three similar graphs (Figures 6.2, 6.3, and 6.4 ) but each corresponds

to varying only one of the three parameters.
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Figure 6.2: Three sets of observations simulated with σ = 0.25, φ = 10,

N0 = 1, T = 100, L = 50, and varying r.
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It is clear in Figure 6.2 that as r increases, the number of 0 observations

increases and also the length of successive 0 observations. It can also be

observed that the as r increases, the maximum of the observations increases.
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Figure 6.3: Three sets of observations simulated with r = e3.8, φ = 10,

N0 = 1, T = 100, L = 50, and varying σ.
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In Figure 6.3, no clear pattern is observed as we vary σ.
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Figure 6.4: Three sets of observations simulated with r = e3.8, σ = 0.25,

N0 = 1, T = 100, L = 50 and varying φ.
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In Figure 6.4, the most distinctive feature is the magnitude of the observa-

tions generally increases as φ increases.

We will investigate these features more formally in Section 6.4, and some

of which play an important role in the development of the data conditioned

simulation algorithm. From the model there is a clear structure with with

dependence between successive observations. i.e. Nt+1 = rNte
−Nt+et and

Yt ∼ Poisson(φNt). It is a first order Markov system in {Nt, Yt}.
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Because of the first order underlying dynamic structure, we first focus on

investigating the pair-wise relationship between the Yt, and Yt−1. We will

attempt to establish if and how each parameter affects the behaviour of the

observations in the following sections by firstly investigating the link between

the deterministic version of the Ricker model and the noisy version of the

Ricker model (Section 6.3.1), and then the Poissonised observations of the

Ricker model (Section 6.3.2).

6.3.1 The Ricker model without Poissonised observa-

tion

As our main interest is in estimating r and σ, the natural thing to do is to

investigate the underlying dynamics first.

Bifurcation Diagram

A bifurcation diagram is a diagram which plots the long run values of a

dynamical system against the value of parameters [Arrowsmith and Place,

1990]. Bifurcation diagram provides an insight into the long run behaviour of

a dynamical system, and it can help to identify if a certain parameter makes

the dynamical system converge, diverge, or be periodic.

Figure 6.5 is the bifurcation diagram of the deterministic Ricker model with

starting population size of 1, i.e. N0 = 1. For each value of r, 300 iterations

were calculated and the last 100 iterations are used for the plot, assuming

that 200 iterations are sufficient for the Ricker model to settle into its long

run behaviour.

It can be observed from the diagram that most values of r fall in the chaotic

region ( many dots scattering in vertical direction), and only small proportion

of r is either convergence ( only one point ) or periodic ( a few points ).
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It is also worth noting that the maximum value that the Ricker model can

achieve for any given value of r is r/e, which can be explained by apply

simple calculus on the equation y = rxe−x.

Figure 6.5: Bifurcation diagram of the deterministic Ricker model, r ∈
[1, 60], N0 = 1
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Figure 6.6 is the bifurcation diagram of the stochastic Ricker model. It can

be observed that the transition from periodicity of chaos is no longer clear

and everything just merged into one. However, an obvious trend is that

as r increases, the maximum value of N increases. This is expected, as the

random error term introduced forces the dynamical system to break out from
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its long run behaviour, and therefore values which do not belong to the long

run behaviour of a given r, can appear in the cycle which explains the 0’s we

are getting in the Monte Carlo integration in Section 6.2

Figure 6.6: Bifurcation diagram of the Ricker model with a Gaussian error

term, r ∈ [1, 60], σ = 0.25
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Phase space

As the bifurcation diagram has provided limited information as to how the

Gaussian error term affects the undying dynamics, we turn to the phase space
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of the Ricker model.

A phase space is a space which represents all possible states of a dynamical

system, and in this case, the phase space of the deterministic Ricker model

can be represented by y = rxe−x, i.e. the Ricker model with the subscript

taken out. Figure 6.7 show how the space would look like given various values

of r. Combined with figure 6.6, we can conclude that when r = e1.61, e3.22, the

deterministic Ricker model is periodic, and when r = e3.81, e4.17 the Ricker

model is most likely to be chaotic (we cannot be certain until verified with

the formal definition of a chaotic system). As well as the changes in the

dynamics, different values of r change the shape of the phase diagram.
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Figure 6.7: Phase diagram of the deterministic Ricker model with various

values of r and N0 = 1
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Figure 6.8: Phase diagram of the stochastic Ricker model with various value

of r with σ = 0.5 and N0 = 1
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Figure 6.9: Phase diagram of the stochastic Ricker model with various value

of σ with r = 45 and N0 = 1
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Figure 6.8 and Figure 6.9 are phase diagrams of the stochastic Ricker model

for various values of r and σ. Visual inspection of the shape of the plots are

informative of how changes in r and σ affects the dynamics. The notable

differences in the two groups of plots is that as σ increases, the gap under

the graph closes up whereas as r increases, the gap under the graph expands,

even though both increase in r and σ increases the range of the values in the

plot.
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On the log scale

Inspecting the Ricker model in log scale seems natural because of the presence

of the exponential function and the multiplication only formulation.

If we take log of the equation y = rxe−x, and rename log(y) as z we get:

z = log(r) + log(x)− x (6.3)

Differentiate with respect to x:

dz

dx
=

1

x
− 1 (6.4)

Equation (6.3) and (6.4) show that:

• The maximum value of z is log(r)− 1 and occurs at x = 1

• dz

dx
is independent of r.

Equation (6.4) is particularly important, because we know that the shape of

the log of the Ricker model is independent of r, and therefore we can isolate

the effect of the error term by examining the shape of the log of the Ricker

model. Also, we know that log(r) is linked to the maximum value of z.
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Figure 6.10: Phase diagram of the stochastic Ricker model on the log scale

for fixed σ = 0.5 and N0 = 1, and various value of r
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Figure 6.11: Phase diagram of the stochastic Ricker model on the log scale

with various value of r with σ = 0.5 and N0 = 1 zoomed in at the turning

point.
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Figures 6.10 and 6.11 both demonstrate how r affects the phase diagram

on the log scale. It can be observed in Figure 6.10 that as r increases, the

“tails” extend further into the negative value, i.e. z or log(Nt) is closer to 0.

In Figure 6.11, it can be observed that as r increases the maximum value at

the turning point also increases as predicted by our previous assertion. Note

that, the width of the “band” stays roughly the same. Here, width of the

band is used to mean the vertical spread at a given value of Nt.
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Figure 6.12: Phase diagram of the stochastic Ricker model on the log scale

for various value of σ and fixed r = e4, N0 = 1
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Figure 6.13: Phase diagram of the stochastic Ricker model on the log scale

for various value of σ and fixed r = e4, N0 = 1 zoomed in at the turning

point.
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Figures 6.12 and 6.13 both demonstrate how σ affects the phase diagram on

the log scale. In Figure 6.12, increases in σ also extend the “tails” of the

diagram. However, in Figure 6.13, it shows a more fundamental difference.

The turning point stays at roughly the same level, but the band widens as σ

increases, which reflecting greater variability.

These observations pave the way to successfully developing ABC algorithm.
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However, we do not observe {Nt} but a Poissonised version. Therefore we

will see how these features are translated or lost through Poissonised observa-

tion. We will go back to the higher order behaviour again in the Poissonised

observation section.

6.3.2 The Ricker model with Poissonised observation

on the log scale

In order to avoid the singularity point, log(0), we consider Yt + 1 in plotting

the diagrams (the Poissonised observation + 1). Let Zt = log(Yt + 1), and

we also compare the plot of Zt against its corresponding Nt.
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Figure 6.14: Zt+1 plotted against Zt for various values of r, σ with φ = 10
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Figure 6.15: Corresponding log(Nt+1) plotted against log(Nt) for Figure 6.14
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Comparing between Figure 6.14 and Figure 6.15, we can see that the 0’s in Yt

corresponds to small Nt’s. However, we lose information on the magnitude

of Nt.

From Figure 6.14, we can observe the following features:

As r increases,

1. The maximum value of Zt+1 at Zt = 0 increases.
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2. The maximum value of Zt at Zt+1 = 0 increases.

3. The minimum value of Zt > log(φ+ 1) at Zt+1 = 0 increases.

As σ increases,

1. The maximum value of Zt+1 increases.

2. The maximum value of Zt at Zt+1 = 0 increases.

3. The minimum value of Zt > log(φ+ 1) at (Zt+1 = 0) increases.

4. The range of values of Zt+1 near Zt = log(φ+ 1) increases.

Zt = log(φ + 1) is where the expected theoretical maximum should occur.

This is a direct result from Section 6.3.1, which shows that the expected

theoretical maximum of z occurs at x = 1, i.e. Nt = 1. We also know that

E(Yt) = φNt. Therefore, the expected maximum of E(Yt+1) occurs when

Yt = φ. Both log and +1 are monotonic functions, which preserves the

order of the function domain in the range. Therefore, when Yt+1 reaches its

maximum, both Yt+1+1 and Zt+1 are at their maximums too. The maximum

value of Yt+1 can be obtained by taking the expectation of Poisson(φNt+1)

when Nt = 1, which is φre−1.

We are interested in the behaviour of Zt+1 when Zt > log(φ + 1), because

before this point the relationship in log(N) is close to linear, and after this

point the graph Nt+1 plotted against Nt goes into a sharp decline. As it can

be observed in Figures 6.10 and 6.12, the magnitude of the decline depends

on both r and σ.

Behaviour of Zt+1 near the turning point shows that larger r implies a consis-

tently bigger fall, whereas larger σ, implies irregular, steeper, and premature

falls in {Nt}.
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Figure 6.16: Zt+1 against Zt for various values of r, σ with φ = 30
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Figure 6.16 has the same combinations of r and σ, but with φ = 30. Theo-

retically, increase in φ will increase the mean of Y given the same N , reduce

the number of 0 observations in Y as the result a better reflection on the

underlying dynamics of N . This conjecture can be observed by comparing

between Figure 6.14 and Figure 6.16.

Finally, Figure 6.17 has the same data sets as Figure 6.1, but plotted on the

log scale as described here. It can be observed that the three data sets do

indeed closely match each other.
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Figure 6.17: Three sets of observations simulated with r = e3.8, σ = 0.25, φ =

10, N0 = 1, T = 100 and L = 50
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6.3.3 Higher order dynamics

We have studied the first order dynamic structure of the Ricker Model. We

will now inspect the higher order behaviour as implied in [Wood, 2010] and

[Fearnhead and Prangle, 2012] to gain further insight of the model. We start

by looking at the general behaviour of Nt+2, Nt+3, Nt+4 and Nt+5 against Nt

in both deterministic and stochastic case, and then we will explore deeper
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into second order dynamics.

Figure 6.18: Phase diagram of the deterministic Ricker model with different

orders and fixed r.
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Figure 6.19: Phase diagram of the stochastic Ricker model with different

orders and fixed r and σ.
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It can be observed in Figure 6.18 that increase in order creates more peaks

in the phase diagram in the deterministic Ricker model. We observe similar

behaviour in Figure 6.19 for the stochastic model. We also observe that in

the stochastic model that the line is more diffused similar to what we have

observed before in the first order case, and as the order increases, it becomes

harder to distinguish between peaks, see the 5th order case in Figure 6.19.

We will now look at the second order dynamics in more details. We will
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proceed as before by writing down the general equation which represents the

deterministic second order dynamics and then we will also find its first order

derivative. Recall that Nt+1 = rNte
−Nt , then

Nt+2 = rNt+1e
−Nt+1

= r(rNte
−Nt)e−(rNte−Nt )

= r2Nte
−Nt(1+re−Nt ). (6.5)

To make the algebra easier to read, again, we rewrite the above equation as:

y = r2xe−x(1+re−x), and then we differentiate to get the first derivative:

dy

dx
=
d

dx
r2xe−x(1+re−x)

=r2e−x(1+re−x) + r2x
d

dx
e−x(1+re−x)

=r2e−x(1+re−x) + r2xe−x(1+re−x)
(
1 + re−x − rxe−x

)
=r2e−x(1+re−x)

(
1− x− rxe−x + rx2e−x

)
. (6.6)

In order to find the turning points of y, we solve dy
dx

= 0:

r2e−x(1+re−x)
(
1− x− rxe−x + rx2e−x

)
= 0

⇒e−x(1+re−x)
(
1− x− rxe−x + rx2e−x

)
= 0

⇒e−x(1+re−x)(1− x)(1− rxe−x) = 0 (6.7)

x = 1 is always a solution regardless the value of r. Although we cannot

solve this completely, we know that for r ≤ e there are 2 solutions, and

for r > e, there are 3 solutions. The above tells us that the locations of

the remaining two solutions are directly linked to the magnitude of r, which

is a fact worth exploring further. We can extrapolate this to higher order

cases and state that the number of turning points will also be linked to the

magnitude of r. However, we do not consider higher order cases in this

thesis because implementing numerical algorithms to find the location of

the turning points soon becomes computationally expensive and does not

137



yield much more insight than the first order dynamics, and also performing

data conditioned simulation constrained by autocorrelation [Wood, 2010] is

challenging. We now turn to the Poissonised observation of the second order

model.

6.3.4 Posterior distribution of φ

Let’s now consider the posterior distribution of φ in the stochastic Ricker

model (6.2). Given Y ,N , r and σ we can calculate the posterior distri-

bution of φ exactly. We utilise the fact that the conjugate prior of the

Poisson distribution is the Gamma distribution. Let π(φ), π(Y ,N |φ, r, σ),

and π(φ|Y ,N , r, σ) denote the prior distribution, the likelihood, and the

conditional posterior distribution respectively.

Let π(φ) ∼ Γ(α, β), where α is the shape parameter and β is the rate pa-

rameter. Then the conditional posterior distribution given Y ,N , r, σ, α, β is

π(φ|Y ,N , r, σ, α, β) ∼ Γ
(
α +

∑
Y ∗t , β +

∑
Nt

)
.

This will become useful later as the simulation uses a two stage process, i.e.

simulate {Nt}|r, σ and then simulate {Yt}|φ,N , r, σ. By choosing φ based

on Γ
(
α+

∑
Y ∗t , β+

∑
Nt

)
, where Y ∗ is the actual observed data, it should

allow us to make an informed choice of φ which leads to a higher probability

of matching the summary statistics of the simulated Y and Y ∗. The idea of

making an informed choice of a parameter based on some latent variable is

related to the coupled ABC algorithm in [Neal, 2012]. We will see how this

can be utilised in section 6.6.

6.3.5 Exploratory research conclusion

We have explored aspects of the underlying dynamics of the model and iden-

tified possible ideas to exploit as summary statistics in analysing the data.
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We will summarise and investigate the observed summary statistics in the

next section.

6.4 Summary statistics selection

In this section, we will take what we observed in Section 6.3 and refine these

visual observations into quantifiable summary statistics so that they can be

utilised in the later analysis.

Here are the two requirements that will help us narrow down the choices of

summary statistics:

• There are three parameters, r, σ, φ, to be estimated, and therefore we

require at least three summary statistics to enable us to uniquely iden-

tify the three parameters.

• The summary statistics should also have a strong relationship with the

parameters.

6.4.1 Choices of summary statistics

In [Wood, 2010], he considered autocovariances to lag 5; the coefficients of

cubic regression of the order differences Tt−Yt−1; the coefficients, β1 and β2,

of the autoregression Y 0.3
t+1 = β1Y

0.3
t +β2Y

0.6
t +εt, where εt denote the error; the

mean of the population 1
n

∑n
t=1 Tt; and the total number of zeros observed for

summary statistics. By considering the ‘maneuverability’ of these statistics

and observations we made in section 6.3.2, we have a list of potentially viable

summary statistics to be used for the data conditioned simulation below:

1. The average length of consecutive run of 0’s on Yt.

139



2. The total number of 0’s in Yt.

3. The maximum value of Yt.

4. The maximum value of log(Yt+1) > log(φ+1) when log(Yt+1 +1) = 0.

5. The minimum value of log(Yt + 1) > log(φ+ 1) when log(Yt+1 + 1) = 0.

6. The difference between summary statistics 4. and 5.

7. The vertical width near the theoretical turning point on the graph

log Yt+1 + 1 plotted against log Yt + 1. (To be defined later).

8. The average value Y = 1
n

∑n
t=1 Yt.

Summary statistic 1. is observed by plotting {Yt} against time for various

choice of r, σ, φ, see Figure 6.2. We see that there is a clear change in the

length of consecutive 0’s as r varies.

Summary statistic 2. can be observed in Figures 6.2 and 6.4. It is strongly

correlated to summary statistic 1, but much cheaper in terms of computation.

Summary statistic 3. and 4, can be observed in Figures 6.14 and 6.16. As

φ increases from 10 to 30, the maximum value increases. Most of the time

summary statistic 3 and 4 are the same with the rare exception that when

the maximum occurs at the very last observation, and therefore we could

eliminate summary statistic 4, because computing the maximum of {Yt} is

fast.

Summary statistics 5. and 6. can be observed in Figure 6.16. There is a

clear positive relationship between summary statistics 5. and 6. and r.

Summary statistic 7. requires explicit definition as the theoretical turn-

ing point is not given in the observation, and also, even if we were able to

determine the turning point, it is possible that there is not enough data

near the point to provide useful information. Here, we address the first
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problem by fitting a mixture of two straight line model, and use the break

point (where two straight lines meet), (b, log ytb + 1) as the empirical turn-

ing point for the observed data (illustrated in Figure 6.20). The point

x = b is determined by fitting a least square method. Before fitting the

mixture of two straight lines model, we clean up the data by deleting du-

plicated data points. Without doing so, we are likely to place unwanted

weight at certain points (most likely at (0, 0)) and hence distort the esti-

mation of the turning point. From there, instead of looking at exactly on

log yt + 1 = b, we take a band, log yt + 1 ∈ (b − h, b + h), around the turn-

ing point and calculate the range of {log yt+1 + 1} which lie within of the

band. We choose h based on the observed data. h is chosen such that

2h = 0.13
(
max(log yt + 1)−min(log yt + 1)

)
, i.e. the band (b− h, b + h) is

13% of the horizontal axis’ range. We tested the size of band ranging from

1% to 20% with 1% increment. For each size of band, we generated 500

distinct sets of parameters and data of size 500, and calculate the correlation

between σ and width.at.turning. The band size of 13% achieved the highest

correlation of 0.7452.
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Figure 6.20: Fitting the mixture of two straight lines model.
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Summary statistic 8. It is easy to see why it is worth investigating given that

there is a clear relationship between the mean of N and φ and the mean of

Y . This can be observed in Figure 6.4.

It is worth mentioning that the total number of 0 observations and the mean

value of observations are also used in [Fearnhead and Prangle, 2012]. Before

we will look at how each of the summary statistics reflects the change of each

parameter in the model, we firstly examine collinearity between the summary

statics and some of their variants. In Table 6.1 we check for collinearity

between summary statistics 1. to 8. with the addition of maximum value of

log(Yt + 1) and the mean value of log(Yt + 1). We abbreviate the summary

statistics as follow mean.0.length, total.0, max.y, max.0.tran, min.0.tran,
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diff.0.tran, width.at.turning, mean.y, max.log.y, andmean.log.y, and they

are: the mean length of consecutive runs of 0s, total number of 0s, maximum

of Y , the maximum value of log(Yt + 1) > log(φ+ 1) when log(Yt+1 + 1) = 0,

the minimum value of log(Yt + 1) > log(φ + 1) when log(Yt+1 + 1) = 0, the

difference between the previous two summary statistics, the vertical width

near the theoretical turning point on the graph log(Yt+1 +1) against log(Yt+

1), the mean value of Y , the maximum value of log(Yt + 1), and the mean

value of log(Yt + 1), respectively.

Table 6.1: Correlations between all summary statistics based on 5000 data

sets each with 500 observations.

mean.0.length total.0 max.y max.log.y max.0.tran min.0.tran diff.0.tran width.at.turning mean.log.y mean.y

mean.0.length 1.0000 0.6443 0.6814 0.6141 0.6138 0.2767 0.6194 0.1077 -0.6505 0.1990

total.0 0.6443 1.0000 0.4636 0.6996 0.7002 0.2378 0.7801 0.1044 -0.9757 0.2709

max.y 0.6814 0.4636 1.0000 0.7931 0.7922 0.5313 0.6353 0.0456 -0.4302 0.5596

max.log.y 0.6141 0.6996 0.7931 1.0000 0.9998 0.7199 0.7553 0.0416 -0.5980 0.7109

max.0.tran 0.6138 0.7002 0.7922 0.9998 1.0000 0.7195 0.7558 0.0416 -0.5984 0.7102

min.0.tran 0.2767 0.2378 0.5313 0.7199 0.7195 1.0000 0.0892 -0.3536 -0.0695 0.9143

diff.0.tran 0.6194 0.7801 0.6353 0.7553 0.7558 0.0892 1.0000 0.3931 -0.7928 0.1566

width.at.turning 0.1077 0.1044 0.0456 0.0416 0.0416 -0.3536 0.3931 1.0000 -0.1782 -0.3371

mean.log.y -0.6505 -0.9757 -0.4302 -0.5980 -0.5984 -0.0695 -0.7928 -0.1782 1.0000 -0.1236

mean.y 0.1990 0.2709 0.5596 0.7109 0.7102 0.9143 0.1566 -0.3371 -0.1236 1.0000

We can observe some highly correlated (more than 0.9 or less than -0.9) pairs:

• total.0 and mean.log.y,

• max.log.y and max.0.tran,

• min.0.tran and mean.y.

We choose total.0, max.log.y, and mean.y from the three pairs above, be-

cause they are computationally less intensive. The rest of the summary

statistics although exhibit some correlation, they are less prominent. We

will examine the relationships between the summary statistics and each pa-

rameter below.
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6.4.2 For r

Figure 6.21 are plots of all summary statistics mentioned above except sum-

mary statistic 4 plotted against r. There are 5000 data sets, and each data set

was generated by r ∈ [e2, e6], σ ∈ [0.1, 1], and φ ∈ [5, 50] sampled uniformly

in the range specified, and each with total time points of 1000, observation

points 500, and N0 = 1. This parameter space is chosen so that it is in line

with [Wood, 2010] and [Fearnhead and Prangle, 2012].
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Figure 6.21: All summary statistics plotted against log(r)
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Table 6.2: Linear correlations between r, log(r) and the summary statistics.

mean.0.length total.0 max.y max.log.y diff.0.tran width.at.turning mean.y

log(r) 0.6775 0.9404 0.4100 0.6355 0.6316 -0.3729 0.3291

From Figure 6.21, total.0 v.s. log(r) looks to have a strong positive cor-

relation. It is further confirmed in Table 6.2, for which the coefficient of

correlation between total.0 and log(r) is 0.94, an almost perfectly linear re-

lationship.

6.4.3 For σ

We will investigate the relationships between the summary statistics and σ

in this section. A preliminary study shows that log transformation does not

improve the correlation and therefore we will use the original data in this

section.
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Figure 6.22: All summary statistics plotted against log(σ)
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Table 6.3: Correlations between log(σ) and the summary statistics.

mean.0.length total.0 max.y max.log.y diff.0.tran width.at.turning mean.y

log(σ) 0.3103 0.1759 0.3833 0.4071 0.5947 0.5315 -0.0326

σ 0.3474 0.1948 0.4127 0.4208 0.6167 0.5437 -0.0368

It can be observed in Figure 6.22 and Table 6.3 that log(σ) and the summary

statistics show little correlation or any obvious relationship as suspected in

Section 6.3. The reason being that before introducing the random error (et),

even though the system is chaotic, for any given r, the underlying dynamic

is still bounded by a cyclic structure, although some cycles may have very

long or even infinite periods (chaotic). We can observe this in the bifurcation

diagram in Figure 6.5. For example when r = 10, we can see that the long

term value of N switches between two values and when r = 20, the long run

value of N can be anything between 0 and 7.5.

With the introduction of the random error, the underlying dynamic allows to

break out from its original cycle and hop into other cycles and as the result

N would exhibit values from long run cycle of various rs. The bifurcation

diagram of the stochastic version of the ricker model in Figure 6.6 demon-

strates such property. Now, if we look at r = 10, the long run value of N

looks to contain all long run value of N for r < 10, and similarly for r = 20.

From the exploratory research, we learned that r and σ could have similar

effects on some summary statistics, and therefore we hope to improve the

correlations by keeping r fixed and indeed we see a noticeable improvements

in the overall correlations in Figure 6.23, and in particular mean.0.length,

total.0, diff.0.tran, and width.at.turning.
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Figure 6.23: All summary statistics plotted against σ with fixed r
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Table 6.4: Correlations between σ, log(σ) and the summary statistics with

fixed r = e3.8.

mean.0.length total.0 max.y max.log.y diff.0.tran width.at.turning mean.y

log(σ) 0.8180 0.8246 0.5373 0.6646 0.8624 0.8340 0.0139

σ 0.9021 0.8914 0.6002 0.6899 0.8945 0.8657 0.0152

We see a much improved correlation between σ and all summary statistics

when r is fixed in Figure 6.23 and Table 6.4. Specifically, mean.0.length,

total.0, diff.0.tran and width.at.turning have close to 0.9 correlation. We

will be able to implement a two stage algorithm by exploiting this observation

later.

6.4.4 For φ

We will now look at the relationships between the summary statistics and φ.

Again, a preliminary analysis showed that the log transformation does not

improve the correlations and therefore we will use the original data in this

section.
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Figure 6.24: All summary statistics plotted against φ
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Table 6.5: Correlations between φ, log(φ) and the summary statistics.

mean.0.length total.0 max.y max.log.y diff.0.tran width.at.turning mean.y

log(φ) 0.0002 -0.0735 0.4492 0.5547 -0.1222 -0.1165 0.8979

φ -0.0034 -0.0705 0.4639 0.5342 -0.1172 -0.1092 0.9313

In Figure 6.24 and Table 6.5, it can be observed that the effect of the log

transformation on correlation is somewhat mixed. It’s worth noting that he

highest correlated summary statistic, mean.y, is in favour of the untrans-

formed data.

However, as we can calculate the posterior distribution of φ given {Y ,N , r, σ}
analytically, the choice of a summary statistic reflecting the changes in φ is

somewhat redundant.

6.4.5 Summary statistics conclusion

With the combination of the discussion above and the computation inten-

sity of each summary statistic, we narrow down the initial list of summary

statistics to the following three:

1. The total number of 0’s in the observation. (total.0)

2. The maximum value of log(Yi + 1). (max.log.y)

3. The mean value of Y . (mean.y)

The above summary statistics are chosen not only based on their correlations

to each parameters, but also their ease for implementing the data conditioned

simulation. If we were to choose summary statistics purely based their corre-

lations with r, σ and φ, then we would have total.0 ( 0.9404 correlation with
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log(r) and 0.9021 correlation with σ given r), diff.0.tran (0.8945 correlation

with σ), and mean.y (0.9313 correlation with φ). However, diff.0.tran is

difficult to implement when it comes to the data condition simulation and

therefore we opt for using max.log.y, which has 0.6355 correlation with log(r)

and 0.6899 correlation with σ given r.

6.5 Data simulation

6.5.1 Unconditioned Data Simulation

We wish to generate a sample of {Yt} with size L. Given r, σ, φ, the process

is straight forward. To start, we utilise (6.2) and generate N1, . . . , NT . The

reason for generating extra T − L number of Nts is because N0, . . . , NT−L

terms are used as burn in to ensure that the dynamical process settles into

its long term behaviour. We then sample Yi from Poisson(φNT−L+i) for

i = 1, . . . , L. Then {y1, . . . , yT} is a simulation based on the parameters r, σ

and φ.

6.5.2 Data conditioned simulation

Data conditioned simulation is more complex in this example, because we

need to satisfy three summary statistics. Recall Section 6.4.5, the three sum-

mary statistics are: total.0,max.log.y, and mean.y. We wish to generate a

sample {Yt} of size L, which satisfies the summary statistics. Given r, σ, φ,

we generate N1, . . . , NT as in Section 6.5.1 and relabel NT−L+1, . . . , NT as

N1, . . . , NL. We then steer the simulation of Yis, so that the simulated Y

has the same summary statistics as the observed data. We start by renaming

total.0,max.log.y, and mean.y of Y as s1(Y ), s2(Y ) and s3(Y ) respectively

and let s∗1, s
∗
2 and s∗3 denote s1(Y ∗), s2(Y ∗) and s3(Y ∗) respectively. Our aim
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is to estimate the likelihood π(s∗1, s
∗
2, s
∗
3|r, σ, φ). We will utilise a combination

of data augmentation and importance sampling to help us achieve an estima-

tion through simulation. We start by considering the unobserved underlying

dynamics N . The model construction allows us to apply the standard data

augmentation easily, see below:

π(s∗1, s
∗
2, s
∗
3|r, σ, φ) =

∫
∀N

π(s∗1, s
∗
2, s
∗
3|N , r, σ, φ)π(N |r, σ)dN .

we can estimate the above integral using:

1

k

k∑
i=1

π(s∗1, s
∗
2, s
∗
3|Ni, r, σ, φ), (6.8)

where Nis are samples generated from π(N |r, σ). We will refer to k in (6.8)

as the N augmentation size, which is the number of simulations we make for

a given set of parameters. Generating samples from π(N |r, σ) is straight-

forward. The main challenge is in estimating π(s∗1, s
∗
2, s
∗
3|Ni, r, σ, φ). The

principal idea we will use to estimate π(s∗1, s
∗
2, s
∗
3|Ni, r, σ, φ) is the same as

the one used in Section 3.3.2, even though the model is more complex, and

that is through steered simulation. We consider the estimation through sim-

ulating Y |N , r, σ, φ as a data augmentation algorithm. We further apply

importance sampling algorithm in the simulation of Y by carefully choos-

ing the importance sampling proposal distribution q(·) such that s1(Y ) =

s∗1, s2(Y ) = s∗2, s3(Y ) = s∗3, see below:

π(s∗1, s
∗
2, s
∗
3|Ni, r, σ, φ)

=

∫
∀Y
π(s∗1, s

∗
2, s
∗
3|Y ,Ni, r, σ, φ)π(Y |Ni, r, σ, φ)dY (6.9)

=

∫
∀Y
π(s∗1, s

∗
2, s
∗
3|Y ,Ni, r, σ, φ)

π(Y |Ni, r, σ, φ)

q(Y |Ni, r, σ, φ, s∗1, s
∗
2, s
∗
3)

q(Y |Ni, r, σ, φ, s
∗
1, s
∗
2, s
∗
3)dY . (6.10)

In (6.9), we use data augmentation to introduce the simulation of Y . In

(6.10), we apply the importance sampling algorithm to achieve “steering”.
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The integral above can be estimated using:

1

k

k∑
j=1

(
1× π(Yj|Ni, r, σ, φ)

q(Yj |Ni, r, σ, φ, s∗1, s
∗
2, s
∗
3)

)
, (6.11)

where q(Yj |Ni, r, σ, φ, s
∗
1, s
∗
2, s
∗
3) represents a distribution of Y ’s that has the

same summary statistics as the observed data given Ni, r, σ, φ, and therefore

π(s∗1, s
∗
2, s
∗
3|Y ,Ni, r, σ, φ) = 1, which is written out explicitly in (6.11). We

will refer to the k in (6.11) as the parameter importance sampling size, or the

group size in the context of group independence Metropolis Hastings algo-

rithm. Not to be confused with the k in (6.8). k is just a generic variable given

to indicate looping. Our next step is to construct q(Yj|Ni, r, σ, φ, s
∗
1, s
∗
2, s
∗
3).

For clarity, we will drop the subscript onNi and Yj during the construction of

q(·), because we are only considering one instance at a time. We will use Yi to

denote the ith component of Y . We further let pi to denote the corresponding

importance sampling weight of Yi and pi =
π(Yi|Ni, r, σ, φ)

q(Yi|Ni, r, σ, φ, s∗1, s
∗
2, s
∗
3)

where

it’s appropriate. The use of pi assumes that the simulation mechanism is

carried out component by component. To construct q(·), we begin by ensur-

ing s∗1 (total.0) is met, and follow by s∗2 (max.log.y), and finally s∗3 (mean.y).

In this example, we will also demonstrate that we have some freedom in

choosing the importance sampling proposal distribution q(·) by describing

two methods of sampling for s∗3.

For s1 (total.0) We want to ensure that there are exactly s∗1 0’s in Y . We

know that P(Yi = 0) = e−φNi . To find the location of which Yi should be 0, we

sample s∗1 samples from {1, . . . , L} without replacement according to weights

{e−φN1 , . . . , e−φNL}. The outcome is the positions of Yi’s that should be 0.

We label these indices as I
(s1)
1 , . . . , I

(s1)
s∗1

, then Y
I
(s1)
j

= 0 and p
I
(s1)
j

= e
−φN

I
(s1)
j

for j = 1, . . . , s∗1. For the subsequent simulation, we need to ensure Yi ≥ 1

for the remaining Yi’s.

For s2 (max.log.y) Since max.log.y and max.y represent the same observa-

tion, we will use max.y for better accuracy (potential rounding error) and

computational efficiency. We first calculate P(Yi = s∗2) = (φNi)
s∗2e−φNi

s∗2!
for
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all i. We also know that max.y only occurs immediately before a 0 ob-

servation or at the very last observation. Suppose that there are h qual-

ifying positions, and let {I(s2)
1 , . . . , I

(s2)
h } denote the indices of these posi-

tion. We take a sample of size 1 on {I(s2)
1 , . . . , I

(s2)
h } with sampling weight{(φN

I
(s2)
1

)s∗2
e

−φN
I
(s2)
1

s∗2!
, . . . ,

(
φN

I
(s2)
h

)s∗2
e

−φN
I
(s2)
h

s∗2!

}
. Let I(s2) denote the outcome,

then NI(s2) = s∗2 and pI(s2) =

(
φN

I(s2)

)s∗2
e
−φN

I(s2)

s∗2!
.

For s3 (mean.y), method 1 We now just need to fill in the blank spaces of Yi’s

in a way so that the mean of Y is s∗3 without affecting the other two summary

statistics. We will discuss two methods of simulating for s3. One of which

is mathematically more rigorous, and the other one is adjusted for practi-

cality. We will discuss the more mathematically rigorous method here. Let

I
(s3)
1 , . . . , I

(s3)
L−s∗1−1 denote the indices of all the blank Yi’s. We do not want to

have any more 0’s and therefore the minimum value of the remaining slots is

1 because of s1. We suppose that the overall maximum value of Yi’s is unique,

then the maximum possible value of the unfilled Yi’s is s∗2 − 1. We can treat

this process of filling in the Yi’s as a multinomial model. In order to satisfy

s3 = s∗3, we view the empty Yi’s as boxes, and we have in total s∗3L− s∗2 balls

to allocate with probabilities being the normalised
{
φN

I
(s3)
1
, . . . , φN

I
(s3)

L−s∗1−1

}
.

We will denote the probabilities as
{
w
I
(s3)
1
, . . . , w

I
(s3)

L−s∗1−1

}
. We also let ps3

denote the amount of steering we do for the multinomial allocation, and we

initialise ps3 = 1. In this method, we treat the remaining Yi’s collectively in

a multinomial distribution unlike earlier cases for s1 and s2, where Yi’s are

determined component by component. Therefore, we declare a new variable,

ps3 , to record the steering.

The basic idea is that during the allocation we need to exclude those Yi’s

that hit s∗2 − 1, if they do. We will also need to make sure that Yi’s with

indices I
(s3)
1 , . . . , I

(s3)
L−s∗1−1 are at least 1. We will put the rest of the algorithm

in a pseudo-code below for easier presentation. In the pseudo code, any

summation over Yi’s only considers already filled Yi’s and ignores the ones

that are blank. Yi can contain 0 and it is not considered blank. For example,
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all the Yi’s that have been selected in the simulation of s1 will have value 0

but they are not blank. We will call any Yi full if Yi = s∗2 − 1.

1: BEGIN

2: while
( L∑
i=1

Yi < (s∗3L− number of blank Yi’s )
)

do . this while

statement ensures that we don’t over allocate and we can make sure that

all blank Yi’s will finish with at least 1

3: Let I denote the set of blank Yi’s indices
{
I

(s3)
1 , . . . , I

(s3)
L−s∗1−1

}
.

4: J← a sample of size one from {IJ} with sampling weight {wJ}, where

J =
{
i : ∀i ∈ I ∩ Yi is not full

}
; . we exclude those Yi’s that are full

from the sample.

5: YJ = YJ + 1; . adding 1 count to the sampled position.

6: ps3 = ps3 ×
∑
j∈J

wj; . accounting for the steering. The steering

comes from excluding the full Yi’s.
∑

j∈Jwj is the normalising term for

the truncated multinomial distribution.

7: end while

8: Yj ← 1 for
{
j : j ∈ I ∩ Yj is blank

}
; . assign 1 to all the remaining

blank Yi’s.

9: ps3 = ps3 ×
∏
j

P(Yj = 1) for
{
j : j ∈ I ∩ Yj is blank

}
;

10: return ps3 ;

11: END

Following a similar process to that used in Section ??, we can establish that

the final importance sampling weight for matching all three summary statis-

tics is P =
∏

i/∈I pi×ps3 . Method 1 discussed here is said to be mathematically

more rigorous because the method did not include extra human intervention

when allocating the blank Yi’s in order for the algorithm to produce viable

outcome. Whereas in the method 2, which will be discussed next, extra hu-

man intervention had to be made in order to avoid 0 probabilities (extremely

small probabilities that are beyond the accuracy level of the computer).

For s3 (mean.y), method 2 The goal is the same as method 1, in that we are

looking fill in the blank Yi’s in a way so that s3(Y ) = s∗3 and s1(Y ) and s2(Y )

157



remain unchanged. This time we take a more intuitive view and consider

the blank Yi’s one by one. For each blank Yi, we sample from a truncated

Poisson distribution, Poisson(φNi), with some lower and upper bounds. We

initially use 1 and min
(
s∗2 − 1, s∗3L −

∑
not blank

Yj − number of blank Yi’s
)

as the lower and upper bound respectively. This does indeed generate a

sample with required property. However, the problem arises when calculating

calculating the normalising weight for the truncated Poisson distribution. It

is often possible that φNi is much greater than upper bound, and therefore

calculating the probability P(lower bound ≤ Yi ≤ upper bound) result in

extreme small values that is beyond the accuracy level of the computer. The

reverse scenario could also pose an issue, i.e. φNi is much smaller than the

lower bound, but it is less common. If φNi were very small, it is likely that

they have been picked to be 0 in simulation of s1. In order to reduce the

occurence of these extreme probabilities, we intervene by choosing the order

that we fill in the blank Yi’s and adapting the lower bounds to the number

of blank Yi’s left.

Again, let I
(s3)
1 , . . . , I

(s3)
L−s∗1−1 denote the indices of all the blank Yi’s. All

blank Yi’s should have values between 1 and s∗2 − 1. Suppose g = L −
s∗1 − 1, and let {J1, . . . , Jg} denote the ordered indices by the size of Ni,

such that NJ1 > NJ2 > . . . > NJg . We will fill in YJi ’s by sampling

from a series of truncated Poisson distributions. For i = 1, . . . , g, we let

upper = min
(
s∗2−1, s∗3L−

∑
not blank Yj− number of blank Yi’s

)
and lower =

min
(
s∗3L−

∑
not blank Yj

g−i+1
, s∗3L−

∑
not blank Yj − number of blank Yi’s

)
. Then:

YJi ∼ Poisson(φNJi)|lower ≤ YJi ≤ upper (6.12)

pJi = P(lower ≤ YJi ≤ upper) (6.13)

The upper bound ensures that the maximum value does not exceed s∗2. The

lower bound ensures that at each iteration YJi is of reasonable size so that at

the end of the loop we don’t need to force a large Yi on a Poisson distribution

with a small parameter, which is likely to produce a near zero probability.
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Again, following a similar process to that used in Section ??, we can establish

that the final importance sampling weight for matching all three summary

statistics is P =
∏L

i=1 pi. In our preliminary research, we observed that

although both methods perform well when estimating s and φ, method 2

performs significantly better when estimating σ. Method 1 also takes longer

than method 2. Therefore, method 2 will be used in the algorithm imple-

mentation later. In the next section, we will look at how the unconditioned

simulation and the data conditioned simulation can be used in the algorithm

implementation.

6.6 Algorithm implementation

In this section, we will look at implementation of the dcABC algorithm, and

the GIMH algorithm for the Ricker model. We leave out the discussion of

the rsABC algorithm here as it was not possible to produce useful results

within reasonable computation time.

6.6.1 The dcABC algorithm

In this section we will describe the details of the implementation of the

dcABC algorithm for the Ricker model. It is a slightly different algorithm

to the equivalent algorithms in Chapters 4 and 5. An important difference

for this algorithm is that instead of sampling φ independently from its prior

distribution as we have done so far with the SIR model and time inhomo-

geneous Markov chain model, we choose φ depending on Y ∗ and N . The

reason for that is to reduce the occurrence of 0 sampling weight, which we

will come back to after stating the algorithm. One major difference in the

algorithm is that for each set of (r, σ), we will firstly generate multiple N ’s

and corresponding φ’s (this corresponds to the N augmentation size in Sec-

tion 6.5.2), and then for each combination of (r, σ, φ,N ), we will perform
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multiple data conditioned simulations (this corresponds to the group size in

Section 6.5.2).
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The algorithm

Algorithm 23 (dcABC algorithm for the Ricker model).

1. Sample r, σ according to log(r) ∼ U(2, 6), log(σ) ∼
U(log(0.1), 0) respectively, where U(a, b) denotes an uniform

distribution with lower bound a and upper bound b.

2. Let N0 = 1. Generate N with twice as many terms as the

observation. For example, if the observation has 500 terms,

then we will generate 1000 Ni’s.

3. Recall that the prior distribution φ ∼ Γ(7.5, 1), then the pos-

terior distribution φ|N ,Y ∗, r, σ ∼ Γ
(
7.5+

∑
i Y
∗
i , 1+

∑
iNi

)
.

We take a sample from the posterior distribution.

4. Given r, σ, φ,N , we use the data conditioned simulation de-

scribed in Section 6.5.1 to estimate the importance sampling

weight P .

5. Record {r, σ, φ, π(φ)
π(φ|N ,Y ∗,r,σ)

P}, where π(φ) is the density

function of Γ(7.5, 1) evaluated at the sampled φ and

π(φ|N ,Y ∗, r, σ) is the density function of Γ
(
7.5 +

∑
i Y
∗
i , 1 +∑

iNi

)
evaluated at the sampled φ. The additional factor be-

fore the sampling weight P is to account for the sampling of

φ. In effect, we performed an additional importance sampling

step in the sampling of φ.

6. Repeat 4. and 5. for k(group) number of times, and record{
ri, σi, φi, Qi =

∑k(group)

l=1 Pil
k(group)

π(φ)
π(φ|N ,Y ∗,r,σ)

}
. k(group) represents

the group size.

7. Repeat 2. to 6. for k(φ) number of times, and record{
ri, σi, φij, Qij

}
for j = 1, . . . , k(φ). k(φ) represents the N

augmentation size.

8. Repeat 1. to 7. for k(rσ) number of times. The final sample

size is then k(rσ) × k(φ). There will be a total of k(rσ) pairs of

(r, σ). Each pair of (r, σ) will correspond to k(φ) number of

φ’s from step 7.
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An output from the above algorithm would look like:

{r1, σ1, φ1,1, Q1,1}, . . . , {r1, σ1, φ1,k(φ) , Q1,kφ},

...

{rk(rσ) , σk(rσ) , φk(rσ),1, Qk(rσ),1}, . . . , {rk(rσ) , σk(rσ) , φk(rσ),kφ , Qk(rσ),kφ}.

Step 5. is where we make an informed choice of φ. Without the modification,

one would simply sample from its prior distribution, Γ(7.5, 1). However,

as the size of the observation increases, calculation of the sampling weight

quickly reaches the accuracy limit of the computer. The multiplications in

the calculation of the sampling weight also means that a small change in each

term (pi), would cause changes in orders of magnitude in the final sampling

weight (P ). Therefore, a good choice of φ is important. We utilise the

posterior distribution of φ as the importance sampling proposal distribution,

see Section 6.3.4. The final output of the algorithm is a weighted sample of

the approximate posterior distribution, and inferences can therefore be made

using weighted mean method.

In order to take advantage of the fact that the σ has a better correlation with

the summary statistics when r and φ are known, we adapt this algorithm into

a two stage algorithm. We start by allocating 2
3

of the total sample size for

the full algorithm above to reach an estimate for r and φ. We then use the

remaining sample size with the above algorithm but fixing r and φ and only

varying σ. And since we no longer propose φ base on N , the importance

sampling weight for the second stage of the process is just P without the

fraction factor of the posterior density of φ.
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6.6.2 The GIMH algorithm

We will now look at the implementation of the GIMH algorithm for the

Ricker model. Again, modifications are made to the GIMH algorithm in

order to account for the choice of φ. For the proposal distributions, we use

folded Normal distributions
∣∣N(µ, 4)

∣∣ and −
∣∣N(µ, 0.01)

∣∣ for log(r) and log(σ)

respectively. In effect, we are only performing the GIMH algorithm to r and

σ, and φ is treated as a latent variable that we record. Let qr(a, b) and

qσ(a, b) denote the density functions of the proposal distributions of r and σ

respectively. Then qr(a, b) = fµ=b,σ2=4(a) +fµ=b,σ2=4(−a), where fµ=b,σ2=4(x)

is the density function of N(b, 4). qσ(a, b) can be defined similarly.

The algorithm

Algorithm 24 (dcABC algorithm for the Ricker model).

1. We use the dcABC algorithm to perform a pilot run. The

estimate of {r, σ} from the pilot run is then used as the initial

value for the GIMH algorithm.

2. Use
∣∣N(µ, 22)

∣∣ and −
∣∣N(µ, 0.152)

∣∣ to propose new values of

log(r) and log(σ) respectively. We then exponentiate them to

recover the new proposed parameters (r′, σ′).

3. Generate 2L terms of N , and take only the last L terms.

4. Sample φi from Γ
(
7.5 +

∑
j Y
∗
j , 1 +

∑
j Nj

)
.

5. Use the data conditioned simulation to estimate the likeli-

hood, Pi. Set ̂π(Y ∗|ri, σi, φi) = Pi
π(φ)

π(φ|N ,Y ∗,r,σ)
. We will de-

note this quantity Qi as in the dcABC algorithm. Note that

in GIMH algorithm the N augmentation size is set to 1.

6. Set {ri+1, σi+1} = {r′, σ′} and Qi+1 = Q′ with

probability min
(

1,
qr(ri, r

′)qσ(σi, σ
′)Q′π(r′)π(σ′)

qr(r′, ri)qσ(σ′, σi)Qiπ(ri)π(σi)

)
, or else

{ri+1, σi+1, φi+1} = {ri, σi, φi} and Qi+1 = Qi.

7. To achieve a sample of size m, we repeat steps 2. to 6. for m

number of times.
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In the GIMH algorithm, we don’t sample multiple N for a given set of r, σ,

and therefore the N augmentation size is 1.

We make similar adaptation to the GIMH algorithm as the dcABC algorithm.

We allocate 2
3

of the sample size to the original algorithm and we then use the

estimations of r, σ, and φ as the initial point of the second stage calculation.

We then perform the GIMH algorithm by fixing r and φ. For the second

stage of the GIMH algorithm, we make the following changes to the original

GIMH algorithm:

• For step 1, we use the estimation from the stage 1 as the initial value.

• Replace step 2, we propose r′ using −log(r) ∼ N(r, 0.152).

• Skip step 4.

• For step 5, set Qi = Pi.

• For step 6, the acceptance probability: min
(

1,
qσ(σi, σ

′)Q′π(σ′)

qσ(σ′, σi)Qiπ(σi)

)
.

We are expecting to see less improvements in estimating σ in the second

stage than the dcABC algorithm, because GIMH proposes new parameters

based on previously accepted value whereas the dcABC algorithm proposes

new parameters uniformly across the parameter space.

While we were testing the algorithm, we noticed the presence of some wild

outliers. Upon investigation, it was the result of the calculation of the accep-

tance probability. Since we often reach the accuracy limit of the system with

the likelihood estimation, the numerator and the denominator could both

be 0. The problem arises when the denominator is 0 and both the numer-

ator and the denominator are 0. We resolve the problem by accepting the

proposal if the denominator is 0 unless both the numerator and the denomi-

nator are both 0, then we reject. The problem of 0 denominator only occur

at the beginning stage of the algorithm when the pilot run outputs an initial

parameter that has close to 0 likelihood estimate.
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6.6.3 Results

We compare the performance of the dcABC algorithm and the GIMH al-

gorithm to the SMCMC algorithm proposed in [Wood, 2010]. We will also

compare the estimates in two different ways. The first way, we compare how

the algorithms perform across data generated from 250 distinct parameters.

This should give us an insight to how the algorithm estimation reflects the

true parameters. The second way, we use the algorithms to repeatedly anal-

yse the same data for 250 times. We are looking to assess the consistency

of the estimation of both algorithms. We set all three algorithms to have

iteration size equivalent to 1,000,000. The dcABC algorithm has parameter

sample size of 40, 000, N augmentation size of 5, and group size of 5. The

GIMH algorithm has parameter sample size of 40, 000, N augmentation size

of 1, and the group size of 25. In order to have a fair comparison, the SM-

CMC algorithm has a parameter size of 40, 000 and the synthetic likelihood

simulation size is set to 25. We also report the estimation of σ from the

two stages of the algorithm for comparison for the dcABC and the GIMH

algorithms. Simple linear models ( an intercept term and one coefficient) are

used as a way of assessing the performance of the estimated values against the

true values. For a perfectly estimated parameter, we should see the intercept

being 0, the single coefficient being 1, and R2 = 1.
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Results from 250 distinct parameter sets

Figure 6.25: dcABC estimations of the Ricker Model
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Figure 6.25 shows the the dcABC estimations of the three parameters against

their corresponding true values. For r and σ, the plots are based on log of the

values because of the way the prior distributions were designed. log(r) and φ

show almost perfectly linear relationships with little variance. The plot of σ
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is less defined, which was expected due its lower correlations with all of the

summary statistics. Nonetheless, we can see a general positive correlation in

both stages of the estimations of the σ but with large variance. A somewhat

surprising observation is that there seems to be little difference between the

first stage and the second stage of the estimations of σ.

Figure 6.26: GIMH estimations of the Ricker Model
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Figure 6.26 shows the GIMH estimations of the three parameters against

their corresponding true values. We can observe two clear outliers from

the estimation of φ. Further investigation suggests that these outliers were

caused by the pilot run failed to find a reasonable initial point and triggered

the fail safe mechanism which outputs 0’s for all three parameters.

Figure 6.27: GIMH estimations of the Ricker Model excluding the outliers.
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We replotted Figure 6.26 in Figure 6.27 with the outliers removed. Again,

r and φ show a good positive linear relationships between the estimated

values and the true values. σ is less correlated. However, the second stage

estimation of σ appears to have a better positive linear relationship.

Figure 6.28: SMCMC estimates
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In Figure 6.28, we plot the SMCMC estimates of the three parameters of

the Ricker model. From the plot, it can be observed that SMCMC estimates

exhibit similar trend to the dcABC and the GIMH algorithm in that r and φ
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are better estimated than σ. Although, it appears that SMCMC σ estimates

has better resemblence to the 45◦ line, except a few outliers. We also observe

comparable number of outliers between the SMCMC estimate and the GIMH

algorithms.

Figure 6.29: SMCMC estimates
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Figure 6.29 is the same estimate from Figure 6.28 with the outliers removed.

An obvious improvement is that σ estimates appear to show a better fit in

Figure 6.29.
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Table 6.6: Simple linear models fitted for the estimations of the dcABC

algorithm again the true values. β0 denotes the intercept term and β1 denotes

the coefficient term.

β0 β1 adj. R2

log(r) −0.2429 1.0043 0.9189

log(σ) stg. 1 −0.0470 0.7651 0.4887

log(σ) stg. 2 −0.0837 0.7159 0.4716

φ 0.1417 1.0315 0.9458

Table 6.7: Linear models fitted for the estimations of the GIMH algorithm

again the true values after removing the outliers. β0 denotes the intercept

term and β1 denotes the coefficient term.

β0 β1 adj. R2

log(r) −0.2445 1.0309 0.9264

log(σ) stg. 1 −0.2664 0.5765 0.3792

log(σ) stg. 2 −0.2661 0.5888 0.4168

φ −0.1514 1.0038 0.9570

Table 6.8: Linear models fitted for the estimations of the SMCMC algorithm

again the true values after removing the outliers. β0 denotes the intercept

term and β1 denotes the coefficient term.

β0 β1 adj. R2

log(r) 0.1664 0.9590 0.9691

log(σ) −0.1301 0.8745 0.7963

φ 0.0365 0.9921 0.9881

Comparing Tables 6.6 and 6.9, both algorithms perform similarly with ma-

riginal differences in estimating r and φ. However, the dcABC algorithm
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performs slightly better when estimating σ, because the coefficient, β1, is

closer to 1 and the R2 value is closer to 1. In contrary to our earlier predic-

tion with regard to the estimation of σ between the two stages, the GIMH

algorithm show an improvement with higher β1 and larger R2, whereas the

dcABC algorithm shows the opposite. After the removal of the outliers in

the SMCMC estimates, the SMCMC estimates has closer to 1 β1 and closer

to 1 adjusted R2 value for all three parameters than both data conditioned

algorithms. We will look at how both algorithms perform on repeatedly

estimating the same data.

Results from estimating the same data 250 times

Figure 6.30: Box plot of GIMH estimations and dcABC estimations
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Table 6.9: Mean estimates of GIMH, dcABC, and SMCMC

log(r) log(σ) ρ

True values 5.3868 -1.3708 3.7156

GIMH 5.2344 -1.1904 3.7961

dcABC 5.3647 -1.5823 3.6861

SMCMC 4.5372 -0.8591 4.9146
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The box plots in Figure 6.30 shows that the dcABC algorithm has the small-

est interquartile range and the true values are all within the interquartile

range for all three parameters. The GIMH algorithm has slightly larger in-

terquartile ranges and the true value of log(r) lies outside the interquartile

range of the GIMH estimates but within the estimate’s range. The SMCMC

algorithm has significantly larger interquartile range than both data condi-

tioned simulation related algorithms which indicates larger Monte Carlo er-

ror. On surface it seems that the dcABC algorithm gives the most consistent

estimates, but the computation time of SMCMC is roughly 6.5 times faster

than both the dcABC and the GIMH algorithms without parallelisation.

6.7 Chapter Conclusion

We have shown that dcABc and GIMH are both affective in estimating r

and φ. However, both of the algorithms come short in estimating σ with the

dcABC algorithm performs slightly better. A surprising observation is that

the second stage of both algorithm did not show a clear improvement in the

estimation of σ. However, considering the weaker correlations between σ and

the summary statistics, both algorithm performed better than anticipated.

However, with the presence of outliers and the larger inter quartile range,

the GIMH algorithm is less practical than the dcABC algorithm.

When comparing dcABC and GIMH to SMCMC, SMCMC appears to esti-

mate all three parameters better and especially in estimating σ. However,

when we repeatedly apply all three algorithms on a like for like basis (40000

iterations on parameter sampling and 25 samples for each likelihood estima-

tion) to the same set of data, the SMCMC appears to have significantly larger

variation in its estimates. Although, the SMCMC is about 6.5 times faster

than the dcABC and the GIMH, it is possible to speedup both algorithms by

implementing them in C for example, where iteration is significantly faster

than in R, however, such exercise is beyond the scope of this thesis. We

also tested SMCMC with double of synthetic likelihood sampling size (50),
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the outcome shows improved interquartile ranges as well as the number of

outliers on estimation of all three parameters.
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Chapter 7

Conclusions

7.1 Discussion

At the beginning of this research, we set out to explore the possibilities of

the model simulation aspect of the ABC algorithm as we realised that little

research has been done in this particular area. The idea of data condition

simulation is introduced as a more efficient and robust alternative to the

unconditioned data simulation when it comes to estimating the likelihood.

Although in this thesis, we discuss the data conditioned simulation and the

dcABC algorithm together, the main contribution of the research is in the

data conditioned simulation. We achieved the data conditioned simulation by

using a mixture of the data augmentation algorithm and importance sampling

algorithm, so that we can ensure that the simulated data closely matches its

summary statistics to the observed data, and in our examples, we matched

the summary statistics exactly. The idea of data conditioned simulation itself

is not completely original (see [Beaumont, 2003]). It was mainly featured as

a by-product of the grouped independence Metropolis-Hastings algorithm.

However, our research provides a practical guide to utilise this feature. We

introduced the idea of data conditioned simulation in the context of the
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dcABC algorithm and the GIMH algorithm, but one of the major advantages

of the data conditioned simulation is not restricted to the dcABC algorithm

and the GIMH algorithm. The data conditioned simulation can be used in

many other ABC related algorithms.

In the three examples presented in this thesis, the dcABC algorithm performs

consistently and gives robust estimates when applied to complex models (such

as time-inhomogeneous Markov chain model, and the Ricker model). When

compared to the GIMH algorithm, the dcABC algorithm gives just as good

parameter estimates and with lower possibility of producing outliners. Al-

though the GIMH algorithm appears to be slightly more time efficient in

complex models, it is only so when compared to the un-parallelised version

of the dcABC algorithm. The dcABC algorithm is classified as an embar-

rassingly parallel problem which has no serial dependence between iterations,

whereas the GIMH algorithm is serially dependent and therefore parallelisa-

tion would be challenging. From the examples we presented, we demonstrate

the flexibility and adaptability of the algorithm.

From a computation point of view, even though the GIMH algorithm is

slightly better in terms of its computation time in our examples, the dcABC

algorithm has the advantage of being easily parallelisable as well as the im-

plementation of dcABC algorithm is simpler.

To conclude, the dcABC algorithm and the GIMH algorithm show little dif-

ference in terms of their estimation. The dcABC algorithm demonstrates the

idea of the data conditioned simulation in its pure form and proves that it is

a viable solution to approach complex models. The GIMH algorithm demon-

strates how the data conditioned simulation can substitute the likelihood

estimate in other ABC related algorithms, such as the rejection sampling

based method. We believe the data conditioned simulation is a robust and

practical method to estimating the likelihood of complex models.
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7.2 Further research

We will discuss some of the common problems that we found during the

research and areas that we think are worth future exploration.

One of the main points of failure during the computation is that the im-

portance sampling weight for the data conditioned simulation reaches the

precision limit of the computer. Although, there are measures can be taken

such as using a constant factor or using log(), they may not work so well in

practice. A careful choice of the constant factor is required, otherwise the

sampling weight may reach the upper limit of the system accuracy. Choosing

the optimal factor for the data conditioned simulation is an interesting topic

for further research. The main issue with using the log probability is in the

calculation of the weighted mean. To calculate the weight mean, we still

require the raw weight, since∑
xipi∑
pi
6=
∑
xi log(pi)∑
log(pi)

.

Although there will be definitely be a strong correlation between the two

estimates, and we may be able infer the raw weighted mean from the log

weighted mean, however, we cannot be certain until further research is done.

The data conditioned simulation relies heavily on the use of truncated dis-

tributions when sampling. That is the feature that provides the steering we

need. In theory, the data conditioned simulation is rigorous, and indeed the

data conditioned simulation in the SIR model and the time inhomogeneous

Markov chain model has a firm mathematical reasoning. Whereas in the

Ricker model case, a more practical approach was required in both the sum-

mary statistics selection and the data conditioned simulation, especially in

the data conditioned simulation, some ad-hoc adjustments were made based

purely on practicality, so that the computation will produce a valid output.

It would be an interesting exercise to compare the effects on the parameter

estimation between these adjustments.
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Finally, it would certainly be interesting to see how other ABC related algo-

rithms compare to their data conditioned adapted counter parts.
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