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“Alea Iacta est! (The die is cast)”

Julius Caesar (As he led his army over the Rubicon)



Abstract

This thesis details experiments in the ballistic regime of superfluid 3He-B at temperatures

around 100 µK. In this thesis, the quasiparticle beam profile from a Black-Body radiator

and a vibrating wire resonator is measured using a quasiparticle camera which consists

of 25 tuning forks. The vibrating wire resonator is found to have a very thinly spread

beam at velocities slightly higher than the pair-breaking critical velocity which spreads

out at higher velocities. At 21 mm/s the vibrating resonator is found to have a more

focused beam than the Black-Body radiator where both beam profiles are found to be

focused around the centre of the quasiparticle camera. A theoretical model is created

in order to model the spread and intensity of the experimental beam profile from the

Black-Body radiator.

In this thesis, the response of some of the probes to thermal damping is measured in

the form of the geometrical constants γ and λ. The geometrical constant λ is related

to the velocity dependence of the probe to thermal damping and is found for two wires

of varying diameter, a tuning fork and its overtone mode in which all the values of λ

were close to unity. The geometrical constant γ is related to the sensitivity of a probe

to thermal damping. This is found for a Black-Body radiator and then used to derive

the sensitivity for other wires in the cell in thermal equilibrium with it. Two resonant

modes of a small tuning fork are used to do a Black-Body radiator calibration on the area

around the tuning fork which is used to find the sensitivity of 25 tuning forks (pixels)

in the quasiparticle camera.
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Chapter 1

Introduction

1.1 History of Helium

Helium is an inert, unreactive gas at room temperature and pressure. It is light and

because of this there is only a minute amount of it in the atmosphere of this planet

(5 ppm) [1]. However while there is only a small amount of helium on the Earth there is

a large abundance of it in the solar system. Most of this abundance is found in the sun

[2]. Because of this evidence of this atom only started to emerge in 1868 when a man

named Pierre Janssen found a new wavelength of light being emitted by the sun during

a solar eclipse [3]. This was attributed to sodium however was proven later by Edward

Frankland and Joseph Lockyer that this was not the case, and that a new element created

these spectral lines. They named this element helium due to its connections with the

sun [4] [5].

Helium was finally isolated by Sir William Ramsey in 1895 [6]. This was found when

Sir Ramsey was trying to find the spectrum of a noble gas in a mineral containing

Uranium. For the extraction of this element and the discovery of various noble gases

Ramsey received the Nobel prize in chemistry [7]. After this discovery the mass of the

helium atom was found to be that of helium 4. It would take a while until the only other

stable isotope of helium called helium 3 was found. This is because helium 4 accounts

for roughly 99.999% of all Helium [6].

1
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Helium 3 makes up the rest of the total amount of stable helium on this planet. This

isotope of helium was first discovered by Oliphant et al. in 1933 [8]. In Oliphant’s

measurement 3He was discovered by bombarding Lithium atoms with protons [6]

6
3Li+1

0 n⇒4
2 He+3

1 T. (1.1)

The tritium in this experiment eventually decays into helium 3 via this process

3
1T ⇒3

2 He+ e−. (1.2)

Apart from the reactions shown earlier helium can be found either trapped underground

in small quantities with natural gas [9] or it can be produced from nuclear fusion. This

means of producing Helium includes reacting two isotopes of hydrogen (deuterium and

tritium) together. The process is shown in equation 1.3 [10]

2
1D +3

1 T ⇒4
2 He+ n. (1.3)

Due to helium being inert and light it has a large range of uses. Helium is commonly

used for party and weather balloons. This atom is also used to cool superconductors

due to its low boiling point. Devices that are cooled using liquid helium range from

Magnetic Resonance Imaging scanners to CERNS Large Hadron Collider [11]. For these

uses helium 4 is used due to its high abundance relative to helium 3, however helium

3 has a large range of uses due to its unique properties [12]. This isotope of helium

is mainly used to create a neutron detectors in order to detect radioactive isotopes at

airports, which is due to the atom’s high neutron capture cross section [13]. As helium

has so many uses both isotopes are is being used up at an incredibly fast rate. A

large quantity of both isotopes of helium are owned by the US [14] and is stockpiled in

Amarillo Texas, but has recently been sold off by the US government meaning there is

a shortage of helium 3 [15].

The properties of helium that we are interested in are the properties that are revealed

when the element is cooled to low temperatures. Helium 4 was first liquified by Kamer-

lingh Onnes in 1908 [16] [17] at a temperature of around 4 K using a method similar to
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the Linde process [18] [19] . For his work on finding superconductivity and his work on

liquid Helium he received a Nobel prize in 1913 [20]. A new phase of liquid helium 4

called helium II (superfluid helium) was discovered by Kapitza in 1937 at temperatures

around 2 K . This disproved that helium II was a crystalline solid phase thus proving

that the change in specific heat previously seen by Kamerlingh Onnes was due to the

liquid becoming a new state of matter [21]. The work on discovering superfluid Helium

was one of the reasons that Kapitza received the Nobel prize [22]. These measurements

give the phase diagram of shown in figure 1.1.
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Figure 1.1: Phase Diagram of 4He [23].

Helium 3 was first liquefied by Sydoriak, Grilly, and Hammel in 1949 [24] at a tempera-

ture of 3.33 K and a pressure of ∼ 1 bar. A new state of 3He was found by Lee, Osheroff,

and Richardson in 1972. The liquid in this experiment was being cooled on the solid

liquid line of figure 2.5 at a pressure of ∼ 35 bar.

During this experiment pressure changes were seen in the sample. This was originally

thought to be due to some change in the solid [25] although this was discounted and the

change in pressure was eventually found to be due to a change to the liquid. The change

in pressure in the liquid was found to be due to the liquid 3He turning into a new state

of matter. The discovery of this new state gave the trio the Nobel prize in physics [26].

The reference shown in [27] gives the review article of the measurements taken that gave

them the Nobel prize. A diagram of the phases of 3He is shown in section 2.2.
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1.2 Description of Thesis

This thesis studies the quasiparticle beam profile of a wire and a Black-Body Radiator

in 3He-B. In Chapter 2 the theoretical background behind these measurement starting

with the properties and phases of 3He and then moving onto the properties of 3He-B

are explained first. This chapter then moves onto Andreev reflection which is later used

to find derivations for 2 geometrical constants, the sensitivity of a probe to thermal

damping γ and λ which is related to the velocity dependence of the probe to thermal

damping. After that a theoretical model for the beam profile will be derived in order

to be compared to experimental data in further chapters and the resonant properties of

vibrating wires will be discussed.

Chapter 3 explains the setup of all the instruments in this experiment. It starts off with

explaining the setup of the cell and then goes on to explain the setup of the tuning forks

and the wires as well as the properties of the first overtones of tuning forks compared

to the their fundamental frequencies. This section then goes on to explain the specifics

of how 5 arrays of 5 tuning forks make up the 25 pixel detector that was built in order

to view this beam profile. It then goes on to talk about the black body radiator (BBR)

and how it is used to create a quasiparticle beam. The experimental section also deals

with the setup outside the cell. This includes the Stanford Research 830 and 844 lockins

(SR830, SR844) as well as the Agilient generators, the summing amplifiers, and the

current to voltage converters ((I-V) converters) used in the setup. We discuss how

the readings from the SR830/844s are sent to the computer for analysis and explain

in brief the differences between these Lockins. Finally the Labview programs used for

these measurements will be explained as well as their respective pros and cons of each

Labview program used. The three programs are frequency sweep (f-swp), amplitude

sweep (I-swp) and the Data Acquisition (DAQ) program.

Chapter 4 gives the calculations of the geometrical constant γ for the Black Body Ra-

diator (BBR) in the cell and a tuning fork. The Black Body Radiator was calibrated

using measurements where the power of the BBR was increased while the damping on a

detector wire inside the BBR was measured. The value of γ is first found for a wire in

a black body radiator and then found for a tuning fork in the 25 pixel detector. In this

same chapter the geometrical constant λ is calculated for various wires and forks. This

is done using amplitude sweeps (I-swp) on the probe and by comparing the probe I-swp
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at its lowest temperatures (Intrinsic sweep) to those at higher temperatures in order to

find the thermal damping. From the velocity of the probe a value called the reduced

velocity can be calculated. From the gradient of thermal force over reduced velocity the

reduced force can be found. The value of λ can then be found by plotting the reduced

force against reduced velocity and fitting the curve it creates. The value of λ is useful

as it can be used to get rid of the non-linear damping of any probe it is calculated for.

The value of λ represents how much the probe responds to the quasiparticle flux local

to it. This value is dependent upon the geometry of the probe and it is seen that for a

different probe geometry there is a different value of λ.

In Chapter 5 the power of the BBR was increased and the effects of this on the damping

of the tuning forks in the 25 pixel detector were measured. The damping on the tuning

forks is also measured when a wire close to the detector is driven to different velocities

(µµµ3). The profile of the beam from the BBR and a wire (µµµ3) close to the 25 pixel

detector will be discussed. These results will be shown for when the BBR is at different

powers and when the wire is driven to different velocities. For the BBR the experimental

data is compared against theoretical predictions. These theoretical predictions use the

value of γ for a BBR calculated previously in Section 4.2.1.

The appendices deal with some of the preliminary measurements taken in order to find

some of the key properties of the probe needed for further analysis. These include

background measurements, intrinsic measurements, and non-linear corrections. The

damping on the tuning forks is also turned into an effective damping for an easier

comparison between the forks for further measurements. The background measurements

were taken at a frequency that is far away from the resonance for the tuning forks. This

was at ± 100 Hz for most of the resonances. The backgrounds were taken on resonance

but at zero magnetic field strength for the wires. The intrinsics were estimated alongside

λ using the non-linear correction data.



Chapter 2

Theoretical Background

2.1 Properties of 3He

3He is a fermion as it has a single unpaired neutron which gives it a total non-integer

value of spin. All fermions must follow Fermi-Dirac statistics and the Pauli exclusion

principle meaning that no two fermions can share exactly the same quantum numbers.

As energy is directly linked to a quantum number only 2 fermions can share a quantum

state one with spin up and one with spin down. At absolute zero fermions will fill all

available energy levels up to the Fermi energy EF . At non-zero temperature some of the

fermions will become excited and will have energy higher than Fermi energy.

E

E
F

Figure 2.1: An energy level diagram of fermions at a temperature close to absolute
zero. Fermions are shown filling the energy levels up to an energy close to the Fermi

energy with some fermions in excited states.

6
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When 3He is cooled around 2 mK at pressures close to the solidification pressure some

of the 3He atoms create Cooper pairs in line with the theory created by Bardeen Cooper

and Schrieffer (BCS theory) [28].

2.1.1 Quasiparticle Generation

The energy levels in a Fermi gas are filled up to the Fermi-energy at temperatures close

to absolute zero. At energies close to the Fermi energy there will be particles that get

excited with a small energy to an energy level that is above the Fermi surface which

creates a quasihole-quasiparticle pair. This is shown in figure 2.2.

E

E
F

pp
F

Empty states

Filled states 

Particle excitation 

Hole excitation

Figure 2.2: The creation of a particle-hole excitation in a Fermi gas taken from [29].

In a Fermi system with a condensate, a minimum energy of ∆ is needed in order to move

a particle from the condensate to an excited state. This means that any excitation in

that Fermi system will have a minimum energy of ∆. Figure 2.3 shows the difference

between the energy of the excitation and the Fermi energy against the momentum of

the excitation.

The dotted line shown in figure 2.3 shows the Landau critical velocity. This is the

minimum velocity that a probe can be driven to in order to create an excitation. In

the model of the Landau critical velocity a projectile with mass m creates an excitation

with energy E which causes the velocity of the projectile to change from v to v′. The

value of this critical velocity can then be taken from the conservation of momentum and

the conservation of energy shown by equations 2.2 and 2.1
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Figure 2.3: The energy difference between the quasiparticle energy and the minimum
Fermi energy ε for a quasiparticle against its momentum taken from [29]. ∆ is the

energy difference between the excitation energy and the energy of the condensate.

mv′ = mv − p, (2.1)

mv′2

2
=
mv2

2
− E. (2.2)

In these equations p is the momentum of the excitation, v is the initial velocity of the

probe and v′ is the final velocity of the probe. These equations combine to form

mv2

2
=
mv2

2
+

p2

2m
− p.v + E. (2.3)

If the momentum of the excitation is assumed to be small then that gives us −pv+E = 0

which can be rearranged to give

vL =
∆

pF
, (2.4)

where vL is known as the Landau critical velocity which is shown on figure 2.3. At

velocities close to this value quasiparticles will only have a minimal momentum change

from the Fermi momentum. Higher velocities than the Landau critical velocity are

needed to create higher energy excitations in the Fermi gas. The Landau critical velocity

cannot be 0 as the minimum energy needed to create the excitation is ∆ as shown in

figure 2.3.
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2.2 Phases of 3He

While 3He does create a condensate at very low temperatures it has various unique

properties that need to be addressed further. The discovery of superfluidity by Lee,

Oscheroff, and Richardson [27] found 2 phases of superfluid helium and the figure showing

the features of this discovery is shown below in figure 2.4.

Figure 2.4: A figure of the discovery of superfluid 3He, note that (A,B B’ and A’ all
show phase transitions in the liquid) [27].

In this figure, 3He was being cooled down at a pressure of around 35 bar where is was

on the melting curve as both a liquid and a solid. This was using Pomeranchuk cooling.

Pressure changes were observed in the liquid (initially thought to be in the solid) where

the second order transitions in A and A’ were eventually found to be due to the transition

from the normal fluid to the A phase. This state is similar to the phase postulated by

Anderson, Brinkman, and Morel (ABM) [30]. The first order phase transitions B and

B’ were also shown to be due to the transition from the A phase to the B phase. The B

phase has similar properties to the Balian Werthamer phase that was predicted in [31].

This gives the phase diagram shown in figure 2.5.

The first thing to note is that the critical temperature Tc changes from 1 mK to 2 mK

depending on the pressure. This has been examined by Greywall [32] and predicted by

Anderson, Brinkman and Morel in 1961 [30].
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Figure 2.5: Phase diagram of 3He [23].

At high pressures the liquid will first condense into the A phase and at lower pressures

liquid 3He will only condense into the B phase. Balian and Werthamer predicted this

phase in 1963 [31]. The similarities between the Balian and Werthamer (BW) phase and

the B phase, and the similarities between the A phase and the ABM phase were picked

up by Leggett. For this discovery and for various other discoveries about the theory of

the superfluid phases of 3He Leggett was awarded the Nobel Prize in 2003 [33].

Under high magnetic fields the A Phase becomes more dominant. The measurements

taken in this thesis are not under high magnetic field or under high pressure. Therefore

the experiment is in the B phase and this phase is what will be discussed.

2.2.1 The Ballistic Regime

In 3He there is a regime in which the mean free path of excitations is larger than the

distance between the walls of the experimental cell. This is known as the ballistic regime.

This regime is known to dominate at temperatures that are lower than 0.3Tc in cells of

the size of the order of centimetres where Tc is the critical temperature of superfluid

3He which is 929 µK [34] as then the mean free path of the quasiparticles l is larger then

the size of the cell and increases exponentially with decreasing temperature as l ∝ e
∆
kBT

[29]. As the measurements in this thesis are at around 100 µK then this means that this

experiment is in the ballistic regime.
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2.3 Properties of 3He-B

The properties of a phase similar to 3He-B were predicted by Balian and Werthamer

[31] and then the similar properties between this theoretical phase and the B phase of

3He were deduced by Leggett. The energy needed to break a Cooper pair and create

Bogoliubov quasiparticles in this phase was found to be isotropic in k-space by Leggett

with a value of [35]

∆0 = 1.76kBTc. (2.5)

Plugging this into equation 2.4 this gives

vL =
∆0

pF
. (2.6)

This gives a Landau critical velocity for 3He-B of 27 mm/s. The pair breaking critical

velocity that has been seen for wires in superfluid 1
3 of the Landau velocity. This will

be explained in Section 2.10.

2.4 Vibrating Wire Theory

All of the tuning forks and wires in the cell can be modelled as a mass on a spring as

long as all of the damping on the probe is defined properly. A simple mass on a spring

will have a restoring force of kx as well as a driving force mẍ. Hooke’s law gives us the

angular frequency of this mass in terms of the spring constant k and the effective mass

m.

ω =

√
k

m
. (2.7)

There are two extra forces that affect the probe in liquid 3He that do not apply to a

mass on a spring. These effects provide the damping to the resonator γ which is given

by
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γ = γ2 + iγ1. (2.8)

In this equation γ2 describes the dissipative force on the paddle and γ1 is the non

dissipative drag due to backflow over the resonator. This gives a total force on the

probe F of

F

m
= ẍ+ γ2ẋ+ iγ1ẋ+ ω2

0x, (2.9)

where ω0 describes the natural resonant frequency of the wire with no external damping

which can be seen when the wire’s in a vacuum and m is the effective mass of the

wire. The displacement of the wire is related to the angular frequency by the equation

x = x0e
iωt. This equation is then used to find the displacement and acceleration of the

wire as a function of velocity which is inserted into equation 2.9 and rearranged to give

ẋ =
F

m

ω2γ2 + iω(ω2
0 − ω2 − ωγ1)

(ω2
0 − ω2 − ωγ1)2 + ω2γ2

2

, (2.10)

where equation 2.10 has both real (R) and imaginary (J) components with the real

component given by equation 2.11 and the imaginary component given by equation

2.12.

R(ẋ) =
F

m

ω2γ2

(ω2
0 − ω2 − ωγ1)2 + ω2γ2

2

, (2.11)

J(ẋ) =
F

m

iω(ω2
0 − ω2 − ωγ1)

(ω2
0 − ω2 − ωγ1)2 + ω2γ2

2

. (2.12)

The real component is called the in phase component and the imaginary component is

called the quadrature. This is seen experimentally in 3He which is shown in figure 2.6.

In figure 2.6 the relation between frequency f and angular frequency ω is given by f = ω
2π

. The maximum in phase velocity of the resonance is given when

(ω2
0 − ω2

f − ωfγ1) = 0, (2.13)
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Figure 2.6: A resonance of one of the probes in the cell when it was in superfluid he-
lium 3. f0 is the resonant frequency where ∆f2 is the full width at half maximum where
the red line shows the real component of velocity and the blue line is the imaginary

component of velocity.

where ωf is the resonant frequency in liquid 3He which replaces ω in equation 2.11.

Given this condition the equation 2.11 reduces down to

R(ẋ) =
F

m

ω2γ2

ω2γ2
2

=
F

mγ2
. (2.14)

Using equation 2.13 the frequency shift of the probe due to backflow can be known.

Assuming that ωf ≫ γ1 then

∆f1 =
γ1

4π
. (2.15)

In this equation ∆f1 = ∆ω1
2π and ∆ω1 = ω0−ωf . The variable ∆f1 defines the frequency

shift between the resonance in vacuum and the resonance of the wire in liquid helium.

From equations 2.11 we can find the full width at half maximum (FWHM) which is also

defined as ∆f2 in figure 2.6. The value of the real component of velocity is at half its

maximum when

(ω2
0 − ω2

1
2

− ω 1
2
γ2

1)2 = ω2
1
2

γ2
2 , (2.16)
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where if γ2 ≪ ω 1
2

it simplifies to

ω± 1
2

=
γ1 ± γ2

2
, (2.17)

which gives a width ∆f2 of the resonance of
ω

+ 1
2
−ω 1

2
2π giving

∆f2 =
γ2

2π
. (2.18)

The width of the resonance ∆f2 is taken as the difference between the two frequencies

where the real component of the velocity was at half its height. By combining equation

2.18 and equation 2.14 we find that the maximum real velocity v0 can be determined as

a function of force F , mass m and the resonant width ∆f2 as

v0 =
F

2πm∆f2
. (2.19)

This equation can be rearranged to give a value of height times width over drive (HWD).

This is given by

∆f2v0

F
=

1

2πm
= HWD ∼ const. (2.20)

The HWD should stay constant and it is only dependent on the effective mass of the wire

m. As the mass of the backflow over the resonator due to the non dissipative drag is far

smaller then the mass of the resonator this means that the HWD is roughly constant.

Because of this the HWD can be used to infer the width and therefore the temperature

of the experiment as the velocity and force on the probe can be found experimentally.

2.5 1D Simplification of the Damping Force on a Paddle

in an Ideal Gas

Figure 2.7 is a example of an ideal gas exchanging momentum with a paddle. This

model works below 0.3Tc at cell sizes of the order of centimetres where the particles act

according to the ballistic regime.
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Paddle velocity 

Force on Paddle

Figure 2.7: A two dimensional model paddle moving through a gas.

The paddle with area A is travelling with a velocity v and has a force F exerted by

the particles around it. The particles are travelling with a group velocity of vg and it

is assumed that there are the same number n
2 of particles on both sides of the paddle.

The force on the paddle can be expressed as

F = FFront − FBack. (2.21)

The effective velocity of particles from the front hitting the paddle is vg + v and the

momentum is pF . This means that there is 2pF of momentum exchange between the

paddle and the particle. Using this the force of the particles is given as the number of

particles hitting the paddle n times the relative velocity of the particles which is given as

〈n(vg + v)〉 for particles hitting the front face of the paddle and 〈n(vg − v)〉 for particles

hitting the back of the paddle times the momentum of the particles pF

F = A 〈n(vg + v)〉 pF −A 〈n(vg − v)〉 pF = 2ApF 〈nv〉 . (2.22)

This model is a good basis for understanding what happens to particles that hit a

paddle. However this model estimates a larger force on the paddle then what is measured

experimentally for quasiparticles in superfluid 3He. This is because the model does

not take into account a process called Andreev reflection which perfectly retro-reflects

quasiparticles before they interact with the paddle.
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2.6 Force on a Paddle With Respect to Andreev Reflection

Andreev reflection is the perfect retroreflection of a hole/particle into a particle/hole at

an interface between a superconducting state and a normal state or a superfluid state

and a normal state.

A) Normal state 

B) Superconducting state

Figure 2.8: Andreev reflection between a normal state A) and a superconducting state
B). Particles are filled in black while Holes are filled in white. Dotted lines indicate the

spin of the particle where filled lines indicate the momentum.

In figure 2.8 a quasiparticle travelling with a momentum p hits a barrier betwen a normal

and superconducting state. The particle retroreflects into a quasihole with momentum

+p and forms a Cooper pair in the superconducting state. This process was first found

in superconductors [36], but can be applied to superfluids as well [37] whenever there is

a change in the dispersion curve of 3He.

Figure 2.9 is a one dimensional model that takes into account Andreev reflection in order

to find the force on the paddle due to quasiparticle interaction. This model considers

the dispersion curves of the superfluid around the paddle 2) and the front 1) and back

3) of the paddle with the paddle moving at a velocity v to the left .

This figure shows the dispersion curves for various quasiparticles and quasiholes around

the paddle. This explains how both quasiparticles (A and C) and quasiholes(B and D)

are affected by the local movement of superfluid 3He shown in Part 2) of figure 2.9 .

Both quasiparticle A and quasihole D have enough energy to fill a state in the dispersion

curve of the moving superfluid. The forces on the paddle from A and D are equation

2.23 and equation 2.24.
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Figure 2.9: Andreev reflection in the superfluid with the fluid at rest in the front of
the paddle in part 1) and the back of the paddle in part 3) where the fluid part 2) is
moving with a velocity v towards the front 1). ∆ is the energy gap needed to create

excitations when the fluid is stationary.

FA = AnpF (vg + v). (2.23)

FD = AnpF (vg − v). (2.24)

As vg � v then we can remove v from the equation and then summate the forces.

FA + FD = 2ApF 〈nvg〉 . (2.25)

For C and B only a fraction of the particles will be able to transmit through the barrier.

The rest of the quasiparticles are Andreev reflected into their alternate counterparts

shown by C’ and B’.

FB = −AnpF (vg − v)fT . (2.26)

FC = −AnpF (vg − v)fT . (2.27)

FB − FC = −2ApF 〈nvg〉 fT . (2.28)

Summing the forces from all quasiparticles and quasiholes therefore gives

F = 2ApF 〈nvg〉 (1− fT ). (2.29)
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In this equation A and pF are known but the average excitation flux 〈nvg〉 and the

fraction transmitted fT aren’t known but can be derived. Because the density of quasi-

particles in the superfluid is dependent on temperature then the force F in this equation

can be defined as the thermal force FT .

2.6.1 Calculating the Temperature Using the Thermal Force

Putting the fraction transmitted back into the previous definition of the thermal force

equation 2.29 we get that the thermal force FT is given by

FT = 2ApF 〈nvg〉 γ(1− fT ). (2.30)

γ is a geometrical constant which explains how the area of the paddle interacts with the

quasiparticle flux. Using the definition of the width of the resonance given by equation

2.19 and rearranging we find that

FT = 2πm∆f2v, (2.31)

where m is the effective mass of the resonator in equation 2.19. The definition of FT given

by equation 2.31 can be put into equation 2.30. This equation can then be rearranged

to give

∆f2 =
ApFγ

πmv
〈nvg〉 (1− fT ), (2.32)

where fT has been found in section 2.7 to be e−λpF v/(kBT ) (equation 2.49). Taking this

at the low velocity limit the Taylor expansion can be used to find the first two terms of

e−x as 1−x. Substituting this in gives the equation below which can then be rearranged

into equation 2.34 .

∆f2 =
ApFγ

πmv
〈nvg〉λpF v/kBT. (2.33)
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∆f2 =
Ap2

Fγλ

πmkBT
〈nvg〉 . (2.34)

The quasiparticle flux 〈nvg〉 is defined in equation 2.54. Inserting equation 2.54 into

equation 2.34 gives

∆f2 = Be−∆/kBT . (2.35)

Where the constant B is given by

B =
Ap2

Fγλ

πm
vF (ε)g(ε). (2.36)

In equation 2.36 the value of the Fermi velocity is given in [6]. This gives a value of B

for the resonator of 6.67× 105 s−1 using values of γ and λ calculated later in this thesis.

The value of this constant that was used in the temperature calculations was calculated

previously as 5.07× 105 s−1. The logarithms of both sides of equation 2.35 can then be

taken to find the temperature as

log

(
∆f2

B

)
= −∆/kBT. (2.37)

As ∆ is 1.76kBTc this equation can then be reduced down to

log

(
∆f2

B

)
= −∆0/kBT, (2.38)

where Tc is the critical temperature of 3He which is 929 µK. Rearranging this equation

we find that

T =
∆0

log
(

∆f2

B

) . (2.39)

The temperature can be used to find γ which is a geometrical constant of the order of

unity which defines the sensitivity of the probe to quasiparticle damping.
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2.7 The Fraction of Quasiparticles That are Transmitted

Through the Potential Barrier Caused by a Moving

Superfluid

The average flux of excitations that transfer momentum 〈nvg〉T is defined as

〈nvg〉T =

∫ ∞
∆+pF v

g(ε)f(ε)vg(ε)dε. (2.40)

where g(ε) is the Density of States (DOS) of the fermions, f(ε) is the Fermi distribution

which is a function that defines the probability of a fermions occupying a specific energy

level. This integral starts from the energy ∆ + pF v as that is the minimum energy

the quasiparticle has to have in order to overcome the barrier created by the moving

superfluid. vg(ε) is the group velocity of the excitations which is defined as

vg(ε) =
dε

dp
(2.41)

where the total number of energy states in the system is the same as the total number

of momentum states. This gives

g(ε)dε = g(p)dp. (2.42)

The average excitation flux can then be obtained. Because the density of energy states

times the group velocity is the density of momentum states or vg(ε) · g(ε) = g(p) this

means that the group velocity and the density of energy states can be taken out of the

integral as they together don’t depend on energy as

〈nvg〉 = g(pF )

∫ ∞
∆+pF v

f(ε)dε. (2.43)

From this the fraction transmitted can be found. This is by finding the flux of excitations

above the energy of the potential barrier and dividing it by the total flux
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fT =
〈nvg〉T
〈nvg〉

. (2.44)

Which is converted to

fT =
g(pF )

∫∞
∆+pF v

f(ε)dε

g(pF )
∫∞

∆ f(ε)dε
. (2.45)

The only part of this equation that is not cancelled out are the integrals of the Fermi

distribution of energies. The Fermi distribution is given by

f(ε) =
1

eε/kBT + 1
. (2.46)

When the temperature approaches zero the term eε/kBT becomes much larger than 1.

Because of this the Fermi distribution of energies can then be approximated to the

Boltzmann distribution as

f(ε) ∼ e−ε/kBT . (2.47)

Plugging equation 2.47 into equation 2.45 the fraction transmitted can be found as

fT = e−(∆+pF v/(kBT )) − e−∆/(kBT ). (2.48)

Which reduces down to

fT = e−λpF v/(kBT ). (2.49)

Where λ is a geometrical constant that is introduced in order to explain non-linear

damping exhibited when the paddle is at a high velocity. This geometrical factor is of

the order of unity.
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2.8 Calculating the Quasiparticle Flux 〈nvg〉

Using the definition of 〈nvg〉 given by equation 2.43 and using the Fermi distribution of

energies fε given by equation 2.47 we find that

〈nvg〉 = g(pF )

∫ ∞
∆

e−ε/kBTdε. (2.50)

Integrating fε we find that

〈nvg〉 = g(pF )kT
[
e−ε/kBT

]∞
∆
. (2.51)

This then gives

〈nvg〉 = g(pF )kBTe
−∆/kBT , (2.52)

where the Fermi velocity is 59 m/s at 0 bar given by [6] , and the DOS of fermions g(εF )

in 3He can be calculated from g(εF ) = m∗kF
π~ [38]. In this equation m∗ is the effective

mass which is 2.8 times the mass of 3He at 0 bar [6] and kF is the wavevector of the

quasiparticle flux which is related to the Fermi momentum pF and the Planck constant

~ by kF = pF
~ . Substituting this in gives

g(ε) =
2.8mpF
π~2

. (2.53)

Where pF is 8.28× 10−25 kgm/s at 0 bar as given by [6] which gives a value of g(ε) at

0 bar of 3.15× 1051 J−1m−3. This gives a final expression for the quasiparticle flux 〈nvg〉

of

〈nvg〉 = vF (ε)
2.8mpF
π~2

kBT.e
−∆/kBT (2.54)

The value of ∆ in this calculation is given by kB(T + 1.76TC) where TC is the crit-

ical temperature of 3He which is 929 µK. Using this information an estimate of the

quasiparticle flux at 110 µK of 3.6519× 1019 m−2s−1 can be obtained.
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2.9 Finding the Geometrical Constant λ

λ is a geometrical constant that can be calculated from the thermal force. Therefore the

thermal force must first be found. The thermal force can be deduced by subtracting all

the other forces in the cell from the total force on the probe which takes the form of

FT = F − FI − Fex. (2.55)

where the forces acting on a probe are the thermal force FT which is due to quasiparticles

interacting with the probe, the intrinsic force FI which is damping due to mechanical

processes in the probe, and the non-linear damping force that is created by driving the

probe to high velocities Fex. Once we have found the thermal force then we can use

equation 2.30 in order to find λ.

FT = C(1− e−λv∗). (2.56)

Where v∗ is the reduced velocity given by v∗ = pF v
kBT

. When the thermal force is divided

by its derivative we get
FT
dFT
dv∗

=
1− e−λv∗

λ
. (2.57)

This is called the reduced force. By plotting the reduced force against the reduced

velocity we can therefore find the value of λ using this equation.

2.10 Pair Breaking Critical Velocity

In Lambert’s paper [39], the velocity of the superfluid on the surface of the wire is related

to the velocity of the wire by vθ = −v(1 + a2

r2 ) sin(θ) where vθ is the radial component

of the superfluid velocity, v is the velocity of the wire , r is the radius of the wire, a

is the distance between the superfluid and the middle of the wire and θ is the angle

between the direction of travel of the superfluid and the surface of the wire. This gives

a maximum radial velocity of 2v at θ = ±π
2 and r = a which gives 2pF v as the highest

energy of the quasiparticle local to the wire as at rough surfaces the energy gap ∆ is

zero due to the existence of trapped quasiparticles on the wires surface.
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Figure 2.10: The dispersion curve of the bulk 3He next to a wire moving at velocity
v.

The quasiparticle energy of the superfluid next to the wire needs to be greater than the

minimum energy of the quasiparticles in the bulk superfluid in order for the quasiparticle

to escape into it; where the minimum energy of the bulk superfluid dispersion curve is

∆− pF v as shown in figure 2.10. Putting this into an equation gives

∆− pF v = 2pF v. (2.58)

This tidies up to

v =
vL
3
, (2.59)

where v is the pair breaking critical velocity, vL is the Landau critical velocity, ∆ is the

energy gap and pF is the Fermi momentum. This equation estimates a pair breaking

critical velocity of a wire of 9 mm/s which is seen experimentally in Carney’s paper [40]

.
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2.11 Black Body Radiator Description

The Black Body Radiator is an object which absorbs all incoming radiation and emits

a beam of radiation itself. In this experiment the main form of radiation that the BBR

absorbs and emits are quasiparticles. In order to measure the quasiparticle flux inside

the BBR there is a thermometer wire and in order to create a quasiparticle beam the

BBR has a heater wire. The BBR is normally warmer than the rest of the cell as its

only thermal connection to the rest of the cell is through the small hole in its wall.

A) B) C)

Figure 2.11: Thermalization of quasiparticles in the BBR where A) is the BBR
without the heater wire on, B) is the BBR with the heater wire driven by a low driving

force, and C) is the BBR with the heater wire driven by a high driving force.

The main use of the BBR in this experiment is to create a quasiparticle beam. In order

to find the power emitted by the quasiparticle beam the power from the heater wire had

to be calibrated against a parameter called the width parameter (WP) which is used to

calibrate the BBR. The width parameter is defined as

WP = ∆f2TkB(T + ∆0/kB), (2.60)

in which there should be a linear relationship between the width parameter and power

of a BBR. By finding the coefficients of this fit the power of the BBR can be determined.

This calibration is very useful as the power given out by the box can be dependent on the

magnetic field strength. Thus for any measurements that need the quasiparticle beam

the power can then be found from the temperature of the box instead of looking at the

field dependent faraday voltage. This will be explained in the preliminary measurements

section.

This calibration can be used to find the geometrical constant γ which defines the sensi-

tivity of a probe to quasiparticles. In order to find this relation we must first look back
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at Eq. (2.30) which defines the thermal force and correlate it to the definition of thermal

force shown below

FT = 2πm∆f2v, (2.61)

where m is the mass of the probe, ∆f2 is the width of the resonance of the probe shown

in section 2.4 and v is the velocity of the probe. When these two equations a correlated

a relationship between the width of the resonance and the quasiparticle flux 〈nvg〉 is

found

∆f2 =
γdp2

F

πmlkBT
〈nvg〉 . (2.62)

In this equation ml is defined as the mass per unit length of the wire and d is the

diameter of the wire. The only unknown parameter in this equation is the quasiparticle

density 〈nvg〉. The quasiparticle density is related to the flux of quasiparticles Ṅ going

out of the BBR hole in the following way

Ṅ =
AH 〈nvg〉

4π

∫ π/2

0
cos(θ) sin(θ)dθ

∫ 2π

0
dφ. (2.63)

Where AH is the area of the hole of the BBR, θ is the angle from the apex of the cap

generated from the BBR and φ is the angle which defines where on the x-y plane normal

to the direction of the quasiparticle beam. This reduces down to equation 2.64. The

fraction is 2
4 instead of 1

4 in order to take into account the quasiholes leaving the BBR

Ṅ =
2

4
AH 〈nvg〉 (2.64)

The flux of quasiparticles Ṅ is related to the power by Ṅ = Q̇
〈E〉 where 〈E〉 is the mean

quasiparticle energy in the BBR which is defined as 〈E〉 = ∆ + kBT in which ∆ is the

energy gap in 3He and kBT is the thermal energy of the quasparticles. Using these

equations 〈nvg〉 can be defined as

〈nvg〉 =
2Q̇ 〈E〉
AH

. (2.65)
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Plugging this into equation 2.62 and rearranging we find that the BBR calibration gives

∆f2 〈E〉T
Q̇

=
2dp2

Fγ

πkBmlAH
, (2.66)

where ∆f2 〈E〉T is the width parameter which is given by equation 2.60. This is useful

as γ can be determined from this calibration. Also by using this calibration the power

of the BBR can be calculated when the width parameter of the BBR is known. This is

useful for when the magnetic field has changed between one BBR measurement and the

next.

2.11.1 Damping Predictions

By using the definition of the quasiparticle density and some geometrical arguments

the damping on the forks due to the BBR can be predicted. These measurements can

then be compared against the experimental data. The quasiparticle density 〈nvg〉F that

reaches the fork is related to the quasiparticle flux dṄ by 〈nvg〉F = dṄ(θ)
dA where dA

is the area element the quasiparticles are going through and dṄ(θ) is defined as the

number of quasiparticles going through the area element every second.

Black Body Radiator 

θ

r

Tuning Fork 

R

h

Figure 2.12: A diagram showing the angle between the quasiparticle beam and the
tuning fork. Note: this is a 2D sketch of a 3D situation.

In order to find the size of the area element dA and the rate of quasiparticles going

through that element dṄ a model containing the probe and BBR needed to be created.

This model is shown in figure 2.12 and in this model the beam creates a cap with radius

r and an area element dA where dA = 2πr sin(θ)rdθ where the 2π defines the sum
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of all the φ components. Also in this equation the radius of the sphere r is given as

r = R/ cos(θ) where R is the closest distance from the BBR to the camera and h is the

distance from the closest point of the camera to the tuning fork that is being estimated.

Using this information we can derive that

〈nvg〉F =
dṄ(θ) cos(θ)2

2πR sin(θ)Rdθ
, (2.67)

where the value of dṄ(θ) is the rate of quasiparticles coming out of the BBR given by

dṄ(θ) = AH 〈nvg〉 cos(θ) sin(θ)dθ with AH being the area of the BBR hole. Using this

equation we can see that 〈nvg〉F turns into

〈nvg〉F =
AHcos

4(θ)

2πR2
〈nvg〉BBR , (2.68)

where the BBR superscript means for the black body radiator. This can be converted

into a power using equation 2.65 which gives

QF =
AP cos4(θ)

2πR2
QBBR. (2.69)

The extra cos(θ) term comes in because the quasiparticle flux comes into the tuning fork

at an angle θ. Plugging equation 2.68 back into equation 2.62 and converting for a fork

we can now see how the damping on a fork is affected by the quasiparticle flux coming

from the BBR (〈nvg〉BBR)

∆fF2 =
γWF p2

F

πmlkBTF
AH cos2(θ)

2πR2
〈nvg〉BBR . (2.70)

Using equation 2.62 for the wire in the BBR and then rearranging gives

〈nvg〉BBR =
πmW

l kBT
W

γW p2
Fd

∆fW2 . (2.71)

Plugging the quasiparticle density equation 2.71 into the equation for damping (equation

2.70) and then rearranging we find that
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∆fF2 T
F =

γF

γW
mW
l

mF
l

WF

dW
AHcos

2(θ)

2πR2
∆fW2 TW . (2.72)

The resonant width and temperature of the wire is related to the power of the BBR in

the following way

∆fW2 TW =
cQ̇

〈E〉
, (2.73)

where c is a constant derived by plotting the width parameter of the BBR against power.

Plugging equation 2.73 into equation 2.72 we find that

∆fF2 T
F 〈E〉 =

γF

γW
mW
l

mF
l

WF

dW
AH cos4(θ)

2πR2
cQ. (2.74)

Changing the mass of the wire and fork into densities then gives us

∆fF2 T
F 〈E〉 =

γF

γW
ρW

ρF
dW

tF
AH cos4(θ)

2R2
cQ, (2.75)

where ∆fF2 T
F 〈E〉 is the predicted width parameter of the fork when the BBR is at a

certain power. This predicted width parameter can then be used as a comparison to the

experimental width parameter.

2.12 Finding the Geometrical Constant γ

The geometrical constant γ is related to the sensitivity of a probe to quasiparticle damp-

ing. In order to find γ the power and width parameter of a probe need to be known.

This is possible for a black body radiator as it contains a heater and thermometer, how-

ever for objects that cannot measure the width parameter and power they need to be

calibrated from objects where γ is known.
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2.12.1 Finding γ for a BBR

Once the BBR calibration is found then γ is relatively easy to calculate from equation

2.66. In this equation the mass per unit length ml for a wire is given by ml = ρwπd2/4

and ml for a fork is given by ml = ρFWtF /4 where d is the diameter of the wire, ρw is

the wire density, ρF is the fork density, W is the width of the fork tine , and tF is the

thickness of the fork tine. Putting this new information into equation 2.66 gives

γ =
∆f2 〈E〉T

Q̇

π2kBρ
wd

8p2
F

AH , (2.76)

for a wire and

γ =
∆f2 〈E〉T

Q̇

πkBρ
F tF

8p2
F

AH , (2.77)

for a tuning fork. Finding γ is useful as it shows how sensitive the thermometer wire in

the BBR is to quasiparticle damping. Using γ for a fork the power entering the pixel

can be implied from a rearrangement of the previous equation.

Q̇F = ∆f2 〈E〉T
πkBρ

F tF

8p2
Fγ

AP . (2.78)

This can be useful in finding out how efficient a bolometer is. By comparing Q̇F with

the power emitted from the BBR we can find out what percentage of the power from

the BBR goes into each one of the pixels.

2.12.2 Using γ From One Tuning Fork in Order to Determine γ for

Another Fork in Thermal Equilibrium with the First

Assuming that a fork sitting in a hole in a copper block is a BBR we can determine γ

for that fork. The exact method for doing this is explained in Section 4.2.3. Sometimes

it is not easy to use this method on a particular fork to determine γ. In that case as

long as both forks are in thermal equilibrium then by knowing the value of γ for one

fork then the value of γ for another can be determined. Going back to equation 2.62

and slightly modifying it we find that the quasiparticle damping on a fork is given by
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∆fF2 =
γFWF p2

F

πmlkBTF
〈nvg〉F , (2.79)

where using the superscript F means for fork and the superscript W stands for wire.

Assuming that the temperature and quasiparticle flux hitting both of the forks is the

same we can say that

〈nvg〉F = ∆fF2
2

πmlkBT
F

γF2WF p2
F

. (2.80)

Putting this value of 〈nvg〉F into equation 2.79 we find that

∆fF2 =
γFWF p2

F

πmlkBTF
∆fF2

2

πmlkBT
F

γF2WF p2
F

. (2.81)

Since the only factor that is different between the forks is γ this condenses down to

equation 2.82.

γF2 =
γF∆fF2

2

∆fF2
. (2.82)

This equation assumes thermal equilibrium between the forks being measured and that

the mass per unit lengths ml and the widths of the forks WF are the same. Using

equation 2.82 the values of γ for all tuning forks in the cell can be determined.

2.12.3 Finding γ for One Wire Using γ From Another Wire in Thermal

Equilibrium With It

If two wires are in thermal equilibrium the properties of one wire can then be used to

determine the properties of the second. We will start by modifying equation 2.62 for

one of the wires

∆fW2 =
γWdW p2

F

πmW
l kBT

W
〈nvg〉W , (2.83)
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where the superscript W stands for wire. This equation can also be made for the second

wire

∆fW2
2 =

γW2dW2p2
F

πmW2
l kBTW2

〈nvg〉W2 . (2.84)

In this equation 〈nvg〉W2 is the same as 〈nvg〉W and the temperature of both wires is

the same. Rearranging the last equation in terms of 〈nvg〉W we find

〈nvg〉W =
∆fW2

2 πmW2
l kBT

W2

γW2dW2p2
F

. (2.85)

Plugging this equation into equation 2.83 we find

∆fW2 =
γWdW∆fW2

2 mW2
l

mW
l γ

W2dW2
. (2.86)

As the mass per unit length of the wire ml is given by mW
l = π

4ρ
WdWdW . Rearranging

for γW2 we find that

γW2 = γW
ρW2

ρW
∆fW2

2

∆fW2

dW2

dW
. (2.87)

ml is slightly different for one of the wires in the cell. For this wire is defined as

mW
l = ρWdWdW . Putting this into equation 2.86 we get

γW2 = γW
4

π

ρW2

ρW
∆fW2

2

∆fW2

dW2

dW
. (2.88)

This is useful if there are two wires are in thermal equilibrium with one another where

the value of γ of one of those wires is known.

2.13 Chapter Summary

This chapter explained the theory behind the measurements that took place. The prop-

erties and phases of 3He were discussed as well as the properties of quasiparticle damping
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in 3He-B. We then discussed Andreev reflection and created a new model of quasiparticle

damping in 3He-B in order to take this phenomenon into account. This new model was

then used to find derivations for the temperature and two geometrical constants: the

sensitivity of a probe to quasiparticles γ and the probes velocity dependence to thermal

damping λ, where λ could be extracted from the reduced force and reduced velocity. γ

was then found using 2 methods one of which was through a BBR calibration and the

other was through the comparison of damping between two probes where the value of γ

for one of these probes is known. Through the derivation of γ a theoretical model of the

quasiparticle damping due to the BBR quasiparticle beam was utilised which explained

the dependence of the frequency of the vibrating object on its velocity and force.



Chapter 3

Experimental Setup

In order to achieve temperatures of the order of 100 µK, required for measurements

in the ballistic regime of superfluid 3He, the experimental volume (cell) was mounted

onto a Lancaster-style nuclear cooling stage, which was itself attached to The Lancaster

Advanced Dilution Refrigerator [41] [42], which is capable of reaching temperatures as

low as 2 mK in continuous operation. During the precooling stage, a good thermal

connection between the nuclear stage and the dilution refrigerator is needed. However,

during adiabatic demagnetisation and afterwards, the nuclear stage must be isolated

from the refrigerator, requiring a heat switch.

A large magnetic field (∼ 7 T) is used to order the nuclear spins of the silver coated

copper sheets around the cell [43] [44] while the cell is pre-cooled to a temperature of ∼

5 mK using the dilution refrigerator. The cell is then cooled to 100 µK using adiabatic

demagnetisation with a final field of ∼47 mT in the magnet [45]. The temperature of

the cell stays close to 100 µK for around a week. It is during this week in the Adiabatic

Demagnetisation cycle that all measurements pertaining to this thesis were taken.

3.1 Outline of the Cell

Figure 3.1 shows a general overview of the cell. Some of the early measurements in this

cell are shown in the work of Ahlstrom et al. [46] and the thesis of Edward Guise [47].

The cell was built to image the quasiparticle beam profile from a Black Body Radiator

(BBR) and a source wire that is called µµµ3, using a quasiparticle camera that consists

34
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Figure 3.1: A diagram of the different components in the inner cell. All the Mµ wires
have a diameter of 1.5 µm, all µµµ wires have a diameter of 4.5 µm and all µ wires have
a diameter of 1.5 µm. All the wires shown in the diagram apart from ICTA and the

MEMS are made from Niobium Titanate.

of 25 tuning forks. In order to find this beam profile the bulk temperature needs to

be found and therefore there need to be instruments in the cell that are designed for

thermometry. The main wires that are used for thermometry at high temperatures are

the inner cell tantalum wire (ICTa) and the outer cell tantalum wire (OCTa) where

OCTa is not shown in figure 3.1 as it is outside of the inner cell. Due to the high density

of tantalum and their large diameters they cannot be used at low temperatures (T ≤

150 µK).

All of the other vibrating wire resonators in the cell were constructed from multi-

filamentary NbTi wire. There are approximately 60 filaments in the wire and each

filament has a diameter of 4.5 µm or 13.5 µm. We use these to create so-called µµµ

(triplemicro) and µ (single-micro)-wires, respectively. The µµµ-wires are typically used

as thermometers and detectors, whilst µ-wires tend to be used as heaters. In the cell we

have a megamicro (Mµ) wire which has a diameter of 1.5 µm. While all the wires in the

cell except for ICTa and OCTa are effective thermometers at temperatures ≥ 100 µK,

the Mµ wire is the wire most commonly used for thermometry. This is because of two

reasons. The first reason is that the wire is one of the most sensitive probes in the cell

to temperature change. The second reason is that the probe is placed far away from

most of the other probes in the cell which means that it won’t register any heat leaks in
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the cell from any of the other probes. The Mµ has a leg spacing of 2.5 mm and is placed

behind the BBR.

In order to verify the temperature reading from the Mµ the wires µµµ1 and µ1 were

used with µµµ1 being a thermometer wire close to µ1. These wires are less reliable than

the Mµ as they are more likely to be affected by heat leaks due to being closer to other

probes in the cell. µµµ1 has a lower intrinsic width than the Mµ which means it is a more

effective thermometer at T ≤ 100 µK. Both of these wires have a leg spacing of 3 mm

and are placed to the side of the BBR. The wire µµµ3 can be used as a thermometer

in order to verify the Mµ , but is also less reliable due to its proximity to other probes

in the cell. The main purpose of this wire in the experiment is to create a quasiparticle

beam that has a profile that can be imaged by the tuning forks. This wire is commonly

known as the ’source’ wire. This wire has a leg spacing of 3.2 mm and is placed 1 mm

away from both the tuning forks and the front of the BBR.

3.1.1 BBR Description

Our BBR consists of two wires µµµ2 and µ2 that use the same concepts explained in

section 3.2.1. Both of the wires in the BBR have a leg spacing of 3 mm and are placed

inside a box that consists of stycast impregnated paper which has dimensions of 5.5 by

5.5 by 5.5 mm. A hole has been drilled into the BBR with a diameter of approximately

0.3 mm and hole depth of 0.4 mm.

5.5mm

5.5mm

0.3mm

0.4mm

μμμ2 (Thermometer wire)

μ2 (Heater wire)

Figure 3.2: A 2D diagram of the box and its dimensions (Not to Scale). The height
of the box is 5.5 mm and is not shown in the diagram.
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The BBR is used to create a quasiparticle beam which is generated by driving the

generator wire (µ2) to a high power with the power being given by Q̇ = Fv in which

the profile of the beam is supposed to be focused on the centre of the quasiparticle

camera. When the generator wire is being driven hard the damping on the thermometer

wire(µµµ2) can be used to deduce the temperature inside the BBR. The principles behind

the BBR operation are discussed in section 2.11.

3.1.2 The Quasiparticle Camera

A set of measurements in this thesis evaluate the suitability of the quasiparticle camera

in order to find the beam profile from the source wire (µµµ3) and the BBR. In order

to explain these measurements it is best to explain how the quasiparticle camera was

designed. The quasiparticle camera consists of a copper block with dimensions of 5.7×

5.7 × 4.0 mm in which 25 holes with a diameter of 1.0 mm were drilled with the intent

that a tuning fork would sit into each individual hole. This is shown in figure 3.3 [46].

Figure 3.3: A picture of the quasiparticle camera before it was added to the cell.

As shown in figure 3.3 every 5 of these tuning forks are connected electrically in an array.

The camera consists of 5 of these arrays that are similar to that shown in figure 3.4 [46].

The arrays in the camera are named in order from A to E, and then the forks on the

array are then given a number dependent upon their frequency i.e where A1 has the
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lowest frequency in A Array and A5 has the highest frequency. The arrays were chosen

so that the minimum difference in frequency between 2 forks on the same array in this

experiment is approximately 2 kHz. As the line width of the forks is ∼ 0.05 Hz at low

temperatures this means that the resonances of the forks are very unlikely to overlap.

Figure 3.4: A typical array of tuning forks that would be placed in the quasiparticle
camera.

  ~

  ~

  ~

  ~

  ~

SA IV

Lockin 

Ampli�er

Lockin 

Ampli�er

Lockin 

Ampli�er

Lockin 

Ampli�er

Lockin 

Ampli�er

Reference Signal

Reference Signal

Reference Signal

Reference Signal

Reference Signal

Figure 3.5: The setup for one of the arrays in the quasiparticle camera where five
signals go through an array of 5 forks reaching a set of 5 Lockin Amplifiers. Note that
SA is the summing amplifier with active attenuation and the IV is a current to voltage

converter created by Holt et al. [48].
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The measurement setup of the quasiparticle camera is shown in figure 3.5. In this setup

the signals of 5 Agilient generators [49] are used to create a response from the forks. In

this setup A,B,C, and D arrays all used Agilient model 33521A generators and E array

used Agilient model 33220A generators. The signals from these generators are used to

drive the forks at their resonant frequencies which are at a minimum of 2 kHz away from

one another in order to prevent the resonances from overlapping. These signals are then

combined and attenuated using a summing amplifier and then sent to the tuning forks

where they create a response. The signal from the fork is then amplified using one I-V

converter [48] with a gain of 106 V/A and then sent to the SR830s in order to measure

the response [50].

3.1.3 Properties of the MEMS

Through a collaboration between Lancaster University and the Centre National de la

Recherche Scientifique (CNRS) a Micro Electrical Mechanical System (MEMS) was cre-

ated (at CNRS) and placed in our Lancaster cell. The MEMS has a goalpost shaped

structure with legs that are 1 mm away from one another and is made of polycrystalline

silicon with a thin layer of aluminium at the surface [51] [52]. The MEMS is placed

away from the BBR in order to make sure that this probe is in thermal equilibrium.

Recent measurements that were taken of the MEMs can be found in [53]. These show

γ and λ measurements for the wire as well as determining the line-shape of the MEMS

resonance at different velocities and finding the critical velocity.

3.2 Operating Principle of Vibrating Resonators

In this section we discuss the principles behind operating the various probes in the cell.

This includes information such as how the probes were driven and how the response of

the probe was obtained and analysed. These probes were chosen because of their high

quality (q) factor [54]. This factor is defined as

q =
f0

∆f2
. (3.1)
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In this equation q is the quality factor, f0 is the resonant frequency, and ∆f2 is the Full

Width at Half Maximum (FWHM) of the Lorentzian resonance. The q-factor for most

of the probes in the cell after demagnetisation is greater than 103 which means that

these probes are ideal for low temperature measurements.

3.2.1 Vibrating Wires

In our vibrating wire setup the wire is driven by a generator using an alternating current

which is then attenuated by a drive box which has a set of resistors and a transformer

as shown in figure 3.6. The current through the wire generates a Lorentz force. As the

wire is superconducting the main response of the wire to this force is to create a Faraday

Voltage. The Faraday voltage VF and the Lorentz force FL are related to the velocity

and drive of the wire by the following relations.

vW =
VF
BL

. (3.2)

FL = BIL. (3.3)

Where B is the magnetic field strength, I is the current going through the wire, and

L is the distance between the legs of the wire. The Faraday Voltage is then amplified

by a low temperature transformer. The amplified signal is measured using a Stanford

Research 830 (SR830) lockin [50] which is synchronised to the generator. The data is

then recorded on the computer using either a General Purpose Interface Bus (GPIB)

[55] or a Data Acquisition (DAQ) [56] card.

All the wires in the cell have a Lorentzian curve when they are driven at low forces near

their resonant frequencies. From the Lorentzian curve the temperature and the width

parameter of the wire can be found. This is shown in section 2.6.1.
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Low Temperature Transformer

SR830

Reference signal

100 kΩ resistor

10 kΩ resistor

1 kΩ resistor

100 Ω resistor

Drive Box Vibrating Wire 

Figure 3.6: Setup of a vibrating wire. The signal is created by a generator and then
goes through a drive box to the wire which generates a faraday voltage. This signal is

amplified by a low temperature transformer and then read by an SR830.

3.2.2 Tuning Forks

3.2.2.1 Properties That can be Calculated From the Tuning Fork Response

The tuning forks used in this cell were manufactured by Statek Corporation [57] and were

designed to have a width W of 50 µm, and a thickness of each prong T of 90 µm. Each

tuning fork in the 25 pixel detector had a unique length L of the order of millimetres.

A width of 50 µm was chosen as it gives a high sensitivity to quasiparticle damping,

which is useful for any type of beam profile measurement. The lengths of the forks have

a range between 1.400 and 1.875 mm and each fork is custom made meaning they each

have a specific length. This gives each tuning fork a specific frequency as given by

f0 =
1

2π

√
k

meff
, (3.4)

meff = COρqLTW. (3.5)

Combining these two equations gives us

f0 =
1

π

√
k

ρqLTW
, (3.6)
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where equation 3.5 shows the effective mass of the prong meff as it is derived by

Blaauwgeers et al. [54]. In these equations ρq is the density of quartz, k is the spring

constant of the material, and CO is a constant which is determined to be 0.2427 in the

cantilever beam model given by Karrai [58] and 0.25 by Bradley et al. (2012) [59], where

the value of C from Bradley et al. was used to calculate the effective mass in this thesis.

This was done as a safeguard to make sure that none of the forks received pickup from

any of the other forks in the cell.

Other parameters that are useful to calculate for the tuning fork are its velocity and

force which are given by

v =
I

a
, (3.7)

F = aV/2, (3.8)

where I is the current generated by the fork , V is the drive acting on the fork and a is

the fork constant which is defined as

a =
√

4πmeffHWD. (3.9)

The fork constant is dependent on the effective mass and the HWD of the fork with

the HWD being defined in equation 2.20 and the effective mass meff being defined

previously in equation 3.5. From calculating the velocity and force of a tuning fork we

can figure out when the fork begins to break pairs in the superfluid. The displacement

of the fork can be calculated from the velocity as shown in [60].

d =
v

2πf
. (3.10)

This calculation is useful as it determines whether the displacement of fork prongs is

close to the inter-prong distance (90 µm). If this displacement is determined to be close

to the inter-prong distance than the force acting on the fork can be decreased. This in

turn stops the fork from breaking.
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3.2.2.2 Tuning Fork Harmonics

The first harmonic of a tuning fork is used in this experiment in order to calibrate one

of the tuning forks in the cell as a bolometer. Therefore it is useful to study some

of the properties of the harmonics of these devices. The paper of S.S.Chaung [61]

shows some of the properties of tuning forks including the properties of their harmonics.

In order to explain the harmonics of these tuning forks and their frequencies from a

theoretical perspective we must first look at Euler-Bernoulli thin beam theory. This

theory assumes that the thickness and width of the beam is minimal compared to the

length of the beam (i.e.(W,T )� L). Using this premise the equation of motion for the

prong can be deduced as shown by Bradley et al. [59].

µ
δ2u(x, t))

δt2
+

δ2

δx2

(
EqI

δ2u(x, t)

δx2

)
= q(x, t). (3.11)

In this equation u(x, t) explains the displacement of the prong at position x along it.

The area moment of inertia I is defined as WT 3/12, E is the Young’s modulus of quartz

and q(x, t) is the distributed load as force per unit length. µ defines the mass per unit

length of the prong which is

µ = COρqWT, (3.12)

where ρq is the density of quartz which is 2659 kg/m3. Assuming that the prong has one

fixed end and one free end then equation 3.11 gives rise to four boundary conditions for

the prong.

u(x, t)|x=0 = 0
du(x, t)

dx
|x=0 = 0, (3.13)

d2u(x, t)

dx2
|x=L = 0

d3u(x, t)

dx3
|x=L = 0. (3.14)

In which du(x,t)
dx is the bending of a point on the the cantilever beam, d2u(x,t)

dx2 is related

to the bending moment at that point d3u(x,t)
dx3 |x=L = 0 is related to the shear force on
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that point on the beam Using the equation of motion for the prong and putting in the

boundary conditions the resonant frequencies of the prongs are given by

ωn = 2πfn =

√
EI

µ

β2
n

L2
, (3.15)

which is shown in [62]. The variable βn is known to satisfy the equation

cos(βn) cosh(βn) + 1 = 0, (3.16)

where βn is related to the length of the prong using the following expression,

βn = bnL. (3.17)

These give solutions for the values of βn, found by K.Karrai [62]. The ratio of the

frequencies of any two resonances on the fork are given by this equation which is derived

from equation 3.15

fn+1

fn
=
β2
n+1

β2
n

. (3.18)

The values of β2
n

β2
1

as well as the value of βn are shown in table 3.1. Using this table as

a reference we can deduce that the First Harmonic has a predicted frequency of 6.27

times the fundamental frequency. In the thesis of Edward Guise [47] the ratio of the first

overtone and fundamental frequency was plotted against the ratio of the prongs length

to its width. Figure 3.7 gives a experimental comparison to the theoretical predictions

discussed above. It shows that at higher width to fork ratios that the thin beam model

does not work perfectly. This causes a deviation in the ratio of f2/f1. However we have

shown that the Euler Bernoulli thin beam theory can still be used to give a ballpark

figure of the frequency of the harmonics of a fork.
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Table 3.1: The relation between β values for various harmonics [61].

Mode βn
β2
n

β2
1

Fundamental 1.875 1

First Harmonic 4.694 6.27

Second Harmonic 7.854 17.54

Third Harmonic 10.995 34.38

Figure 3.7: The frequency ratio between the fundamental and first overtone modes
as measured for a number of forks of similar width but varying lengths [47].

3.2.2.3 Tuning Fork Setup

The setup for the tuning forks is quite similar to that shown for the wires. A tuning fork

is a piezoelectric detector meaning that if the fork undergoes any type of stress then it

will respond by generating a current.

  ~ IV Lockin 

Ampli�er

Tuning Fork 

Reference signal 

SA

Figure 3.8: The setup of a single tuning fork
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In our tuning fork setup an Agilient generator [49] is connected to a summing amplifier

which will be at a set attenuation. The signals from the generator are then sent into

the cell where they will generate a response from the tuning forks in the array. The

response then goes out of the fridge to an I-V converter with a gain of 1 million V/A.

This I-V converter was created by Steve Holt [48]. The signals from the forks are then

read by a series of SR830 lockins [50] which are synched to the generators in order to

make sure they are reading the correct frequency. The lockins are measured through

a Data Acquisition card or the GPIB depending on the specific measurement that is

being taken. As the ethernet switch has been proven to cause warming in the cell when

it is on then for delicate measurements the generators are connected to the GPIB. This

is normally the case for overtone measurements especially the ones explained later in

section 4.2.3. Otherwise they are connected through an ethernet switch to the computer.

In order to measure the overtones of the forks a high frequency lockin had to be used.

The piece of equipment used for these measurements was a stanford research 844 lockin

(SR844) which operates between 25 kHz and 200 MHz. The setup for our high frequency

measurements is similar to figure 3.8 except a SR830 lockin has been switched out for

an SR844.

3.3 Measurement Techniques

In order to record data consistently many different computer programs were used. These

programs had different uses with some programs being used for quick measurements and

others being used to find the response of a probe to a frequency or driving force shift.

These programs are described in this section.

3.3.1 Tracking Width

In some of the measurements taken in this thesis there have been changes to the cell

that have taken place over a time period less than one second. In order to measure these

changes in the cell the resonance of the probe was tracked on its resonant frequency with

the in phase signal being kept at a constant value. By knowing the drive, signal, and

backgrounds of the probe we can calculate the force and velocity of the probe and then
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use the HWD given by equation 2.20 to find the width of the resonance. A program can

do this calculation in real time and then display the width as it is shown in figure 3.9.

Figure 3.9: Using the DAQ program to track the width of two thermometers in the
cell.

The tracking width program has been used for the beam profile measurements for the

BBR and the source wire, as there are quick changes to the temperature of the cell

during these measurements. This program has also been used to track the temperature

of the cell overnight in order to check if there was any instantaneous heating in the cell

during this period.

3.3.2 Frequency Sweeps

In a frequency sweep (f-sweep) the amplitude of the drive is set at a fixed value while

the frequency of the signal changes in increments in order to find the characteristics of

the resonance.

The frequency sweep in figure 3.10 shows an in phase and quadrature signal. These

signals are normally phase shifted until the Lorentzian of the in phase signal is found.

Another issue that had to be taken into account was ringing. In order to remove this issue

the time taken per point had be greater than the response time of the resonator i.e Ti ≥
1

∆f2
. Once the frequency sweep has been corrected for ringing then this measurement can

be used to determine the frequency, phase, HWD, and various other characteristics of

the resonance curves. These values are necessary for the function of the other techniques.
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Quadrature of signal 

In phase signal 

Figure 3.10: A frequency sweep of the fork D2 shortly after the cell had been demag-
netized

3.3.3 Amplitude Sweeps

In an amplitude sweep (I-swp) the drive of the probe is changed and the response of

the probe is measured when the probe is on its resonant frequency. In order to find

whether the probe is on the correct frequency the program calculates the fraction of the

quadrature signal against the in phase signal (
Vy
Vx

). If the fraction of
Vy
Vx

that is found

experimentally is lower than that the value of the fraction set in the program (1%)

then the program will take a measurement and then move on to a higher drive. Most

amplitude sweeps take hours to complete and therefore it is imperative that there are

no heat leaks in the cell when these measurements are being taken.

Force, [N]
10-14 10-12 10-10 10-8

V
el

oc
ity

 [m
s-1

]

10-4

10-3

10-2

10-1

Figure 3.11: The Force-Velocity characteristics of A2 found using an amplitude sweep.
This is at a temperature of 108µK.
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Amplitude sweeps are used to find the force-velocity characteristics of a probe including

its critical velocity vc shown in figure 3.11. They can be used to find the off-resonance

backgrounds of the probe which are explained in section A.1 and are necessary for

all measurements apart from frequency sweeps. In this experiment amplitude sweeps

are used in order to find the drive-dependent background of the probes as well as the

geometrical constant λ.

3.4 Chapter Summary

This chapter described the probes in the cell and the equipment and the programs that

were used in order to analyse these probes. The design of the cell was explained including

the BBR, quasiparticle camera, source wire, and various thermometer wires in the cell.

The BBR has a heater and a thermometer wire, which are necessary for calibrating

it, and the quasiparticle camera is a 25-pixel camera with the data from each pixel

coming from a quartz tuning fork. This chapter then discussed the operating principle

behind vibrating resonators which explained the room-temperature setup for measuring

the vibrating wires and tuning forks, the calculations of force and velocity for vibrating

wire resonators and properties of tuning fork harmonics. Finally, the various computer

programs that were used to measure the data were discussed as well as their benefits

and drawbacks.



Chapter 4

Characterising the probes in the

cell

In order to find the quasiparticle beam damping, the properties of various probes in

the cell need to be found in order for those probes to be calibrated correctly. The two

properties that need to be found for this calibration are γ and λ where γ is related

to the sensitivity of a vibrating object to quasiparticles and λ is related to the velocity

dependence of the thermal damping. Both of these calibration constants are of the order

of unity. The sensitivity of a vibrating object to quasiparticles γ is normally found for

Black Body Radiators when they are calibrated whether it is by pulse heating [63] or

permanent heating [64] [63]. If the value of γ for one probe is found then γ for another

probe can be found given that both probes are in thermal equilibrium. This method

has been used by Bradley et al. [65] in order to determine γ for a fork by comparing it

to a wire with a known value of γ and Defoort et al. [53] in order to find the value of γ

for a MEMS by comparing it to another wire in their cell and assuming that wire had

the same value of γ as Bradley et al. [65]. The value of λ for various probes has been

found previously for wires [66] [67] [65] and for forks [65] [67] where in all cases λ was

determined using an amplitude sweep of the probe. Fisher’s paper [66] gives us a value

of 0.95 for a wire while Bradley’s paper [65] gave 0.69 where both papers used a wire

with a 4.5 µm diameter. For a fork, Bradley’s paper in 2008 [67] gave a value of 1.28 for

a tuning fork which compares to the value of 0.45 for a tuning fork in Bradley’s 2009

paper [65] where the tuning fork in Bradley’s 2008 paper was much larger than the one

in Bradley’s 2009 paper.

50
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In this chapter we find out the sensitivity of a vibrating object to quasiparticles for a

BBR and for a tuning fork by using its first harmonic as a heater wire. We also compare

all other probes in the cell to these aforementioned probes when the cell was at thermal

equilibrium in order to estimate γ for these probes. The velocity dependence to thermal

damping will also be shown for two wires of different diameter, a tuning fork and the

overtone of that tuning fork. This shows whether λ is dependent on geometry and also

if it is dependent on the mode of oscillation of the probe.

4.1 Thermal Damping of Various Oscillators

4.1.1 Force-Velocity Characteristics of the Probes

A relatively quick way to find λ is shown in the non-linear corrections in the preliminary

measurements section (section A.3). While these measurements give a good indication

of the value of λ they are by no means the accurate measurements that can be used to

find damping due to the non-linearity of the probe. Instead the most reliable way to

find λ is by using an amplitude sweep to find the force-velocity characteristics of the

probe as shown in figure 4.1.

The sources of damping that affect the probe are the non-linear damping Fex, the in-

trinsic damping FI , and the thermal damping FT . The non-linear damping only exists

when the probe is driven to high enough velocities and the thermal damping is dominant

at high temperatures.

FT = F − FI − Fex. (4.1)

This can be simplified again to

FT = F (T, v)− F (0, v). (4.2)

This means that the thermal damping FT can be found if we know the damping force at

a certain velocity F (T, v) and subtract from it the intrinsic force at that velocity F (0, v).

In order to test a good range of velocities we used the amplitude sweep program. We took
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Figure 4.1: Amplitude sweeps of µµµ3 at different temperatures to find the force-
velocity characteristics of the probe where black circles correspond to the intrinsic
damping of the probe. The temperature of each characteristic is shown next to it on
the graph. The circles indicate the part of the ramp where µµµ3 was increased to
a certain drive while the lines indicate when the probe was ramped back down to a

minimal drive.

measurements of the force-velocity characteristics of each probe at various temperatures.

This is shown in figure 4.1 and figure 4.2. In figure 4.1 anything coloured in black is

the intrinsic I-swp from the 11th demagnetisation. This was at a temperature of around

100 µK. The rest of the I-swps have been done in either the 3rd or 4th demagnetisation

of this run and have temperatures ranging from 120 to 200 µK. The intrinsic I-swps for

all of the wires and forks measured are shown in figure 4.3.

In figure 4.3 the velocity is plotted against force for various probes at the temperatures

where they have minimal thermal damping. The temperatures of the wires are placed

at the bottom of each respective I-swp. The intrinsic I-swp of the overtone of D2 was

measured in figure 4.3. This was done at 140 µK in order to make sure that the dominant

force on the wire was its intrinsic force and not thermal damping. These I-swps show that

pair breaking velocity for the probes is around 7 mm/s which is close to the estimated

pair breaking critical velocity of 9 mm/s where the force at which the fork goes pair-

breaking is dependent on the thermal damping in the cell. The I-swps in figure 4.3 do
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Figure 4.2: I-swps taken of µµµ3, Mµ, D2 and D2OV1 at different temperatures in
order to find the force-velocity characteristics of the probes. The temperatures are

indicated at the start of the I-swp.
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Figure 4.3: Intrinsic I-swps taken of various probes in the cell, These show a lack of
Andreev reflection as there aren’t any excitations in the bulk that the wire could shield

itself from.

not show a decrease in the quasiparticle damping of the wire near the pair breaking

critical velocity due to Andreev reflection which indicates that they are indeed intrinsic.
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4.1.2 The Force Velocity Gradient

The intrinsic damping for the wire is estimated by interpolating between the intrinsic I-

swp velocities and the I-swp of the wire at higher temperatures. Through this method the

intrinsic damping force and damping from non-linearity are then found and subtracted

from the total damping force of the wire at large temperatures. This gives the thermal

damping force for any of the I-swps of the wire that have been taken. The thermal

damping force is useful as the value of the geometrical constant λ can be found from

it. In order to do this, prefactors in equation A.3 need to be removed. To do this we

divide the thermal force by its gradient with respect to velocity dFT
dv where this fraction

is given by

dF

dv
=
−2Ap2

F 〈nvg〉 γ(1− e−λpF v/(kBT ))

kBT
. (4.3)

This value was found for every point on the I-swp and then plotted. This is shown in

figure 4.4.
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Figure 4.4: The change of dF
dV against thermal force in an amplitude sweep taken on

µµµ3 at 142 µK.

The problem with finding this value of dF
dv is that the I-swp measurement takes hours to

complete meaning that the temperature of the cell will increase during this time. This

is especially true when the wire is being driven past pair breaking in which case the cell
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will be actively warmed by the wire. In order to remove any effects of the temperature

change on dF
dv the force velocity gradient is estimated using the HWD of µµµ3 and the

width of the Mµ. This is shown below

(
dF

dv

)
c

= C
(∆f2)Mµ

RHWD
, (4.4)

where
(
dF
dv

)
c

is the force over velocity gradient calculated from the HWD. Note that for

the I-swps of the Mµ another probe had to be used as a reliable thermometer. This was

done using the width of µµµ3 and is shown below

(
dF

dv

)
c

= C
(∆f2)µµµ3

RHWD
. (4.5)

In these calculations the width of the probe is deduced from the width of a thermometer

probe in the bulk and the effective width C in which the effective width is a conversion

factor from the damping of one probe to another given by C =
∆fP2

2

∆fP1
2

where P2 is the

second probe and P1 is the first probe. This conversion factor is explained further in

section A.4. From the width of the probe the dF
dv can be found from the RHWD found

during the time the wire was on frequency sweep. This is where the ’Real’ HWD i.e

RHWD is given as

RHWD =
v

F∆f2
, (4.6)

where the force and velocity of the wire can be calculated through equation 3.2 and

equation 3.3 respectively. Once the calculated fraction (dFdv )c is estimated for all the

points on the I-swp it is then added to the dFT
dv which has been calculated previously in

order to get rid of the effect of the change in temperature in the I-swp. The calculated

fraction from the start (dFdv )c is then subtracted from the dFT
dv for all the points on the

I-swp. This is all shown in

(
dF

dv
)corr = (

dF

dv
)c − (

dF

dv
)c(st) + (

dF

dv
), (4.7)
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where (dFdv )corr is the corrected (dFdv ) ,(dFdv )c is the value of (dFdv ) calculated from the HWD

and (dFdv )c(st) is the value of (dFdv ) calculated from the start of the I-swp. Using equation

4.7 the initial shift in the intrinsic (dFdv ) can be accounted for as shown in figure 4.5.
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Figure 4.5: The change of corrected DFDV against thermal force in 1 I-swp of µµµ3

at 142 µK.

The value of dF
dv corr

plotted in figure 4.5 is the one used in further calculations to find λ.

This value is only dependent on the temperature of the cell not the velocity the probe

is driven to.

4.1.3 Finding λ From the Amplitude Sweeps

Once the force-velocity gradient has been found then the value of λ can be found. By

dividing the thermal force by the gradient of the thermal force with respect to velocity

we find that

FT
dFT
dv

=
kBT (1− e

λpF v

kBT )

λpF
. (4.8)

By rearranging equation 4.8 we get the equation shown below

FT
dFT
dv

pF
kBT

=
(1− e

λpF v

kBT )

λ
. (4.9)
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The value of FT
dFT
dv

pF
kBT

is known as the reduced force. To simplify equation 4.9 we turn

everything into a reduced velocity which is the same as explained in the theoretical

section (equation 2.57). This is where dFT
dv∗

is defined by equation 4.10 and v∗ is called

the reduced velocity and explained by equation 4.11.

dFT
dv∗

=
dFT
dv

kBT

pF
, (4.10)

v∗ =
pF v

kBT
. (4.11)

By plotting the reduced force against reduced velocity given by equation 2.57 against

equation 4.11 we can estimate the value of λ. This is done by calculating the reduced

force for any given value of the reduced velocity and seeing if the theoretical curve fits

the data. This is shown in figure 4.6 where the blue line is the experimental data that

was retrieved using the I-swp and the red line symbolises the theoretical fit to the data

given by equation 2.57. This I-swp was taken at roughly 142 µK and the temperature

change in the cell during this I-swp was about 4 µK.
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Figure 4.6: The plot of reduced force against reduced velocity for the amplitude sweep
of µµµ3 at 142µK in order to find λ. The theoretical curve is with λ at 0.6± 0.03. The
error in lambda was found by comparing various theoretical curves and seeing which

range of curves fit the data well.
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This process was then repeated for most of the I-swps shown in figure 4.1 for µµµ3 This

gives us a value of λ of 0.50 ± 0.10 which is similar to the value of 0.69 calculated by

Bradley et al. [65]. This method may not be perfect as it does not average the data,

meaning there are odd points at high values of the reduced velocity that were not fitted.

Reduced Velocity 
0.5 1 1.5 2 2.5

R
e

d
u

ce
d

 F
o

rc
e

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

DM3 Iswp1 T=120 micro K 

DM4 Iswp3 T=130 micro K 

DM4 Iswp1 T=125 micro K

DM4 Iswp5 T=138 micro K 

DM4 Iswp8 T=142 micro K 

DM4 Iswp11 T=204 micro K

Theoretical !t, Lambda is 0.5

Figure 4.7: The plot of reduced force against reduced velocity for all the amplitude
sweeps of µµµ3 analysed in order to find λ with a theoretical fit of λ is 0.50± 0.10.

This process has been repeated for five amplitude sweeps of D2OV1 at different temper-

atures. Three of these were at 60 dB attenuation while the other two were at 40 dB. The

Reduced Force against Reduced Velocity of each amplitude sweep has been averaged

and is plotted below.

The same process has also been done for the Mµ and the fundamental of the fork known

as D2. These give values of λ of 0.83 ± 0.07 for the Mµ , 0.60 ± 0.10 for µµµ3 and

0.3±0.06 and 0.10±0.03 for the fundamental and harmonic of the fork D2 respectively.

The differences in the value of λ for the wires may be because of their different wire

diameters as postulated in [65].

In figure 4.9 the reduced force and reduced velocity were found for the Mµ, µµµ3, and

the fork D2 using the methods that were explained previously. The symbols used in

this graph are the same as those used in figure 4.2 and are from I-swps taken at various

temperatures. This graph shows that the data collapse nicely onto a single curve for
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Figure 4.9: Calculations of λ for various probes in the cell.

each probe. The lines going through the curve are theoretical fits using equation 2.57

(shown in the graph). The fits show that the mode of oscillation does effect λ as D2



60

(0.30± 0.06) has a higher value of λ than D2OV1 (0.10± 0.03). They also indicate that

the value of λ is dependent upon the diameter of a wire as the Mµ (0.83 ± 0.07) has a

slightly higher value of λ than µµµ3 (0.60± 0.10). Finally, the value of λ for the wires

is much higher than that for the forks which indicates that geometry does play a factor

in determining the geometrical constant λ.

4.2 Sensitivity of Vibrating Objects to Quasiparticles

4.2.1 Finding γ for µµµ2

The derivation for γ for a wire can be found by rearranging equation 2.66 and is given

as

γ =
∆f2 〈E〉T

Q̇
× πkBml

2dp2
F

AH . (4.12)

The value of the width parameter over power ∆f2〈E〉T
Q̇

has been found using the BBR

calibration as 3·33x10−18Hz,J,K/W shown in section 5.1. The mass per unit length of

the wire ml and the area of the hole AH can be converted into parameters that are

better known. This gives the equation

γ =
∆f2 〈E〉T

Q̇
× πkBρdπ

2R2

8p2
F

. (4.13)

Where ρ is the density of the probe material which for wires is 6050 kg/m3 and for the

forks is 2660 kg/m3 and R is the radius of the BBR hole which is 0.15 mm, d is the

diameter of the wire, and pF is the Fermi momentum. From this calibration we get that

the value of γ for µµµ2 is 0.16. This is similar to that found in [65] which gives a value

of 0.24 for wires.

4.2.2 Using γ for µµµ2 to Find γ for Other Wires in the Cell

The equation for finding γ for one wire when another is known has been shown in

equation 2.87 and is restated here
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γW2 = γW
ρW2

ρW
∆fW2

2

∆fW2

dW2

dW
. (4.14)

All these variables except the
∆fW2

2

∆fW2
are known. This fraction has to be found experimen-

tally using a method shown in section A.4. In this situation the effective width C shown

is defined as C =
∆fW2

2

∆fW2
which for any comparison of γ with µµµ2 gives C =

∆fW2
2

∆f
µµµ2
2

.

The values of C between each wire were then found and the value of γ calculated from

it. These results are then put into a table shown below.

Table 4.1: Effective width of the wires compared to µµµ2 and the value of γ for all
wires except µ2, ICTA and OCTA.

Device µµµ2 µµµ1 µµµ3 Mµ µ1 MEMS

Effective Width 1 1 0.97 3.14 0.36 0.96

γ 0.159 0.159 0.153 0.167 0.172 0.330

Error in γ 0.004 0.005 0.004 0.005 0.005 0.009

The reason γ for µ2 could not be measured is because the wire wasn’t swept over a large

temperature range meaning that the effective width could not be found. The value of γ

for ICTA and OCTA weren’t measured as they weren’t swept at the same temperatures

that the other wires were swept at. All of the other wires in the cell apart from the

MEMS had approximately the same value of γ. One possible reason that the value of γ

is different for the MEMS is because it is made of a different material and is a goalpost

shape which is different from the semicircle shape that most of these wires have. The

value of γ of the MEMS is by Defoort et al. [53] to be 0.7 which is different than the

value of the MEMS of 0.33 found in this thesis. The method used in [53] was to compare

the effective width of the MEMS against the Mµ and then calculate γ for the MEMS

using γ for the Mµ. In their calculation they use a value of γ from a previous paper (0.3

which is from [65]). This is different from the value of γ calculated in this thesis of 0.16.

4.2.3 Finding γ for D2 Using its Overtone Mode

In order to find γ for the forks we have to assume that they are bolometers. This means

that local to the fork we have to assume that the helium is in thermal equilibrium. In

order to calibrate the bolometer the width parameter of the fork has to be calibrated

against its power. In these measurements we use the first overtone of the fork as a heater
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and the fundamental mode as a thermometer. The overtone is being measured by a high

frequency Stanford Research 844 lockin while the fundamental is being recorded by a

Stanford Research 830 lockin.

The fork we chose for these measurements was D2 and this was because of the low

intrinsic width of the overtone of the fork. The intrinsic width of the overtone of D2 is

3 Hz compared to other forks which have an intrinsic width closer to 100 Hz. Because of

the lower intrinsic damping on the overtone it means the overtone will go pair breaking

with a low driving force and is therefore more useful as a heater. A diagram of the

dimensions of a fork in a copper block are shown in figure 4.10. Another assumption is

that none of the quasiparticles escape through the back hole of the camera. This may

not be a good assumption because the distance between the back wall and the camera

is 1.5 mm which gives ample space for quasiparticles to disperse in the cell.

A

B

C

D

E

Figure 4.10: The hole drilled within the copper block has a depth of 4 mm (E) and a
radius of 0.45 mm (D) in which the tuning fork is placed. The tuning fork used for these
measurements is called D2, and this fork has a prong length shown by (A) of 1.75 mm as
well as a prong thickness of 0.09 mm (B). The fork also has a distance between prongs
of 0.09 mm which gives a total thickness of 0.27 mm (C). These forks also have a width

of 0.05 mm which is not shown in the diagram.

The fundamental and overtone resonances of the fork D2 were found from a frequency

sweep with the overtone at a frequency of about 6.25 times the fundamental mode

frequency. From the frequency sweep the HWD and the intrinsics of the fork modes

were found and then all the relevent data were put into a DAQ program where the drive

of the overtone was then ramped up in steps up to 2.3 V at an attenuation of 40 dB

while the fundamental was tracked during this ramp as a thermometer of the pixel
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temperature and the thermometer wires Mµ, µµµ3, µµµ1, µµµ2 were used to check the

bulk temperature. The effect of the increase in drive in the overtone is shown on the

fundamental in figure 4.11.
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Figure 4.11: Effect of the drive of the overtone of D2 on the damping of its funda-
mental during the measurement.

The measurements shown in this figure were made using are at high drives because a

reduction in quasiparticle damping was seen at low drives near the pair breaking critical

velocity of the overtone. This is attributed to self shielding and at high drives the effect

of the extra quasiparticle damping on the fundamental is considerably higher than the

self shielding effect. The highest drive that could be achieved with the overtone was

2.3 V at an attenuation of 40 dB. This is because the overtone went off resonance at

higher drives and would not have given any useful data.

From this data the force of the tuning fork was derived using its drive and the velocity

was found from the output of the tuning fork Vx. This is shown in equation 3.7 and

equation 3.8. Then the power Q̇ inside the pixel was found using the velocity and force

as (Q̇ = Fv). Once the power of the overtone in the pixel was found the temperature of

the pixel was calculated using equation 2.39 and the width parameter of the fundamental

was calculated using equation 2.60. The width parameter of D2 was then plotted against

the power of D2OV1. This is shown in figure 4.12.

This plot gives a calibration constant c= 1.62× 10−19 ± 1.61× 10−20 Hz J K/W and an

x2 component of −4.99× 10−11 Hz J K/W2 with the error in the calibration constant
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Figure 4.12: Effect of the power of D2OV1 on the damping of D2. This is a similar
measurement to the BBR calibration.

being calculated by taking the normal of the residuals and dividing it by the mean

power in the fit. The plot seems to change gradient halfway through the measurement so

therefore it’s best to analyse the data at high and low drives as well as take a polynomial

of the data in order to see how the calibration constant changes with the fit.
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Figure 4.13: Polynomial fit of the previous data.

The polynomial fit gives a calibration constant of c= 2.04× 10−19 ± 2.58× 10−21 Hz J K/W

given by the norm of residuals on the plot. The fits of the data at high drives is given

by figure 4.14 and figure 4.15.
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Figure 4.14: Effect of the power of D2OV1 on D2 at high drives. This is done as it
seems like there was a change in gradient in figure 4.13.
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Figure 4.15: Effect of the power of D2OV1 on D2 at low drives. This is done as it
seems like there was a change in gradient in figure 4.13.

Figure 4.14 gives us a calibration constant c= 1.50× 10−19 ± 4.27× 10−21 Hz J K/W

while figure 4.15 gives a calibration constant of c= 1.83× 10−19 ± 8.24× 10−21 Hz J K/W.

As all the forks will be driven to relatively low powers in this experiment then the lower

calibration will be used in order to determine the value of gamma for the forks as given

by equation 4.15.
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γF = c
πkBρF t

FπR2

8p2
F

. (4.15)

In this equation c is the BBR calibration constant, tF is the fork thickness, and R is the

radius of the front hole of the bolometer. This equation gives a value of γ of 0.18 for

D2.

The main reason this equation differs from the work of Bradley et al. [65] is because the

effective mass of the prong is calculated to be 4 times less then that in the aforementioned

paper. The equation of the effective mass of the prong is explained in equation 3.5. Using

the approach given in [65] the value of γ is found to be 0.72. A possible reason behind

how this is still different form the value of γ of 0.64 given by [65] is that the fork may

have not been driven to a high enough power to get an adequate calibration.

4.2.4 Using the Value of γ From the Pixel Calibration to Find γ for

the Rest of the Forks

The comparison between the value of γ for one fork and another can be calculated from

equation 2.34 and is given by

γF2 =
γF (∆f2)F2

(∆f2)F
. (4.16)

The assumptions governing this equation are that the cell is in thermal equilibrium and

that there there was no difference in the thickness between the tuning forks. The first

condition can be satisfied when the camera is at a relatively high temperature, and with

the second assumption the fork thickness was cut to 90 µm for all the forks in the wafer so

there shouldn’t be a distinguishable difference between the tuning forks. The data that is

used for the comparison between forks are warmups from two seperate demagnetisations

in which one had B array measured and another had C array measured. The effective

width is found between the warmups and can be used in the γ calculations as

C =
(∆f2)P

(∆f2)Mµ
, (4.17)
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where C is the effective width. which is determined using the Mµ as that is the most

reliable wire in the cell. From this equation 4.18 can be deduced.

C2

C1
=

(∆f2)P2

(∆f2)Mµ

((∆f2)Mµ

(∆f2)P1
. (4.18)

The (∆f2)Mµ cancels with itself. If we put this into equation 4.16 we find

γF2 =
γFC2

C1
. (4.19)

These have Mµ widths measured between 10 and 100 Hz for A,C,D, and E array. For B

array the Mµ width is measured between 1 and 10 kHz. These measurements of effective

width are explained further in section A.4. The effective widths of the forks are then

plugged into equation 4.19 which then generates table 4.2.

Table 4.2: Values of γ for all of the forks in camera. This was calculated using the
effective width between the fork and D2.

Array Fork 1 Fork 2 Fork 3 Fork 4 Fork 5

A 0.22 0.22 0.23 0.23 0.23

B 0.22 0.22 0.22 0.22 0.22

C 0.22 0.22 0.22 0.22 0.23

D 0.22 0.22 0.22 0.22 0.22

E 0.27 0.22 0.22 0.22 0.24

In this table all errors for γ are approximately ± 0.01. It can be seen that most of

these values of γ for the forks are similar to one another. This is expected because the

geometry of the forks are similar. E1 and E5 are exceptions to the rule and this is due

to these forks getting dirt on them or breaking their prongs. This is shown by the high

intrinsic width they have. The value of γ is similar for both the forks ∼ 0.22 and wires

∼ 0.16 in the cell. This may indicate that they oscillate in a similar fashion to one

another.

4.3 Chapter Summary

In this chapter, we have found the values of the geometrical constants γ and λ for various

probes in the cell. λ was obtained from the force-velocity characteristics of the probe for
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two wires, a tuning fork, and its overtone mode where the values of λ found were close

to unity. The value of λ for the wires was found to be 0.83 for the Mµ and 0.60 for µµµ3

which seem to be values similar to those in Fisher’s paper of 0.95 [66] and Bradley’s

paper of 0.69 [67]. The wires have a larger value of λ than the forks where the forks had

a value of 0.3 for D2 and 0.10 for D2OV1 which is probably because of the difference in

geometry between the forks and the wires. The value of λ for D2OV1 is 3 times smaller

than that of D2 indicating that the mode of oscillation for this tuning fork affects the

value of λ. The value of λ for D2 is close to that found by Bradley et al. [65] where the

fork in Bradley et al. [65] had a larger width and thickness than this fork which may

constitute for the difference in λ between these two experiments.

This chapter then found the value of the sensitivity of the probe to quasiparticles γ.

This was done for the thermometer wire in the BBR which was then used to find γ for

various other wires in the cell when they were in thermal equilibrium with µµµ2. The

value of γ for various other wires in the cell was then deduced by comparing the thermal

damping on the other wires to the thermal damping of µµµ2 where all the wires had a

value of 0.16 for γ except for the MEMS which had a value of γ of 0.33. The MEMS was

then postulated to have a different value of γ than the other wires as it had a goalpost

geometry compared to the semicircle geometry of the rest of the wires. The values of

γ for the MEMS was found to be different to that found by Defoort et al. [53] as the

value of γ for a wire used in Defoort et al. calculation came from the calibation by pulse

heating from Bäulerie et al. (0.28) [63] which is different than the value of γ found for

wires in this cell.

Finally, the value of γ was found for a tuning fork using its first overtone mode as a

heater and its fundamental mode as a thermometer. This was then compared against

other forks to find the value of γ for all tuning forks in the cell. Almost all of the tuning

forks in the cell had a value of γ close to 0.22 which is a lot smaller then the value of

γ for a tuning fork given by Bradley et al. [65] of 0.62, however this may be due to

there being a difference in size between the tuning forks in this experiment and those of

Bradley’s paper.



Chapter 5

Beam Profile From the BBR and

Source Wire

The BBR has been used for bolometric measurements in 3He-B for more than 20 years.

The initial measurements mainly studied the power emitted from the BBR [34, 63] as

well as its suitability as a probe to measure the beam profile of a VWR [64], while

later works investigated the feasibility of using a BBR as a dark matter detector [68].

After the discovery of quantum turbulence in 3He-B the BBR became a valuable tool

to characterise a turbulent tangle and its decay properties, with the first measurements

being of the fraction of quasiparticles that were reflected back into a BBR from a turbu-

lent tangle [43, 69, 70], and following measurements of the decay of turbulence inside a

BBR [71]. An overview of these measurements is found in Progress in Low Temperature

Physics [72]. This idea was modified so that a BBR could be used to find the amount

of quasiparticles that were transmitted through a turbulent tangle, with another BBR

creating the quasiparticle flux [73]. Up until this point the BBR has been used to probe

the properties of turbulence, but no effort has been made in order to use the BBR to

find the spatial distribution of a vortex tangle. The most recent work by Lancaster

ULT [46] shows early measurements of the beam profile as well as proof of concept of

a tuning fork as a detector of turbulent shielding, where the concept behind this cell is

described briefly in the Journal of Low Temperature Physics [74]. This work builds upon

the previous paper by giving the beam profile of the BBR as seen by the quasiparticle

camera. The results of this chapter can be used in further measurements to find the

spatial distribution of quantum turbulence.

69
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In this chapter we present the first measurements of the quasiparticle beam probed using

a 2D array of tuning forks and show that a beam of quasiparticles emitted by BBR is

uniform and that its profile does not depend on the amount of power emitted.

5.1 Calibration of the BBR

According to the law of conservation of energy, the power deposited in a steady state

inside the BBR has to equal the power leaving the box. In the ballistic regime in

3He-B, the power that is deposited inside the BBR and the power that leaves the box

are governed by quasiparticle excitations, where the power that leaves the box takes

the form of a quasiparticle beam. Thus calibrating the BBR will help us to know the

power emitted by the beam of excitations. In order to perform this BBR calibration

the thermometer (detector of excitations) and heater (excitation source) wires had to be

measured simultaneously. In the superfluid an excitation can be created when velocity

of an object or velocity of superfluid around the object reaches so-called Landau critical

velocity. The situation in 3He-B is a bit more subtle [39] where the velocity of the heater

wire µ2 had to be greater than one third of the Landau critical velocity in order to create

quasiparticle excitations in the BBR. At zero bar in 3He-B Landau critical velocity is

on the order of 27 mm/s, and wire peak velocity has to be in excess of (9 mm/s).

Figure 5.1 shows the dependence of force F as a function of velocity v for a heater wire.

It is clear from this graph that for velocities above 9 mm/s the force required to move

the wire is much larger than at lower velocities. The power deposited in BBR by µ2

was calculated using Q̇ = Fv where the force and velocity of µ2 were calculated using

equation 3.2 and equation 3.3, respectively.

The increased number of quasiparticles in the BBR was detected by the rise of the width

of the thermometer wire. The thermometer wire was driven at velocities of the order of

(1 mm/s), well below the pair-breaking velocity of the wire. This was done in order to

make sure that the wire didn’t cause any significant extra heating in the box.

The width of the thermometer wire µµµ2 as a function of the drive of the heater wire

µ2 is plotted on left part of figure 5.2, whereas the width of the thermometer wire µµµ2

is shown as a function of the velocity of the heater wire µ2 on the right part of figure

5.2. This figure shows that to cause a significant change of the width of thermometer
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Figure 5.1: The velocity against the force of the heater wire µ2.

wire during calibration measurements, the velocity of the heater wire µ2 had to be much

higher than the pair-breaking velocity.
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Figure 5.2: The width of the thermometer wire µµµ2 against the drive (A) and
velocity (B) of the heater wire µ2 .

We have shown in Chapter 2 and equation 2.66 that the power leaving the BBR should

be proportional to the Width Parameter ∆f2 〈E〉T [63]:

∆fW2 〈E〉TW = cQ̇ (5.1)

The damping experienced by the thermometer wire µµµ2 (∆fW2 ) was converted into a

temperature (TW ) using equation 2.39, and then converted to the mean thermal energy

of a quasiparticle 〈E〉 using 〈E〉 = kB(1.76Tc + T ).
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Figure 5.3 shows the resulting BBR calibration in a steady state. Practically this was

achieved by averaging the damping of the thermometer wire µµµ2 when various powers

were reached on the heater wire µ2 after the BBR had achieved steady state. The cali-

bration constant c given by a linear fit of the data is 3·33x10−18 ± 9·28x10−20Hz J K/W

and was obtained by least square fit of figure 5.3. The calibration of the BBR shown

below can be used to obtain a detailed theoretical model of the quasiparticle interaction

with the wire and is used in the calculation of gamma in section 4.2.1.
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Figure 5.3: The calibration of the BBR where µ2 is the heater wire and µµµ2 is the
thermometer wire. The straight line is a least squared fit. For details see text.

5.2 BBR Beam Profile Measurements

5.2.1 Calculating the Width Parameter of the Forks due to the BBR

In these beam profile measurements all the forks and wires apart from B Array were

monitored simultaneously using the tracking width program shown in section 3.3.1. B

Array needed to be measured separately as there was a short between B and C Array that

would cause warming in the cell if both arrays were measured simultaneously. During

these measurements the forks were being driven to a velocity of 0.1 mm/s in order to

ensure a linear response, while the drive on the heater wire µ2 was ramped up in steps

to the setting of 1 V over 1 kΩ in order to check whether the profile of the quasiparticle

beam from the BBR changes with respect to power. The width parameter of the forks

and the power of the BBR were then found using a the same method as the previous
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section and then converted into an effective width for direct comparison between the

forks using the method shown in section A.4. This gives the results plotted below.
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Figure 5.4: The change in the width parameter for A3 (Red circles) , B3 (Green
squares), C3 (Blue diamonds), D3 (Magenta downwards triangles), and E3 (Cyan up-
wards triangles) against power during a BBR ramp. Note that by fitting a straight line

we show that the beam profile does not change with respect to power.

The power of the BBR shown in this figure is found from the drive and Vx measurements

of µ2. A linear dependence between the quasiparticle damping and power is shown which

indicates the beam profile of the BBR can be found at any power.

5.2.2 The Fork Damping During a BBR Ramp

As there is no change in the beam profile with respect to power then we decided it was

best to look at the damping on the forks at the highest power (∼ 700 pW) in order to

find the beam profile. This is because the highest power gives a higher signal to noise

ratio. This beam profile was found using experimental data is shown in figure 5.5, figure

5.6, and a colormap of the profile is shown in figure 5.7.

Figure 5.5 shows that the profile from is centred between C and D (0 mm and −1.1 mm)

arrays, because C array has the largest proportion of quasiparticle damping from the

beam while D array has a higher proportion of damping than B array. Figure 5.6 shows

a similar amount of damping for both the central row and the row at x=−1.1 mm which

indicates that the beam is focused in between these two rows. Note that for these

measurements E1 (The bottom left pixel) was not measuring. This is because E1 has a
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Figure 5.5: The beam profile from the BBR as shown on each individual array. In
this figure A Array (Red circles), B Array (Green squares), C Array(Blue diamonds),
D Array (Magenta downwards triangles), and E Array (Cyan upwards triangles) are
shown. This graph shows that the central array (C Array) receives the most damping
with the damping falling off for pixels further from the focus of the beam , which seems

to be slightly left of the centre of the array.
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Figure 5.6: The beam profile from the BBR as shown on each individual array. In
this figure x=−2.2 mm is shown as red circles, x=−1.1 mm is shown as green squares,
x=0 mm is shown as blue diamonds, x=1.1 mm is shown as magenta downwards tri-
angles, and x=2.2 mm is shown as cyan upwards triangles. This graph shows that the
focus of the damping is between the second and third pixels and that the beam is shifted

slightly towards D array.

very high intrinsic width which is of the order of 3 Hz. This is possibly due to the fork

being damaged before being placed in the cell.
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Figure 5.7: The beam profile from the BBR at approximately 700 picowatts. The
color bar at the side shows what width parameters each color represents.

5.2.3 Theoretical Estimations of the Width Parameter

The theoretical model for the damping on each tuning fork due to the BBR has been

explained previously in section 2.11.1. This gave a final result for the damping as shown

by equation 5.2.

∆fF2 T
F 〈E〉 =

γF

γW
ρW

ρF
dW

tF
AH cos4(θ)

2R2
cQ. (5.2)

The values of γ used in this equation are the ones that were calculated in the previous

chapter which has been shown to be 0.16 for µµµ2 and 0.18 for most of the forks. For

this estimation of the beam damping the distance between the BBR and the camera

(R) was set to be 2 mm and the area of the BBR hole AH was defined as πR2
H with

the radius of the hole RH being 0.15 mm. The beam profile was also estimated to

be focused towards the central pixel of the camera. When the theoretical damping is

estimated it is then converted into an effective width using the method shown in section

A.4. This was done in order to make sure that the experimental damping of the forks

could be directly compared to its theoretical counterpart. The comparison between the

theoretical damping and the experimental data is shown in figure 5.8 and figure 5.9 with

a colour image of the theoretical profile in figure 5.10.
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Figure 5.8: The experimental data with theoretical fits for each of the arrays. Note
due to symmetry only the fits for A (Red), B (Green) and C (Blue) are shown. This
means the fit for D is the same as the fit for B, and the fit for E is the same as the
fit for A. These fits are largely inconsistent with the data, which means some of the

parameters of the fit must be off.
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Figure 5.9: The experimental data with theoretical fits for each x position on the
camera. Note due to symmetry only the fits for x=−2.2 mm (Red), x=−1.1 mm (Green)
and x=0 mm (Blue) are shown. The fit for x=1.1 mm is exactly the same as the fit for
x=−1.1 mm and the fit for x=2.2 mm is the same as the one for x=−2.2 mm. These
fits are largely inconsistent with the data, which means some of the parameters of the

fit must be off.

These theoretical fits assume that the beam from the BBR was focused on the centre of

the camera. This seems to be unlikely given the how the fits compare to the data. The

graphs show that the beam is focused between C and D arrays and the second and third
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Figure 5.10: A colour map of the theoretical beam profile that was used to fit figure
5.8 and figure 5.9.

pixels. The theoretical estimation also seems to give a lower quasiparticle damping than

the experimental data.

If the focus of the beam is shifted by −0.55 mm in the x direction and 0.25 mm in the y

direction and the quasiparticle damping is multiplied by a calibration constant of 1.15

then the fits seem more reasonable. This is shown in figure 5.11 and figure 5.12 with a

colour image of the modified theoretical beam profile in figure 5.13.
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Figure 5.11: The experimental data with theoretical fits for each of the array where A
is the red line , B is green, C is blue, D is magenta, and E is cyan. In this figure there is
extra damping calculated for the central pixels that is not shown on the experimental
data. This could be because some of the quasiparticles from the BBR go straight

through the pixel instead of interacting with the fork.
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Figure 5.12: The experimental data with theoretical fits for each x position on the
camera. Note due to symmetry only the fits for x=−2.2 mm (Red), x=−1.1 mm (Blue)
and x=2.2 mm (Cyan) are shown. The fit for x=−1.1 mm is exactly the same as the fit
for x=0 mm and the fit for x=−2.2 mm is the same as the one for x=1.1 mm. In this
figure there is extra damping calculated for the central pixels that is not shown on the
experimental data. This could be because some of the quasiparticles from the BBR go

straight through the pixel instead of interacting with the fork.
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Figure 5.13: A colour map of the theoretical beam profile that was used to fit figure
5.11 and figure 5.12.

These graphs show that a greater fit of the experimental beam profile can be achieved

with a slight modification to some of the parameters of the BBR. However, both of these

graphs show that the theoretical estimation of the width parameter does not fit with

the experimental data at pixels that are close to the focus of the BBR beam. This lack

of damping in the centre pixels can be attributed to some of the quasiparticles passing

through the pixel without interacting with the tuning fork.
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5.3 Source Wire Beam Profile Measurements

In this section, the beam profile from the source wire is analysed in the same manor as

the BBR beam profile shown in the previous section with the drive on the source wire

going up in steps to a final drive of 7 V over 100 kΩ using the tracking width program.

These measurements are done in order to see if there are any similarities between the

BBR beam and source wire beam profiles, where a direct comparison can be seen in

section 5.4.

5.3.1 Calculating the Width Parameter of the Forks for the Source

Wire Ramp

The method of the source wire ramp is similar to that stated for the BBR. The drive

on the source wire was increased in steps until the wire was at a velocity of 21 mm/s

corresponding to a power of 48 pW. The force velocity curve for the wire is shown in

figure 5.14.
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Figure 5.14: The force-velocity plot for the source wire.This graph shows that pair
breaking happens at a velocity of the order of 10−2 m/s .

When the source wire was above 9 mm/s damping is created and a quasiparticle beam is

produced. The extra damping from the wire is then seen on the camera and converted



80

into a width parameter using the same process shown in section 5.1. The width param-

eter of the forks in the centre of their respective arrays is plotted against the power of

the source wire for high powers in figure 5.15.
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Figure 5.15: The width parameter against power for various forks during a µµµ3 ramp
with A3 (red circles), B3(green squares), C3(blue diamonds), D3 (magenta downwards
triangles), and E3 (cyan upwards triangles) shown where the velocity of the source wire

is higher than the pair breaking critical velocity.

This graph shows there is a linear dependence between the width parameter of the fork

and the power of the source wire at high powers. This indicates that the source wire

beam profile at high powers does not change which is why this profile was chosen for

further analysis.

5.3.2 Finding the Beam Profile for the Source Wire

As the relation of the width parameter of the forks to the power of the source wire was

found to be linear at high powers we chose to analyse the highest power measurements

in order to find the beam profile of the source wire. These measurements which are

shown in figures 5.16, 5.17, and 5.18 were taken at a velocity of 21 mm/s and a power

of 48 pW.

We can see that the beam seems to be centred around C2. This is in line with the

position of the source wire in the cell. There is also less spread in the source wire beam

profile than there is in the BBR profile, which may be due to the source wire being
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Figure 5.16: The full beam profile for the source wire where the power of the wire is
approximately 48 pW. Shown in this figure are A array (Red circles), B array (Green
Squares), C array (Blue Diamonds), D array (Magenta downwards triangles) and E
array (Cyan upwards triangles). The beam from the source wire seems to be focused

on C Array which indicates the beam is focused towards the centre of the camera.
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Figure 5.17: The full beam profile for the source wire where the power of the wire is
approximately 48 pW. Shown in the figure are x=−2.2 mm (Red circles), x=−1.1 mm
(Green squares), x=0 mm (Blue diamonds), x=1.1 mm (Magenta downwards triangles)
and x=2.2 mm (Cyan upwards triangles). This graph shows that the beam is centred

close to the second pixel.

closer to the camera. The apex of the source wire is slightly left to the centre of the

array which may explain the shift in the beam profile.



82

DM7Step-11-velocity-is-21mmpers

-2.2 -1.1 0 1.1 2.2

X distance from centre of array (mm)

2.2

1.1

0

-1.1

-2.2

Y
 d

is
ta

nc
e 

fr
om

 C
 a

rr
ay

 (
m

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
ua

si
pa

rt
ic

le
 D

am
pi

ng
 o

n 
fo

rk
s 

(H
z*

K
2
)

×10-6

Figure 5.18: The full beam profile for the source wire shown in a colour map where
the power of the wire is approximately 48 pW.

5.4 Comparing the Power Captured by the Quasiparticle

Camera From the BBR to the Source Wire

The equation used to calculate the power in each pixel from experimental data has been

estimated in equation 2.78 and is restated here with AP substituted in as πR2
P

Q̇F = ∆f2 〈E〉T
πkBρ

F tF

8p2
Fγ

πR2
P . (5.3)

This assumes that all the power emitted from the fork is from the front hole of the fork.

If the back hole were to be included in this measurement then the area of the hole would

be multiplied by a factor of 2. See figure 4.10 for more details about the pixel.

In this equation AP = πR2
P where RP is the radius of the pixel hole. Using this equation,

we can find the power in each pixel. However there is an extra heat leak close to the

quasiparticle camera that needs to be removed from the calculation of the power in the

pixel. Therefore the true power of the pixel is given by Q̇FT = Q̇F − Q̇FB where Q̇FT is the

’True’ power in the pixel which is only due to the quasiparticle beam. Q̇F is the power

measured in each pixel and Q̇FB is the power measured in each pixel with the quasiparticle

generator at a low power. This is 0.006 pW for µµµ3 and 14 pW for the BBR. These

experimental results were compared with theoretical calculations where the theoretical
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calculations are explained in equation 2.69. Because this is a power comparison the

theoretical calculation has not been multiplied by the calibration constant of 1.4.
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Figure 5.19: A comparison of the percentage of power trapped by µµµ3 and the BBR
with a theoretical prediction shown as a red line for various powers. At low powers
it shows that a high percentage of the power from the source wire is focused on the

central pixels, with the beam spreading out at high powers.
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Figure 5.20: A comparison of the percentage of power trapped by the source wire
at 48 pW and the BBR at 678 pW with the corrected theoretical prediction for the

diagonal down the camera shown by a red line.
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Figure 5.21: A comparison of the percentage of power trapped by the source wire at
different powers for a diagonal along the camera. Note that A1 at low powers shows
a negative power percentage. This may have been because of small oscillations in the

cell temperature with a period of approximately 200 s.

Figure 5.21 shows the percentage of the power from µµµ3 that was seen in five tuning

forks that constitute a diagonal cross section of the camera. This was for various powers

that the source wire was at. The lowest power in this graph corresponds to a velocity

of 8.5 mm/s and the highest power corresponds to a velocity of 21 mm/s.

The interesting thing about this figure is the high amount of damping seen on C3 at

low powers. This indicates that the beam from µµµ3 spreads out when it gets to higher

velocities. A decrease in the percentage of power with respect to the power increase can

be seen on the central forks on this figure.

Figure 5.20 shows that the source wire creates a thinner quasiparticle beam than the

BBR when the source wire is at a power of 48 pW. At lower powers the source wire will

create a thinner beam as shown in figure 5.19. These thinner beams would be useful as

they do not need a lot of power to create. This means that there would be less bulk

damping in the cell which in turn means that the cell would stay cold for longer. As the

thin beam is giving a large amount of power in a very small area it can be used reliably to

find the exact position of turbulence though Andreev Reflection where various small thin

beams could be used in order to determine the exact spatial properties of turbulence.

One of the possible downsides of this idea is that a 3.2 mm wire was used to create this
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thin beam. If a series of thin beams was ever created to probe turbulence then another

smaller probe should be found to create it.

5.5 Chapter Summary

In this chapter, we used the quasiparticle camera in order to find the quasiparticle

beam profile from a BBR and a source wire. In the BBR measurements, the BBR

was calibrated and it was found that there was a linear relationship between the width

parameter and power of the BBR. This in turn proves that the main source of dissipation

of heat of the BBR was the quasiparticle beam that it emitted and that the quasiparticle

beam profile did not change too much with power. This means that the BBR is useful

for quasiparticle beam measurements when the BBR is driven to a high power and

thus the beam profile was measured when the BBR was at a power of 678 pW. The

measurements of the quasiparticle beam showed that the beam was focused between

C2 and C3 and that it was relatively spread out. The quasiparticle beam damping

was then calculated theoretically and then compared to the experimental results where

the theoretical results gave a good fit to the data apart from the centre pixels. The

discrepancies between the theoretical and experimental results were postulated to be

due to some of the experimental quasiparticles passing straight through the pixel and

not interacting with the tuning fork inside it.

We then studied the quasiparticle beam profile from a source wire. We found that there

was a linear relationship between the source wires width parameter and power at high

source wire powers and thus decided to study the source wire beam profile at a power

of 48 pW. The beam profile of the source wire seemed to be focused on C2 and was

more focused on the central array. Finally, the percentage of the power emitted by

these sources was compared against one another and compared against the theoretical

predictions for the power captured by the BBR. These measurements found that at low

powers the quasiparticle beam from the source wire becomes thinner. The discovery of

this thin beam could be useful for use in measurements where only a small amount of

the liquid needs to probed and in situations where the measurements may be susceptible

to the bulk thermal damping in the cell.



Chapter 6

Summary

This thesis presents first measurements of the quasiparticle beam profile of the Black-

Body radiator and the source wire using a 25 pixel quasiparticle camera.

In the Black-Body radiator beam profile measurements, the BBR was calibrated and it

was found that there were no other main sources of dissipation for the BBR, except for

the quasiparticle beam it emitted when the BBR was at a high power. From this result,

it was decided that the beam profile would be analysed at the highest power in that

BBR ramp, which was a power of 678 pW. The BBR beam profile was then found to be

centred slightly left of centre to the central pixel and was then compared to a theoretical

model in which the theoretical model predicted a larger amount of damping then that

which was seen on the central pixels. The quasiparticle beam profile from the source wire

was then measured in which a linear relationship was found between the source wires

width parameter and power near a power of 48 pW in which the beam profile from this

source wire was found to be focused on the centre array of the camera. The quasiparticle

damping on the tuning forks due to the quasiparticle beam of the BBR and source wire

were then converted into a percentage of the total power emitted in order to compare

the beam profiles directly to one another. The source wire was found to have a much

thinner beam compared to the BBR in which the beam was concentrated on C3 at low

source wire powers.

Two geometrical constants were also found in this thesis, λ which relates to the force-

velocity characteristics of the probe and γ which relates to the sensitivity of the probe to

quasiparticles. The value of λ was calculated for 2 wires, a tuning fork, and the tuning
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forks overtone mode. In these measurements it was found that the mode of oscillation

of the fork affected the value of λ and that the value of λ was probably dependent on

the geometry of the probe. The value of γ was also found for various wires and forks

in the cell where it was found for µµµ2 via a BBR calibration and then estimated for

other wires in the cell via a comparison of the thermal damping between the other wires

and µµµ2. The values of γ for all of the wires were similar to one another except for the

MEMS which had a different geometry than the other wires. The sensitivity of the probe

to quasiparticles was then found for a fork using its resonant mode as a thermometer

wire and its overtone as a heater which was then used to find the value of γ for all

other tuning forks in the camera. All the forks had a value of γ that was similar to one

another.



Appendix A

Preliminary Measurements

In order for any of the measurements to be properly analysed a set of preliminary

measurements had to be taken. The objective of most of these measurements are to

make sure that we can find the thermal width of the forks. From finding the thermal

width we can then find the beam profile and estimate γ and λ for the forks and wires.

All of these measurements are taken using Labview programs created by Viktor Tsepelin

and then analysed using Matlab 2015a. The results of the preliminary measurements

are stored in a parameter file that can then be loaded and used for quick analysis.

A.1 Background Corrections

All probes in the cell have amplitude dependent backgrounds. All frequency sweeps

can find and subtract the background from the measurement taken. However for any

DAQ measurements or amplitude sweeps the background cannot be found with the

measurement so they have to be taken beforehand and then put in the measurement as

a parameter.

For the forks the backgrounds are taken using the amplitude sweep program to drive

the fork at fixed frequency 100 Hz either side of the resonance. This is shown in figure

A.1.

In these measurements of figure A.1 the drive of the probe is increased from 0.71 mV

to 7 V at a fixed frequency as described before. The time constant for each point is

88
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Figure A.1: A typical fork background.

300 ms and the time taken between points is 2.1 s. The phase that these backgrounds

are taken at are the same phase that was taken on the frequency sweeps right before

this measurement.

Figure A.2: A DAQ background done at zero field.

For the wires the backgrounds were taken when they were at zero magnetic field using

the DAQ program at the same frequency for which they were on resonance during the

demagnetization. As the wires were taken at zero field as this means that there was

no Faraday voltage coming from the wires as there was no magnetic field to induce it.

These normally use a time constant of 300 ms and a time between points of 1 s.
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In these measurements the drive is kept fixed for a short period of time (100 s) and then

the drive is increased to a higher value. This is shown in figure A.2.

In figure A.2 all the wires are being measured at the same time. The drive on the wires is

then ramped up logarithmically from 10 mV to 7 V. The values Vx and Vy for each drive

are plotted against drive and then fitted. The backgrounds are then put into the DAQ

and amplitude programs and then taken off by the respective programs themselves.

A.2 Intrinsics

There are three contributions to fork damping these are explained in figure 2.55 which

has been written here.

F = FI + FT + Fex. (A.1)

In order to find the thermal damping FT we need to find the intrinsic damping FI and

the damping at high velocities Fex. The non-linear damping Fex can be found using

non-linear corrections and will be explained later. equation A.1. This can be rearranged

to find the intrinsic width equation A.2.

FI = F − FT − Fex. (A.2)

The intrinsic damping FI is due to the mechanical dissipation of the probe. This can

be found when the probe is at vacuum at the lowest temperatures and when the probe

has been driven to low velocities, i.e. when FT and Fex are minimal compared to the

size of FI . The only part of the previous equation that is temperature dependent is the

force FT . The intrinsic damping and the damping at high velocities are independent of

temperature.

One of the ways of finding the intrinsic and the non-linear damping is to do an amplitude

sweep of the probe at the lowest temperatures possible.

This amplitude sweep takes care of all contributions to the damping force that are

not due to the bulk temperature including the effect of pair breaking on the fork, the

non-linear damping on the fork, and the intrinsic damping on the fork.
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Figure A.3: An intrinsic amplitude sweep of the fork A2 at a temperature of 108µK.

The force of this amplitude sweep can then be subtracted from the force of an amplitude

sweep at higher temperatures in order to find λ; this is explained in section 4.1.

Another way the intrinsic damping was estimated was by measuring the width of the

probe using a frequency sweep program at the coldest possible temperatures at velocities

which we know are far lower than any in which non-linear corrections would have had

to take place (forks driven to 100 µV which gives a velocity of ∼ 0.1 mm/s). This is in

3He which means that there may have still been a slight amount of thermal damping in

the intrinsic that had been unaccounted for.

The intrinsics that were used later on in the analysis are estimated alongside λ using

the non-linear corrections explained in section A.3.

A.3 Non-Linear Corrections

It is sometimes beneficial to drive probes to high velocities in order to increase the signal

to noise ratio. When these probes are driven to such a velocity they exhibit non-linear

behaviour.

The best way to do this is to linearise the damping on the probe. Equation A.3 reminds

us of the thermal force acting on a paddle taking into account Andreev reflection.
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FNL = 2ApF 〈nvg〉 γ(1− e−λpF v/(kBT )). (A.3)

The force has been shown to be correlated to the width of the resonance in equation

2.19. The important part of that equation is shown as

((∆f2)NL) ∼ FNL, (A.4)

where FNL is the thermal and extra non-linear damping and (∆f2)T is the thermal and

non-linear damping on the probe. In order to get rid of the non-linear damping we

multiply the width of the resonance by the force if the probe is linear and divide by the

non-linear force.

(∆f2)T = ((∆f2)NL)
FL
FNL

. (A.5)

In this equation the force when the probe is non-linear FNL is given by equation A.3

and the force when the probe is driven to low velocities FL is given below.

FL =
−2ApF 〈nvg〉 γλpF v

(kBT )
. (A.6)

Putting equation A.6 and equation A.3 into equation A.5 the width due to thermal

damping can be estimated as

(∆f2)T = (∆f2)NL
λpF v/kBT

(1− e−λpF v/(kBT ))
. (A.7)

In order to find the effect of the non-linear damping on the width of the resonance the

intrinsic width has to be subtracted first. The true width of the resonance which is the

combination of the resonances thermal and intrinsic widths is given as

(∆f2)True = (∆f2)I + (((∆f2)− (∆f2)I)
λpF v/kBT

(1− e−λpF v/(kBT ))
. (A.8)
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In the non-linear measurements that were taken the drive on the probe was constant on

the DAQ for a fixed amount of time 100s and then increased. This is shown in figure

A.5. The time axis is the same for figure A.4, figure A.5, and figure A.6. This means all

of these graphs can be compared against one another.
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Figure A.4: Change in the width of a probe due to non-linearity. The probe Vx was
ramped from 0.1 mV to 3 mV.

The decrease in damping seen in figure A.4 is due to the non-linearity of the fork. When

the damping seems to increase at the end of the measurement this is because of the

probe creating quasiparticles and thus warming the area around the probe.
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Figure A.5: Signal height the probe was driven to during the non-linear measurement.
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Figure A.4 shows the decrease in width of one of the probes when the drive on the probe

is increased. The true width of the probe was then calculated which is shown in equation

A.8. The value of λ is calculated such that no decrease in width can be seen in the true

width. This is shown in figure A.6.
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Figure A.6: The width of the probe after it was non-linearly corrected using equation
A.8.

In figure A.6 there is no decrease in the width of the probe due to non-linear damping.

However it can be seen that at higher drives the probe has an increase in damping. This

is because the probe starts generating quasiparticles which then cause an increase in the

temperature which increases the probe damping.

Using this method to estimate λ we get a value of 0.45 for all of the forks. λ has been

calculated for the wires with a far better method, and these results will be explained

later on.

A.4 Effective Width

While the width of the Mµ has been calibrated in order to give the temperature this

only gives the temperature of one part of the cell which we call the bulk temperature.

Looking back at figure 3.1 it can be seen that if the quasiparticle beam from the BBR

is on then the temperature inside the BBR and the temperature of anything hitting the

beam is going to be much higher than the bulk temperature.



95

The only way that this temperature can be found for other probes in the cell is if we

calibrate these probes against the Mµ thus working out what the width would be if the

probe was a Mµ an ’effective’ width. This is shown below.

(∆f2)P = C(∆f2)Mµ, (A.9)

where (∆f2)P is the resonant width of the probe and (∆f2)Mµ is the resonant width of

the Mµ. This equation assumes that there aren’t any thermal gradients in the cell. At

high temperatures this assumption of thermal equilibrium in the cell is valid.

The calibration constant C is what we call the effective width of the probe. This can

be found by plotting the probe width against the Mµ width at various temperatures.

This is normally achieved by doing frequency sweeps on the probe and Mµ at various

temperatures during a demagnetization and then comparing them. figure A.7 shows this

plot for one of the pixels in the camera.
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Figure A.7: Plot of the fork width against the width of the Mµ.

At low temperatures there may be a distinct difference in the fork temperature to the

Mµ temperature. Therefore it is best to calibrate between the Mµ and the forks at a

range of high temperatures. Figure A.8 shows how the effective width of the probe tails

off.
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Figure A.8: Plot of the fork effective width against the Mµ width.

The B array measurements are done at a different time and are shown in figure A.9. In

this graph the effective width changes after 3 kHz.
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Figure A.9: Plot of the effective width of a fork in B array against the width of the
Mµ.

In figure A.8 the Effective width tails off at about 0.045 for forks and for wires is 0.33

for µµµ wires and 0.1 for µ wires. Once the effective width C is found the width of the
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probe as if it were a Mµ can be calculated,

(∆f2)Mµ =
(∆f2)P
C

. (A.10)

By calibrating the width of the probe the temperature around the probe can be found.

From the temperature the width parameter and the thermal damping can be found.

Through using the effective width all probes in the cell can now be used as thermometers.
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