
Supporting Ordering and Consistency in a
Distributed Event Heap for Ubiquitous

Computing

Oliver Storz, Adrian Friday, and Nigel Davies

Computing Department, Lancaster University, Lancaster, UK
{oliver,adrian,nigel}@comp.lancs.ac.uk

Abstract. The Stanford Event Heap has been shown to provide appro-
priate support for constructing interactive workspace applications. Given
this success it is natural to consider the Event Heap as a platform to sup-
port other classes of Ubiquitous Computing applications. In this paper
we argue that the distributed, spontaneous nature of these applications
places additional demands on the Event Heap that require extensions
to both the engineering and API. Suitable extensions are described and
their use to support a typical Ubicomp application is discussed.

1 Introduction

Recent years have witnessed the emergence of Ubiquitous Computing as an im-
portant and energetic research topic. As new classes of application have emerged,
so the search for appropriate programming abstractions and associated middle-
ware to simplify the development and deployment of such applications has gained
pace. This process has yielded a number of prototype platforms including HP’s
Cooltown [8], UIUC’s Gaia [11], and many others.

Probably the most successful platform to date (in terms of widespread adop-
tion) is Stanford’s Event Heap [7]. The Event Heap is based on the Tuple Space
paradigm [4] in which data is passed between applications through the gene-
ration and consumption of tuples of data through a shared ‘data space’. The
Tuple Space paradigm provides decoupling in both time and space and hence
is an attractive paradigm for use in environments that consist of collections of
loosely coupled cooperating processes. The Event Heap is designed to support
smart room applications [6], and extends the Tuple Space paradigm in a number
of important ways.

Given the success of the Event Heap API we believe it makes sense to consider
this as a starting point for more general Ubiquitous Computing and mobile com-
puting applications. In this paper we suggest a series of further API extensions
that enable the Event Heap to move beyond its current target domain. These
extensions include support for new semantics and disconnected operation, and
borrow in part from the work of Davies et al. on creating Tuple Space platforms
for mobile environments [1].

This work was supported by EPSRC project Grid based Medical Devices for Everyday Health
(GR/R85877) and the European Union funded Simplicity project (IST-2004-507558).



2 Tuple-Spaces, Mobile And Ubiquitous Computing

2.1 The Tuple Space Paradigm

The Tuple Space paradigm was conceived by Gelernter et al. [4] as part of Linda.
Linda augments a traditional computational language (such as C or Pascal) with
new operators for process creation and inter-process communication. The Linda
model initially consisted of four such operators1 :-

1. out inserts a tuple, composed of an arbitrary mix of typed fields, into the
tuple space. Fields are termed ‘actuals’ if they contain a static value and
‘formals’ if they map onto program variables.

2. in extracts a tuple from a tuple space, with its argument acting as the
template, or anti-tuple, against which to match. Actuals match fields of
equal type and value; formals match fields of the same type. An anti-tuple
matches a tuple iff all corresponding fields match. When a match occurs the
tuple is withdrawn and any actuals it contains are assigned to formals in the
template. Tuples are matched non-deterministically and in operations block
indefinitely until a suitable tuple can be found.

3. rd is syntactically and semantically equivalent to in except that a matched
tuple is not withdrawn from the tuple space and hence remains visible to
other processes.

Linda was subsequently extended to support additional non-blocking opera-
tors inp and rdp [9] and high performance bulk primitives [13].

2.2 The Event Heap

Targeting interactive workspaces, the Event Heap [7] introduced a number of
extensions to both the API provided by conventional tuple spaces and the under-
lying semantics of many of the operations. We briefly highlight the key aspects
of this functionality here, please refer to Johanson’s thesis [6] for a complete
description.

Extended Delivery Semantics Applications performing subsequent read op-
erations will see events from a single source in the order that they are pro-
duced by the source (per-source ordering). Moreover, due to the centralised
nature of the current Event Heap implementation, events originating from
multiple sources are in fact delivered totally ordered2.

Persistent Queries The platform supports non-destructive read operations
that persist over time, matching all known events that satisfy the constraints
of the read template and all further matching events as they enter the Event
Heap.

1 We have omitted discussion of ‘eval’ for brevity as it is not important for under-
standing the contribution of this paper.

2 Note that total ordering is the result of the current centralised implementation, not
a requirement of the Event Heap paradigm per se.



Event Notification Similar to the concept of persistent queries, applications
may register to be notified whenever new events matching a certain template
enter the Event Heap.
Additionally, applications performing subsequent read operations are guar-
anteed to see each event at most once, enabling applications to “iterate”
through events on a server by issuing subsequent read requests. In contrast,
multiple subsequent read requests issued with traditional tuple space plat-
forms might return the same tuple over and over again, regardless of the
availability of other matching tuples — the ‘multiple RD problem’ [12].

IBM’s T Spaces [14] was initially used to underpin the Event Heap. The
Event Heap was later re-engineered to remove this dependency.

2.3 L2imbo

L2imbo [2] is a fully decentralised distributed tuple space platform designed
principally for mobile environments. Unlike approaches based on fully consistent
replicas [15] or mobile agents [10], replicas in L2imbo are kept consistent on-
demand using an IP multicast protocol based on Scalable Reliable Multicast
[3].

L2imbo included a number of important extensions to the standard tuple
space model, including the ability to associate types with tuples and extend types
to support sub-type matching, support for multiple (possibly specialised) tuple
spaces, and an extended range of matching primitives (including Rowstron’s
BONITA high performance bulk primitives [13] and a basic eventing API).

3 Discussion

While the Event Heap API has proved to be well suited to application develop-
ment, we believe that it lacks important facilities for constructing many types
of Ubiquitous Computing application, as illustrated by the following scenario:

Alice, Bob, Joe and Sue are researchers at the University of X. While
having lunch at a café, Alice articulates some new ideas regarding project
Y. The group decides to use their mobile devices to further explore these
ideas using a shared whiteboard application. Each member of the group
uses his/her own display and stylus to contribute to the discussion. The
individual devices are connected using a wireless ad-hoc network. After
lunch, Alice and Joe decide to move to their office and finalise the design.
In their office, they resume the discussion from where they left off.

Spontaneous Interaction and Mobility

The Event Heap system is based on a single server instance running within each
Ubiquitous Computing“interactive work space”. However, this mode of operation



is clearly not suitable in our scenario since the devices involved are operating in
a peer-to-peer ad-hoc mode.

It becomes clear that if we wish to use the Event Heap to support more
general mobile and ubiquitous computing applications where users and/or de-
vices spontaneously interact there is a need to offer a more highly available and
scalable solution (namely, distributed, replicated or federated local instances). If
individual mobile nodes are able thus able to implement their own local Event
Heap (or appropriate proportion thereof), then applications can operate when
the node is disconnected from the network. Furthermore, if local Event Heaps
can be synchronised with other mobile nodes then distributed applications can
operate without the need for additional infrastructure.

Consistent Behaviour ‘within the Real World’

A move to a distributed Event Heap means that we no longer have a centralised
point of synchronisation (i.e. a single Event Heap instance) and hence we must
take care to respect event delivery and ordering semantics. For example, the
changes observable on users’ displays must remain consistent with the order
of their actions (instructions through the system) — the users’ knowledge of
the behaviour of the system, exposed through their visual senses, places a total
ordering constraint on many of the underlying events (as events trigger actions
and these actions are visible in the real world). This contrasts with Johanson’s
claim that source ordering is sufficient for most classes of ubiquitous computing
application [7].

We observe that since the Event Heap offers per-source ordering, and the
Event Heap is currently implemented in a centralised fashion, then events are
actually totally ordered, since the platform instance provides a single point of
reference. However, it is clear that future Ubiquitous Computing applications will
have varying requirements for consistency and ordering of the events representing
the applications’ state.

4 Proposed Extensions

In order to address the two requirements raised in section 3 (i.e. distributed oper-
ation and support for ordering and consistency semantics) we have extended the
Event Heap API to enable dynamic creation, destruction and interaction with
multiple distributed Event Heaps (including support for propagating events be-
tween Event Heaps) and to provide more sophisticated support for event ordering
and delivery semantics.

4.1 Support for Multiple Event Heaps

In the general case we do not assume a single Event Heap that is accessible by
all clients. We allow multiple Event Heaps and provide an API for their creation
and destruction. These operations are designed to be sufficiently lightweight as



to encourage programmers to create new Event Heaps on the fly. As in L2imbo,
we provide a class of system agents, called a factory, that can create new Event
Heaps configured to meet application specific requirements [5]. For example, in
future versions of our platform we plan to allow the creation of Event Heaps
with support for security (user authentication), persistence and event logging
(e.g. for accountability in safety critical systems).

We allow logical Event Heaps to be distributed across multiple physical hosts.
Distributing Event Heaps makes our platform more highly available and improves
fault tolerance, e.g. in the case of failing hosts, and mobility.

We also use the concept of L2imbo bridging agents to provide the means for
linking arbitrary Event Heaps and controlling the propagation of events between
them. In their simplest form, bridging agents are processes that subscribe for all
events in one Event Heap and generate duplicate events in the context of a
second Event Heap. Bridging agents can also provide more fine grained bridging
based on event type and field matching3.

4.2 Ordering and Delivery Semantics

We introduce two new concepts into the Event Heap API. The first is that
of a view. Processes that share a view are guaranteed to have a consistent,
ordered view of the Event Heap with the precise semantics being configurable
on a per-view basis. Each view can be configured to provide no ordering of
events, per-source ordering or total ordering. In the unordered case, the view
simply ensures that all clients using the view will see the same (consistent) set
of events without any guarantee of their relative ordering. Per-source ordering
offers the same semantics as Johanson suggests for the Event Heap [7]. A totally
ordered view guarantees that all operations performed within the context of the
view will observe events in the order they were produced by the event source
and, critically, in the same relative order across all sources. Thus two applications
subscribing to events of a particular type would receive the events in exactly the
same order, even if the events are produced by multiple sources. This provides
total ordering as it is offered by the current centralised Event Heap.

The second concept we introduce is that of session identifiers. Session identi-
fiers are used to provide at-most-once semantics for event matching (the default
behaviour in the Event Heap). In the Stanford Event Heap this means that
events are never returned to the same application twice, even when they match
different templates: this may give rise to problems when applications wish to
re-read events from the Event Heap that they have already seen.

We guarantee at-most-once semantics for non-destructive operations on a
per-session identifier basis. Session identifiers can be thought of as containing a
record of events that have already been seen within the context of a given session
and hence are not to be retrieved a second time as a result of an application

3 Note that bridging agents provide a mechanism for propagation of events between
Event Heaps and are not required for the propagation of events between separate
distributed instances of a single Event Heap.



request. Session identifiers can be created with either an empty record or with
a record of events inherited from an existing session identifier. This provides an
easy way for applications to clone session identifiers (e.g. for distributing these to
other application instances). Clients are at liberty to discard sessions or maintain
multiple sessions to best suit their needs. Processes can share session identifiers
across hosts, enabling, for example, distributed applications to share the load of
processing an event stream.

5 Implementation And Evaluation

5.1 Implementation

Views and session identifiers are created in a similar fashion to new instances of
an Event Heap, i.e. using appropriate factories: applications output an appropri-
ate creation request event into their Event Heap which is serviced by a factory on
their local node. In the case of view creation these requests can be parameterised
to specify the semantics that the view should provide, i.e. unordered, source or
total ordering.

Our implementation is based on the protocol used in L2imbo [1] to support
distributed tuple spaces. We have extended this protocol to support views and
session identifiers. L2imbo utilises application level framing concepts based on
Scalable Reliable Multicast [3] to promote scalability and avoid the need for
fixed group membership. One of the key challenges in our platform is how to
globally identify events and record their relative ordering when mapping them
into a given session or view. We have rejected strategies based on global sequence
numbers, vector clocks or atomic agreement, as these all require high (e.g. quo-
rate) simultanous availability of all end-systems, which is not appropriate for
our chosen application domain.

In our prototype, session identifiers and views are represented by distributed
state that is kept consistent through the exchange of ‘system events’. Each system
event represents a token or ‘lock’ on a given session or view. Before the platform
can map an event matching a template into a given session it must first obtain
this lock. The lock exchange process triggers on-demand generation of a system
event representing the session, causing the replicas of the session involved to
synchronise. Note that any peer can snoop the current state of the session during
this exchange.

Like session identifiers, views are based on single transferrable ownership of
a shared token (system event) representing the current state of the view. Upon
view creation all existing events in the Event Heap that are visible to the view
creator are accessible via the view and according to the ordering requirements
specified at creation time. Each platform instance maps any events that it snoops
from the multicast channel into all views that it owns. A view must be owned
(the system event for the view consumed) before operations that affect the view
can take place (e.g. creation of new events). Any replica may cache the state of
the view and perform matching operations without owning the view, providing



that the consistency and ordering guarantees are not violated (i.e. all earlier
sequenced events in the view have been observed or are known to have been
previously consumed).

5.2 Evaluation

For illustrating the qualities of our platform, we will further elaborate on the dis-
tributed whiteboard example outlined in section 3. As we will show, our platform
not only supports ad-hoc interactions between entities in mobile and ubiquitous
computing environments: the provision of extended, flexible delivery semantics
also significantly simplifies the development of distributed applications.

During Alice’s, Bob’s, Joe’s and Sue’s lunchtime session, each device hosts an
instance of the platform. These four instances form a single Distributed Event
Heap. All participating whiteboard applications share a common view-identifier,
specifying total ordering as target delivery semantics. The common view en-
sures that all applications receive all drawing events in exactly the same order,
providing application behaviour consistent with the users’ view of the physical
world.

As the group splits and Alice and Joe resume the design meeting on their own,
they are both able to restore the state of their local whiteboard applications by
re-reading the set of events stored in their local instances of the Distributed Event
Heap. Using the same view-specifier as before, Alice’s and Joe’s whiteboard
applications are able to obtain a complete replay of all drawing events.

As Alice and Joe continue their work, new events have to be mapped into
the shared view. Complications occur if neither Alice nor Joe owned the view
during the lunchtime meeting. In this case, the view will be cloned, i.e. a new
view will be created offering the the same semantics as the old view. The new
view is initialised with a complete record of the ordering information associated
with the old view. If either Alice or Joe “owned” the view during the lunch-time
session, they can simply continue to use that view. In either case appropriate
feedback needs to be provided to the users.

6 Conclusion and Future Work

In this paper we have described how a popular distributed systems paradigm
based on the Event Heap can be extended to support distributed operation and
selectable ordering and consistency guarantees through the concepts of shared
views and session identifiers.

Using an existing API such as that of the Event Heap is an important aspect
of our work, since moving towards a common programming model is crucial to the
widespread growth of middleware support for Ubiquitous Computing. The paper
reports on the development of a prototype distributed systems platform that
implements shared views and session identifiers without breaking the principal
benefits of time and space decoupling offered by the tuple-space paradigm.



References

1. N. Davies, A. Friday, S. Wade and G. Blair: L2imbo: A Distributed Sys-
tems Platform for Mobile Computing . ACM Mobile Networks and Applications
(MONET), Special Issue on Protocols and Software Paradigms of Mobile Net-
works, vol. 3(2): pp. 143–156, 1998.

2. N. Davies, S. Wade, A. Friday and G. Blair: Limbo: A Tuple Space Based
Platform for Adaptive Mobile Applications. Joint International Conference on Open
Distributed Processing and Distributed Platforms (ICODP/ICDP ’97). Chapman
and Hall, Toronto, Canada, 1997.

3. S. Floyd, V. Jacobson et al.: A reliable multicast framework for light-weight
sessions and application level framing . Proceedings of the conference on Applica-
tions, technologies, architectures, and protocols for computer communication, pp.
342–356. ACM Press, 1995. ISBN 0-89791-711-1.

4. D. Gelernter: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, vol. 7(1): pp. 80–112, 1985. ISSN 0164-0925.

5. S. Hupfer: Melinda: Linda with Multiple Tuple Spaces. Tech. Rep. Technical
Report YALEU/DCS/RR-766, Department of Computer Science, Yale University,
New Haven, Connecticut, U.S., Feb. 1990.

6. B. Johanson: Application Coordination Infrastructure for Ubiquitous Computing
Rooms. Ph.D. thesis, Stanford University, Dec. 2003.

7. B. Johanson, A. Fox and T. Winograd: The Interactive Workspaces Project:
Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Computing Mag-
azine, vol. 1(2), Apr. 2002.

8. T. Kindberg, J. Barton et al.: People, Places, Things: Web Presence for the
Real World . Proceedings of 3rd IEEE Workshop of Mobile Computing Systems
and Applications (WMCSA 2000), pp. 19–30. IEEE Computer Society, Monterey,
California, Dec. 2000.

9. J. S. Leichter: Shared Tuple Memories, Shared Memories, Buses and LAN’s –
Linda Implementations across the Spectrum of Connectivity. Ph.D. thesis, Depart-
ment of Computer Science, Yale University, New Haven, Connecticut, U.S., Jul.
1989.

10. G. P. Picco, A. L. Murphy and G.-C. Roman: LIME: Linda meets mobility .
Proceedings of the 21st international conference on Software engineering, pp. 368–
377. IEEE Computer Society Press, 1999. ISBN 1-58113-074-0.

11. M. Román, C. Hess et al.: A Middleware Infrastructure for Active Spaces. IEEE
Pervasive Computing, vol. 1(4): pp. 74–83.

12. A. I. T. Rowstron and A. M. Wood: Solving the Linda multiple rd problem using
the copy-collect primitive. P. Ciancarini and C. Hankin, eds., Proceedings of
Coordination’96, Coordination Languages and Models, vol. 1061 of Lecture Notes
in Computer Science, pp. 357–367. Springer-Verlag, 1996.

13. A. I. T. Rowstron and A. M. Wood: Bonita: A set of tuple space primitives for
distributed coordination. Proceedings of the 30th Hawaii International Conference
on System Sciences, p. 379. IEEE Computer Society, 1997. ISBN 0-8186-7743-0.

14. P. Wyckoff, S. W. McLaughry, T. J. Lehman and D. A. Ford: T Spaces.
IBM Systems Journal, vol. 37(3): pp. 454–474, 1998.

15. A. Xu and B. Liskov: A design for a fault-tolerant, distributed implementation of
Linda. Nineteenth International Symposium on Fault-Tolerant Computing (FTCS-
19), pp. 199–206. Jun. 1989.


