

SOFTWARE FOR SCHENKERIAN ANALYSIS

 Alan Marsden

Lancaster Institute for the Contemporary Arts

Lancaster University, UK

ABSTRACT

Software developed to automate the process of Schen-

kerian analysis is described. The current state of the art

is that moderately good analyses of small extracts can

be generated, but more information is required about the

criteria by which analysts make decisions among alter-

native interpretations in the course of analysis. The

software described here allows the procedure of reduc-

tion to be examined while in process, allowing decision

points, and potentially criteria, to become clear.

1. INTRODUCTION

Schenkerian analysis [8] is the most sophisticated and

widely used method of explicating the structure of a

piece of tonal music at a range of scales, from a se-

quence of a few notes to entire movements. In providing

a method of partitioning the stream of notes which

makes up a piece of music, and describing the interrela-

tion and function of elements, it fulfils a role rather like

that of grammar for language. Schenkerian theory has

many and influential detractors, but its controversial

aspects (principally its strong normativity, arising from

the chauvinism of its author, such as the insistence that

all good pieces of music share a small number of back-

ground structures) are not necessarily essential to the

usefulness of other aspects. Alternative theories forming

a similar role are either related (such as [4]) or no better

supported by evidence. Music Theory is stuck in a rut

where argument between competing theories is based on,

at best, small numbers of example analyses and, at worst,

prejudice. Implementation of an analytical theory in

computer software allows objective testing, and uncov-

ers areas of underspecification in the theory.

A second potential dividend of computational im-

plementation of Schenkerian analysis is as a basis for

software tools which facilitate the manipulation of mu-

sic at a level between that of notes and entire move-

ments, other than by arbitrarily defined sets of notes or

events.

2. STATE OF THE ART

Following in a history of projects spanning more than

three decades [2-3], software has recently been devel-

oped to make quasi-Schenkerian reductions of short

segments (four to eight bars) of music from a representa-

tion of the score without the intervention of a human

expert [7]. The measure of success for that project was

the degree to which the resulting reductions matched

analyses made by human experts. While the results were

encouraging, the basis of evidence was small. What the

project did show clearly was that more information is

needed about the criteria by which analysts make judge-

ments, and the process used in analysis. The fundamental

problem encountered in the project was that the stated

principles of Schenkerian analysis were found to allow

vast numbers of alternative analyses of an extract of mu-

sic, but the principles by which particular alternatives are

selected are unclear.

Certain selection principles were established in that

project (e.g., avoiding syncopation), but the method

used does not readily scale up to investigate more com-

prehensively because the quantity of suitable available

test materials is small, and the method is extremely time

consuming. This paper therefore reports a development

of that Schenkerian analysis software which allows the

process to be observed and probed in the course of de-

riving an analysis, and allows some intervention from

the user. This lays bare places where the software oper-

ates inefficiently or makes bad decisions. It can thereby

function as a tool for investigation of the process of

Schenkerian analysis.

3. BASIC PRINCIPLES

Schenkerian analysis expresses the structure of a piece of

music through several layers of reduction. At the lowest

level is the ‘surface’ of the piece, represented by the

notes in the score. At the highest level is the ‘Ursatz’, an

instance of a fundamental structure: I-V-I in the bass

with a linear descent to the tonic in the top voice. Each

level reduces the level below by replacing sequences of

notes in that level with single notes at this level. For ex-

ample, a pattern C-D-C might be reduced to a single C.

The formalisation implemented here (described in

full in [7]) simplifies this so that every reduction is of a

pair of consecutive notes (or a note plus a rest) to a sin-

gle note (or rest). Every reduction which reduces more

than two notes to one can be expressed as a set of nested

reductions of this binary type.

Reductions are constrained to belong to one of a

small number of patterns, such as neighbour-notes, ap-

poggiaturas, etc. Each reduction has harmonic implica-

tions (certain pitch classes must belong to the prevailing

harmony) and the implications of simultaneous reduc-

tions must be mutually consistent.

Some reductions depend on context, meaning that

notes of certain pitches must occur immediately before-

hand (for a reduction such as a suspension) or after-

wards (for a reduction such as an anticipation). A con-

sequence of this manner of representation is that in the

case of a reduction such as an anticipation, a note is

reduced, counter-intuitively perhaps, with a preceding

note to which it is unrelated in pitch instead of with the

following note to which it relates. This aspect of Schen-

kerian theory has caused others (e.g. [9]), and myself in

earlier work [5] to represent diminution (the opposite of

reduction) as something which takes place in the inter-

vals between notes rather than something applied to

individual notes. This, however, results in graph struc-

tures which are not simple trees and so are much more

difficult to process. (Of course, the connections which

are absent in the tree structures are still present in the

context dependencies, which bring their own complica-

tions, but this nevertheless appears to result in a more

tractable structure.)

4. IMPLEMENTATION

The fundamental problem in implementing Schenkerian

analysis is computational complexity. As indicated in

[6], deriving an analysis from a score is inherently of

factorial complexity in time and space. At every stage of

design of the software, therefore, computational effi-

ciency has been emphasised. The general design is like a

chart parser (a mechanism used in computational linguis-

tics to reduce complexity in parsing [1]), which derives a

‘chart’ of multiple analyses in polynomial time and

space. To extract a particular analysis from the chart is

then a smaller process than to derive the analysis from

scratch, but still one of exponential complexity.

The first step in analysis is to represent an extract of a

score as a sequence of ‘segments’. Each covers a dis-

tinct span of time, filling the interval between the pre-

ceding and following segments, and containing all the

notes sounding in that interval. All notes in a segment

last for the entire duration of the segment, and they can

be tied to notes in the preceding and/or following seg-

ments. Thus long notes in the score are often split into

several tied notes spread across a number of segments.

A note is represented by its pitch alone. (Other charac-

teristics such as dynamics and articulation are not irrele-

vant to Schenkerian analysis, but they appear to be of

much lesser significance and have been ignored at pre-

sent.)

The chart to be filled in the parsing stage is a triangu-

lar matrix whose bottom (longest) row of cells contains

the segments of the surface of the piece. Each higher

(and shorter) row will be filled with the segments which

arise from reducing pairs of segments from the row(s)

below, and have durations equal to the sum of the dura-

tions of 2, 3, 4 ... (according to the height of the row) of

the segments of the surface below. The top row consists

of a single cell which will eventually contain segments

which span the entire extract. Cells in rows above the

bottom can contain multiple segments, each represent-

ing alternative ways of reducing the segments below.

As the chart is filled and new segments are derived

by reduction of pairs of ‘child’ segments, the links be-

tween parent and children, and their constraints, are

recorded. This makes it possible to extract a complete

analysis tree by following parent-child relations from a

top-level segment, and also to ensure that a chart re-

mains consistent when segments are deleted from it.

Other information recorded with derived segments dur-

ing parsing includes a putative ‘goodness score’ for the

segment to facilitate selecting a ‘best’ analysis, and in-

formation about potential membership of an Ursatz.

Once the chart is filled, a number of analyses can be

derived from it by selecting a segment in the top-level

Figure 1. Extract loaded into the software

cell, then recursively selecting children until the surface

is reached. Because of the context dependencies, naive

selection does not always result in a valid analysis. De-

pendencies are therefore tracked, and the user is in-

formed when no valid reduction remains. The depend-

encies also mean that the putative best score of a seg-

ment cannot always be realised.

5. USAGE

The software is written as an application in Java (version

1.6). The general principle of the user interface (see Fig-

ure 1) is a large area to display a visualisation of the

emerging reduction on the right, and a set of tabbed

panes on the left with controls for the display and for the

reduction. The remainder of this paper illustrates use of

the software to make a reduction of a short phrase from

the last movement of Mozart piano sonata in B flat ma-

jor, K.333.

The first step is to load an extract of music to be ana-

lysed. The software currently reads files which give

information about the pitch and duration of notes in a

simple text format. It is currently being adapted to read

this information from MusicXML files. Reading from

MEI and MIDI are planned for the future. Loading a file

creates a new reduction chart with the bottom row filled

with the notes of the extract and all other rows empty.

This is the state of the software shown in Figure 1,

where the display uses a format which shows horizontal

bars on a stave to indicate the presence of those pitches.

The vertical boundaries between cells are shown in the

grey and pink headers. The grey header indicates which

cell is shown by the corresponding start and end col-

umns at the surface level and, following the colon, the

duration of the cell as a multiple of the shortest duration

found in the extract. Buttons in this header allow the

entire contents of a cell to be rejected, or allow it to be

selected, causing all overlapping cells to be rejected.

The pink header shows the number of segments con-

tained in each cell, and a button which brings up de-

tailed information about the cells and their derivation.

Cells showing an oblique line will be skipped in the

course of reduction because they do not fall within the

limits set on the ‘Parameters’ pane for syncopation or

limits on the ratio of the durations of child segments.

One pane of controls allows the user to set what will

be shown in the display during the reduction process,

and where the software will pause to allow the user to

interact. Figure 2 shows this pane and the state of reduc-

tion at a point where the cell covering columns 9-11 is

being filled by deriving reductions from the surface

segment in column 9 and the derived segments in the

cell covering columns 10-11. The ‘parent’ cell is out-

lined in red and the two ‘child’ cells outlined in green.

The overlaying dialog shows information about the third

of the five segments so far derived for cell 9-11. Buttons

allow the user to delete this segment, or to select it, de-

leting all others in the cell. The ‘...’ button brings up

tables of other information about the harmonic con-

straints on the segment, its derivation and its score.

As mentioned above, cells in the reduction chart

above the surface can contain a number of segments,

representing different ways in which the music at the

surface can be reduced. When segments are displayed in

text, as in Figure 2, the percentage of segments in a cell

which contain a particular pitch is indicated before the

pitch. Thus 80% of the segments in cell 9-11 (four of the

Figure 2. Part-way through reduction, showing text display and segment-information dialog

five) contain the pitch A4, 40% F4 and 60% Eb4. In

cases of a piano-roll like display (Figures 1 & 3), the

darkness of a horizontal bar is related to the percentage

of segments containing the corresponding pitch.

Once the entire chart is filled, the user can choose to

have it pruned so that only segments which can partici-

pate in a complete Ursatz remain. Finally, a single ‘best’

analysis can be selected by clicking the ‘Show Best’

button. This launches a best-first search through the

completed reduction chart for the highest-scoring tree of

segments. Figure 3 shows the result of this. The headers

have been removed from the display, and the sizes ad-

justed to allow the entire analysis to be displayed within

the window. The ‘Show Best’ button has become ‘Next

Best’. Clicking this would replace the analysis shown

with the next-highest-scoring analysis. The ‘Revert’

button causes the entire chart to be displayed once more.

The analysis shown in Figure 3 is not perfect, but it

does conform quite well to the published analyses for

this extract. The software does not perform so well for

every extract, however. It is hoped that experimentation

with this software, especially on extracts for which there

exist previously published analyses, will allow develop-

ment towards more reliably accurate analyses.

6. CONCLUSION

Development of the software continues. The latest ver-

sion will be available for download at the author’s web

page (currently http://www.lancs.ac.uk/staff/marsdena).

The original primary aim of this project was theoreti-

cal—to discover the degree to which Schenkerian theory

could be expressed in computational form—but a sec-

ondary aim has always been to facilitate software which

behaves in a more intelligently musical way. Achiev-

ement of this is some way off still, and will have to

await analysis software which is both more reliable and

faster. The principal achievement of this version of the

software is to make visible the reduction process which

in earlier versions was entirely opaque.

7. REFERENCES

[1] Jurafsky, D., & Martin, J.H. Speech and Natu-

ral Language Processing, 2nd edition. Upper

Saddle River, NJ: Pearson, 2009.

[2] Kassler, M. A Trinity of Essays. PhD disserta-

tion, Princeton University, 1967.

[3] Kirlin, P.B. Using harmonic and melodic analy-

ses to automate the initial stages of Schenkerian

analysis. Proceedings of the International Con-

ference on Music Information Retrieval

(ISMIR), Kobe, Japan, 2009, 423–428.

[4] Lerdahl, F., & Jackendoff, R. A Generative

Theory of Tonal Music. Cambridge, MA: MIT

Press, 1983

[5] Marsden, A. Representing Melodic Patterns as

Networks of Elaborations. Computers and the

Humanities, 35, 2001, 37–54.

[6] Marsden, A. Automatic Derivation of Musical

Structure: A Tool for Research on Schenkerian

Analysis. Proceedings of the International Con-

ference on Music Information Retrieval

(ISMIR), Vienna, 2007, 55–58.

[7] Marsden, A. Schenkerian Analysis by Com-

puter: A Proof of Concept. Journal of New Mu-

sic Research, 39, 2010, 269–289.

[8] Schenker, H. Der frei Satz. Vienna: Universal

Edition, 1935. Published in English as Free

Composition, translated and edited by E. Oster,

New York: Longman, 1979.

[9] Yust, J.D. Formal Models of Prolongation. PhD

dissertation, University of Washington, 2006.

Figure 3. Completed analysis

