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Abstract

This thesis considers the application of statistical exploratory methods and modelling

techniques to sports data. Key to this investigation is the analysis of home advantage

and the factors which drive it. The review of literature has shown that much conjecture

has been made about the cause of home advantage, but little statistical investigation has

been pursued into this area.

Building on the model for association football goal counts discussed in Dixon and Coles

(1997), reparameterisation to reflect time and team dependent home advantage was ex-

plored, alongside the effect of cards on home advantage. Covariate analysis was performed

using parametric and semi-parametric models in an attempt to better interpret home ad-

vantage by analysing regularly hypothesised causal relationships.

Over and under dispersion in goal counts may be the result of variation in team skill

or the lack thereof. Censoring and threshold mixture models were explored to try and

capture any over or under dispersion, with the aim of creating a more flexible model. As

an aside, weighted likelihood based changepoint methods were also explored as a method

of considering the reduction in information about the threshold position carried by ob-

servations far from the threshold position.

Finally, a brief but insightful analysis of changes of performance in golf was carried

out. The research contained within can be used to inform statistical models for sports

results and impact betting strategies based upon such models.
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Chapter 1

Introduction

1.1 Motivation

Sport has never been more prevelant in society. The international federation of asso-

ciation football (FIFA) claim viewing figures for the 2010 World Cup in South Africa

reached 3.2 billion people, or 46.4% of the global population (FIFA , 2010). However, the

current crop of statistical research into many sports is basic, often relying on raw out-

comes with little further analysis than common sense. It is easy to argue that the general

populous does not need to be able to accurately predict the outcomes of games. They

may even solely watch sport to enjoy not knowing. Sports betting, through bookmakers

or various online internet sites, allows an outlet for those who wish to gamble on these

games. Betting on your favourite team is common place and can be done from anywhere

with a mobile phone signal.

However, there are markets other than recreational betting. Many individuals and compa-

nies are beginning to accept that sports betting provides investment opportunities equal

to those provided by the various stock exchanges around the world. The entry of this

new strategy has had a difficult birth, with a large amount of media coverage given to

the collapse of Centaur Galileo, the first sports betting hedge fund early in 2012 (Wager

Minds, 2012).

To prevent such losses, the use of effective high level statistical modelling must be im-

plemented. Before an investment strategy is designed, there must be a combination of

statistical analysis with in-depth sports knowledge to formulate a better understanding of

the sport in question. ATASS Sports provides this service, with one of the largest com-

mercial statistical research teams in Europe (ATASS Sports, 2012). The combination

of resources and funding they are prepared to share with the STOR-i doctoral training

centre shows a commitment to ground breaking research and the development of key

relationships in the academic sector.

18
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It is not only the consumer who seeks to benefit from sports data analysis; successful

coaching choices and in-game decisions rely on having the best information available,

such as that resulting from high level statistical analysis of the available data.

Two possible routes of investigation, that are of value to both investors and sporting

bodies, were identified as home advantage, the distribution of goals scored in association

football and changes of performance in sport, due to alteration of the rules or evolving

technologies. It became evident that home advantage and goals scored would be the

main body of research as the PhD progressed, however, changes of performance in sport

provided a short interlude and as such shall be supplied at the end of the research chapters.

The term home advantage came into existence in its most abstract form at the start

of the 19th century, coinciding with the start of association football (Pollard, 2008). It

has since been widely discussed in literature (Roth, 1957; Koppet, 1972; Lane, 1976;

Morris, 1981; Dowie, 1982; Pollard, 1986). Home advantage is recognised as the positive

effect experienced by a team playing at home and can also be attributed to the negative

effects experienced by the away team (Pollard, 2008). There have been many theories

hypothesised regarding the causes of home advantage; including crowd support, learning

factors, travel by the away team and the bias of rules and their enforcement. Much of the

work which has been done is of a non-statistical nature, including papers in psychological

and social journals (Varca, 1980; Courneya and Carron, 1992). These do however, give

direction to more mathematically orientated research, such as that carried out by Dixon

and Coles (1997).

Golf provides an open and attractive research opportunity for changes in performance.

Much data exists for the sport, with round by round scores available freely on the inter-

net (ESPN, 2012). There are various aspects to the game which could allow performance

enhancement through technological and coaching innovation. This has created a large

amount of interest from both professional golf bodies and amateurs alike. Any improve-

ment that can be made, in overall performance or player consistency, is highly regarded.

Therefore, statistically modelling these improvements allows for better predictions of out-

come.

Statistical modelling in both of these areas is important to allow the prediction of perfor-

mance, which is important to the sports themselves and those who wish to make profitable

betting strategies.
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1.2 Content Summary

This thesis contains statistical analyses and literature reviews separated into the following

Chapters:

• Hypothetical Covariates of Home Advantage (literature review)

• An Initial Analysis of Home Advantage

• Dixon and Coles: Model and Development

• Covariate Modelling of Home Advantage

• Overdispersion and Threshold Effects (in the assessment of the distribution of goals)

• Weighted Likelihood Based Changepoint Detection Methods

• Changes of Performance in Golf

It is clear from the review of literature in Chapter 2, that there are many conflicting

ideas and opinions on the causes, effects and modelling approaches with regards to home

advantage (Roth, 1957; Koppet, 1972; Lane, 1976; Morris, 1981; Dowie, 1982; Pollard,

1986). Much of this research has little supporting evidence and supplies only the views

of the author. The objective of this PhD is to consolidate these ideas with statistical

findings and hypothesise new directions.

Chapter 3 serves as an initial analysis of home advantage, carried out using a basic

model for goal counts in association football designed by Clarke (1996). Data for many

leagues were provided for over 105,000 matches by the industrial partner ATASS Sports.

This analysis allows an insight into the nature of home advantage for each individual

team in the top four English divisions between 2001/2002 and 2011/2012.

It becomes clear that a more complex generalised linear model describing the joint proba-

bilities of home and away goal counts was needed than the Clarke (1996) approach. More

stringent analyses are then carried out in Chapter 4 using a bivariate Poisson model for

home and away goal counts based on a model proposed by Dixon and Coles (1997). Var-

ious additions to the model are considered including team dependent home advantage,

changes in home advantage over time and the relation of home advantage to the number

of cards given in each match. Various statistics used to analyse these models suggest that

a number of additions are significant. However, the predictive power (which motivates

this problem) is reduced in each case due to the reduction in available information to

derive the parameter estimates.

Covariate analysis regarding home advantage in association football is then performed in
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Chapter 5. This entails the use of semiparametric and parametric, linear and non-linear

models, including changepoints, to effect a complete investigation into the presence and

structure of any relationships between home advantage and distance, attendance, referee

experience and pitch dimensions. This process results in a model for home advantage us-

ing multiple covariates and models, which shows a slight improvement in the predicitive

capabilities of the base model considering constant home advantage.

Overdispersion is found to be present in goal count data for both home and away counts,

leading to an investigation into possible models which consider this feature. Chapter 6.2

considers both negative binomial and censored Poisson models to allow more accurate

prediction of the majority of goal counts. Following this, threshold mixture modelling

is implemented, which allows the adjoining of two distributions, transformed to ensure

that the second axiom of probablity is satisfied, i.e. P (S) = 1, where S represents the

sample space. This model shows a reduction in the RMSE over the null Poisson model.

However, it causes a reduction in the model’s predicitive power, suggesting overfitting of

the training data set.

The use of changepoints and threshold mixture modelling motivated the investigation

of a model considering smooth changes. Chapter 7 discusses the use of a weighting func-

tion across the transition boundary (or changepoint), to mix either parameters within the

probability distribution function (pdf) or two or more pdfs themselves. The later of these

two models shows itself to be the most promising. An interesting result of this modelling

process is the possiblity of smooth change prediction, if the change can be assumed to

follow the form imposed by the weighting function. Therefore, the model can predict the

timing of the change, something that is lacking from current changepoint methods.

Many sports use technology and coaching which can be optimised in an attempt to aid

performance. However, the extent to which this may be done is often unclear. Chapter

8 attempts to quantify changes in player consistency (as a measure of performance) for

the golf European Tour. Player consistency is particularly important in golf, due to the

relatively narrow margins between the player that wins a tournament and the player

which comes last. The consistency of some of the best professional players over the last

40 years are analysed, using their normalised round scores. A pertinent question which

shall be addressed is: Does perceived change in consistency actually represent an increase

in strength in depth (with reference to the increasing skill of the players in the tour)?



Chapter 2

Hypothetical Covariates of Home

Advantage

There are many theoretical explanations for home advantage. These include biologically-

founded theories of territoriality and circadian rhythm changes, social psychological theo-

ries such as social facilitation or perceived social support, and sociological-based theories

such as ritual integration (Edwards, 1989). At present, there is little evidence in favour of

one theory over another. Courneya and Carron (1992) proposed a framework for research

into the effect of game location that allows the inclusion of many different constructs

from varying theories. This framework is shown in Figure 2.1 below.

Figure 2.1: Game Location Research framework suggested by Courneya and Carron (1992).

Game location refers to the particular venue for the competition event. There are three

possible alternatives, home, away and neutral ground. Neutral sites do not experience a

home advantage and therefore are not included in Figure 2.1. The variable factors that

occur due to the location, (Game location factors, Figure 2.1) can be grouped into four

sectors: crowd, learning, travel and rule factors. The main theories are derived from

these four categories.

Crowd effects may have many factors, for example, size, density and proximity. These

effects (either a positive home reinforcement or a negative away effect) reflect the social

support provided by the home crowd. Familiarity of the home ground facilities allows

the team to experience learning factors, for example surface type. The distance between

grounds prompts the possibility of travel effects introducing factors such as mental fatigue

and routine disruption. In some sports, rules may influence the outcome of an event in

22
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favour of the home team. For example, in baseball, the home team gets to bat last in each

innings. It has been hypothesised that the effects of game location manifest themselves

through the varying psychological states of the participants.

Critical psychological states may be influenced by the location of an event. These may

vary at the same location for competitors, coaches and officials. Cognitive (e.g. anxiety,

confidence, evaluation apprehension and outcome expectation) and affective states (e.g.

excitement, anger, stress and pride) may lead to changes in behaviour of one or more of

the groups involved with the match.

Critical behavioural states must be affected if a home advantage or game location is

to influence any of the participants’ performances, and thereby the match outcome. For

competitors, these states may include the effort level used or their persistence. Coaches

may implement strategic and tactical decisions and, finally, officials may be influenced to

make subjective decisions.

The measure of performance outcomes can be split into three, or more, levels. A primary

performance measure may be the first stage of outcome and would represent the funda-

mental quality of a team, for example batting average in cricket or free throw percentile

in basketball. Secondary, or intermediate, performance measures would seek to reflect

the necessary scoring system, goals allowed in association football for example. Finally,

the tertiary measure would represent the overall outcome of a contest, for example win

or loss or points differential (Edwards, 1989; Irving and Goldstein, 1990; Schwartz and

Barsky, 1977).

2.1 Game Location Factors

2.1.1 Crowd Effects

The effect of the crowd is the most common factor attributed to home advantage, one

which at least the fans believe is dominant (Wolfson et al., 2005). The extent and nuances

of this effect are difficult to quantify (Morris, 1981; Pollard, 1986). The crowd size, den-

sity, support intensity and proximity to players all require detailed consideration (Nevill

et al., 1996). However, the effect of each factor is unclear. For example, advantages

have been shown with both small and large crowds, providing conflicting evidence that

is difficult to interpret (Courneya and Carron, 1992; Pollard, 1986).

Dowie (1982), Pollard (1986) and Clarke and Norman (1995) all found that there was

little variation of home advantage over the four divisions of the English Football League,

despite the obvious differences in crowd size. When Nevill et al. (1996) added another

lower English league and three Scottish divisions to the previously considered set, they
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found a linear relationship between crowd size and home advantage. Unfortunately, the

sample size used in this analysis was relatively small (only one season). They also showed

little difference between the top three English divisions.

League Level Home advantage Average Attendance

Premier 1 60.7% 31009

Division 1 2 61.2% 14160

Division 2 3 60.3% 6649

Division 3 4 61.9% 3757

Conference 5 56.7% 1484

Ryman Premier 6 56.7% 487

Ryman Division 1 7 54.1% 247

Ryman Division 2 8 53.3% 129

Ryman Division 3 9 55.1% 89

Table 2.1: Home advantage and average attendance of nine ranked levels of competition in
English football for the seasons 1996/97 - 2001/02 (Pollard, 2006).

Whether the effect of crowd interaction is to give a positive advantage to the home team

or a disadvantage to the away team is not known. It is also unclear whether the players

themselves are directly affected or whether the referee conveys the crowd influence to

them (Boyko et al., 2007). All-seater stadiums may also modify the crowd effect.

Table 2.1 shows the value of home advantage and average attendance for nine English

leagues, ranked with respect to their playing level. The value of home advantage is given

as the percentage of all games played that are won at home (Pollard, 1986). Although

crowd size varies dramatically, very little difference in home advantage can be seen be-

tween the top four levels, which all experience a home advantage of just over 60%. There

is a step change below this level to a home advantage of around 55%, with teams expe-

riencing the effect even with crowds on average less than 100. This shows that a home

advantage is experienced in all English football leagues, and that when crowd size in-

creases above around 3,000 the extent to which home advantage is experienced increases

by around 5%. Pollard (1986) also found that there was little relationship between crowd

density and the level of home advantage experienced by a team.

2.1.2 Learning

Repeated training and playing at home grounds generally results in familiarity with the

local playing conditions, which can be considered as a factor of home advantage. Barnett

and Hilditch (1993) showed that English football teams playing on grounds which use

artificial turf gain an increased home advantage over those which practise on traditional

grass pitches. Clarke and Norman (1995) confirmed this finding, which resulted in a
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ban being imposed on the use of artificial turf in the Football League. However, Pollard

(1986) produced evidence that the use of abnormal pitch dimensions did not increase the

home advantage experienced. Moving teams or players to new home grounds has been

shown to decrease the home advantage, which can be accounted for by the reduction or

loss of familiarity with playing conditions (Pollard, 2002).

There are numerous factors which may contribute to the familiarity of home grounds.

For example, the effects of prevailing winds and daylight depend on the alignment of a

stadium and facility design or layout can provide visual cues to home players. Pollard

and Pollard (2005) showed that there was a significant drop in home advantage in the

Football League of England after the seven year suspension during the Second World War.

Upon resuming League play in 1946, participating teams contained many new players,

unfamiliar with their local playing environment. Therefore, this can be attributed to

familiarity or learning if it is to be considered a contributing factor with regards to home

advantage.

2.1.3 Travel

Fatigue experienced by away teams due to travel has been extensively analysed with re-

spect to the extent to which it contributes to home advantage (Pollard, 2006). Reduced

home advantage levels exhibited in local derbies could be attributed to the lack of travel

for the players involved, as well as the local crowd support for the away team (Clarke and

Norman, 1995). Further evidence was obtained by Pollard (2006) from European Cup

and Champions League semi-finals between 1960/61 - 2003/04, where competing teams

experienced an average home advantage of 71.7% 1. This high level could be explained

by the long distances travelled between matches. Also, Brown et al. (2002) and Clarke

and Norman (1995) found that the home advantages of individual teams, in international

competitions and English leagues respectively, increased as a function of distance between

the teams.

Pollard (1986) produced a contradicting argument, showing no difference in home advan-

tage for teams that were more than or less than 200 miles (320km) apart. Figure 2.2 is

a bar plot of home advantage at different levels of English Football for the period 1888-

2004. This shows that the home advantage slowly decreased over the twentieth century.

This could be explained by the speed and comfort brought about with the development

of modern transport (Pollard, 2006).

1Pollard (2006) defined home advantage as the number of points gained at home as a percentage of the
number of points gained in all matches, with 50% indicating no home advantage.
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Figure 2.2: Home advantage for different levels of English football from 1888-2004. (Pollard,
2006).

2.1.4 Rules

The role that rules play in home advantage is not clear in many sports, as many sports

use an unbiased rule book with respect to game location. Therefore, research on this

factor is limited to certain sports. In baseball the opportunity of batting last may allow

for distinct advantages with respect to game strategy if the game goes into extra innings.

However, Courneya and Carron (1990) showed this not to be the case, using slo-pitch

softball on neutral grounds, where there appeared to be no advantage provided by batting

last. They postulated that any advantage may be eliminated as opportunties for offensive

and defensive strategies may be equal.

During stoppages of play, ice hockey teams playing at home are allowed to substitute

players after the away team allowing for better strategies. Also, during a faceoff between

two players, the home player places his stick on the ice after the visitor, increasing the

odds of him winning the faceoff. These rules may translate some home advantage to

neutral games as a home designation is assigned to one team (IHHF, 2012).

2.1.5 Critical Psychological and Behavioural States

Competitors: The psychological state of a team or individual may be affected by game

location, which may in turn affect the outcome of a competitive event. An examination of

player perception of the home advantage was carried out by Jurkovac (1995). Basketball
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players were surveyed with questions which could allow an insight into their attitudes

when playing home and away. The results of the survey showed that 97% of the players

asked felt they played better when backed by a loud and active crowd at home and 74%

felt the same when playing at away grounds. Signs of support in the home arena also

gave an apparent boost to morale and motivation, with an 89% agreement in the survey.

Also, 47% believed that their personal statistics were improved when playing at home

and 76% felt more confident at home.

Psychological effects are often the result of physiological reactions to environmental stim-

uli, such as the fight or flight mechanism (Gleitman et al., 2010). Hormones such as

testosterone and adrenalin can act to alter the mental state of a player. Much research

has been carried out into the effect of the steroid hormone testosterone. Studies into

seasonal variations in male animal aggression have been shown to coincide with seasonal

variations in testosterone (Lincoln et al., 1972). Monoghan and Glickman (1992) showed

that artificially increasing testosterone increases aggression. Levels of testosterone have

been shown by Mazur and Booth (1998) to increase competitiveness and dominance in

humans, as testosterone levels rise when a challenge is faced. This may translate to the

behavioural implications which cause enhanced status, although not all researchers agree

with the conclusions proposed (Neave and Wolfson, 2003).

Varca (1980) measured aggressiveness to study home and away team behaviour in col-

legiate basketball games. Measures such as fouls, steals, rebounds and blocked shots

were used to gauge the nature of play. These measures were then divided into subsets of

functional (advantageous) and dysfunctional (disadvantageous) for the respective team.

Varca hypothesised that home and away teams differed in type rather than level of ag-

gression, a hypothesis that was supported by his findings. Teams playing at home showed

more functional aggressive behaviour, blocking shots and achieving more rebounds, whilst

away teams showed more dysfunctional behaviour, committing a higher number of fouls.

Officials: An official distributes rules from a position of authority, allowing gameplay

to follow the set of predetermined rules. However, due to the nature of certain rules,

subjective decisions have to be made. This provides a line of inquiry with respect to

the effect of these choices on home advantage. Various studies have been documented

that exhibit a leaning towards more decisions in favour of home teams or against away

teams (Lefebvre and Passer, 1974; Varca, 1980; Sumner and Mobley, 1981; Greer, 1983;

Glamser, 1990).

It must be considered, however, that a greater percentage of subjective decisions be-

ing made against the visiting team may not be a cause of home advantage, but rather a

consequence (Sumner and Mobley, 1981). Teams playing away may spend more time in
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defence and be more dsyfunctionally aggressive. This must be addressed by considering

the team and individual player’s skill status.

Lehman and Reifman (1987) hypothesised that officials who were present at professional

basketball games could feel more pressured to behave less negatively towards the home

team’s star players. They reasoned that this pressure would originate from crowd influ-

ence and believed that investigation into this area could present evidence of an officiating

bias. The data set used to test this hypothesis contained games involving the Los Angeles

Lakers during the 1984/85 season. Lehman and Reifman concluded that their reasoning

was correct, as fewer fouls were awarded to star players of the home team than the away

team. No difference was found for players classified as non-stars.



Chapter 3

A First Analysis of Home Advantage

3.1 Introduction

Although widely accepted and discussed, there is often little attempt to quantify home

advantage (Clarke, 1996). Hypothetical causes are well documented and an overview of

the main considerations is discussed in Pollard (2008). The direction of research will be

towards the cause of home advantage, rather than to solely document its existence. How-

ever, playing characteristics, stadium layout and thus crowd dynamics differ from club

to club and match to match, requiring the estimation of home advantage for individual

matches.

Pollard (1986) created a quantifiable definition of home advantage, for a balanced num-

ber of games. He defined home advantage as the number of home games won expressed

as a percentage of total games played (where draws are omitted), with a value of 50%

indicative of zero home advantage. However, this is an unsuitable method for modelling

individual clubs, where strength of position in their league or division must be considered.

This is often difficult to determine as the draw may not be balanced (e.g. the Australian

Football League, AFL).

Snyder and Purdy (1985) analysed home advantage in collegiate basketball and found

that the quality of opposition1 had more of an effect on outcome than home advantage.

Because of this, for balanced games such as English football, it makes sense to take into

account team ability and to measure home advantage by comparing the home and away

fixture results.

3.2 Modelling Home Advantage and Team Ability

Table 3.1 shows the final table for the 2011/12 Barclay’s Premier League, a typical exam-

ple for English soccer. It can be seen from Table 3.1 that the home and away scores are

1A team may win more (or less) than 50% at home because it is a relatively strong (or weak) team.

29
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separated. This has become the standard layout due to the acceptance and recognition

of home advantage. Without considering team ability, QPR could be perceived to have

almost zero home advantage. They have won exactly 50% of their games at home, taking

a draw as 0.5 of a win, and have scored 24 home goals and conceded 25. However, by

taking away performance into account, team ability can be allowed for. Again, account-

ing for draws in a similar manner, QPR only won 4 out of the 19 away games played,

with a goal difference of -22.

Team
Home Away

Wins Draws Losses Goals
For

Goals
Against

Wins Draws Losses Goals
For

Goals
Against

Pts h u

Manchester C. 18 1 0 55 12 10 4 5 38 17 89 0.81 1.38

Manchester U. 15 2 2 52 19 13 3 3 37 14 89 0.14 1.52

Arsenal 12 4 3 39 17 9 3 7 35 32 70 0.64 0.49

Tottenham H. 13 3 3 39 17 7 6 6 27 24 69 0.64 0.49

Newcastle 11 5 3 29 17 8 3 8 27 34 65 0.64 -0.01

Chelsea 12 3 4 41 24 6 7 6 24 22 64 0.42 0.45

Everton 10 3 6 28 15 5 8 6 22 25 56 0.47 0.20

Fulham 10 5 4 36 26 4 5 10 12 25 52 0.86 -0.32

Liverpool 6 9 4 24 16 8 1 10 23 24 52 0.08 0.32

Norwich C. 7 6 6 28 30 5 5 9 24 36 47 0.14 -0.23

Swansea C. 8 7 4 27 18 4 4 11 17 33 47 0.97 -0.48

Westbrom. A. 6 3 10 21 22 7 5 7 24 30 47 -0.14 0.08

Stoke C. 7 8 4 25 20 4 4 11 11 33 45 1.08 -0.78

Sunderland 7 7 5 26 17 4 5 10 19 29 45 0.64 -0.16

Wigan A. 5 7 7 22 27 6 3 10 20 35 43 0.14 -0.38

Aston Villa 4 7 8 20 25 3 10 6 17 28 38 -0.08 -0.17

QPR 7 5 7 24 25 3 2 14 19 41 37 0.75 -0.76

Bolton W. 4 4 11 23 39 6 2 11 23 38 36 -0.47 -0.35

Blackburn R. 6 1 12 26 33 2 6 11 22 45 31 0.47 -0.80

Wolver. W. 3 3 13 19 43 2 7 10 21 39 25 -0.75 -0.49

Totals 171 93 116 604 462 116 93 171 462 604 1047 7.47 0

Table 3.1: 2011/12 Barclay’s Premier League final table, including individual clubs’ home ad-
vantage (h) and quality (u).

It is not widely appreciated that a team experiencing a true home advantage will create

an apparent home advantage to each other team in their competition. Clarke and Nor-

man (1995) provides an example of spurious and real home advantage.

Clarke and Norman (1995) considered three teams, A, B and C ranked by their skill in

alphabetical order (i.e. A is better than B which is better than C), each with no home

ground advantage. If it were to be supposed that the results were as in Table 3.2 and the

final table took the form of Table 3.3, where draws are counted as 0.5 of a win in column

ten, it is obvious that each team experiences the same home and away performance with

regards to goals scored and wins.

However, if team C were to be given two additional goals when playing at home the final

results would be as in Table 3.4, with Table 3.5 representing the final table. It can be

seen from Table 3.5 that all teams now have better results in terms of both goal differ-

ence and matches won at home than away (as in columns ten and eleven of Table 3.5).
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Home team
Away team

A B C

A - 2-1 3-1

B 1-2 - 2-1

C 1-3 1-2 -

Table 3.2: Clarke and Norman (1995) final results.

Team
Home Away Home-away

Wins Draws Losses Goals Wins Draws Losses Goals Wins Goals

A 2 0 0 5-2 2 0 0 5-4 0 0

B 1 0 1 3-3 1 0 1 3-5 0 0

C 0 0 2 6-5 0 0 2 2-5 0 0

Table 3.3: Clarke and Norman (1995) final ladder.

It is now easy to see how false conclusions can be drawn about the home advantage of

individual teams. Even though only C experiences a real home advantage, teams A and

B experience a spurious home advantage.

Home team
Away team

A B C

A - 2-1 3-1

B 1-2 - 2-1

C 3-3 3-2 -

Table 3.4: Clarke and Norman (1995) final results when C is given a 2-goal advantage.

Team
Home Away Home-away

Wins Draws Losses Goals Wins Draws Losses Goals Wins Goals

A 2 0 0 5-2 1 1 0 5-2 0.5 2

B 1 0 1 3-3 0 0 2 3-3 1 2

C 1 1 0 2-5 0 0 2 2-5 1.5 4

Table 3.5: Clarke and Norman (1995) final ladder when C is given a 2-goal home advantage.

Estimation of an individual team home advantage requires a model for the ability of a

team (Clarke, 1993; Stefani, 1983; Stefani and Clarke, 1987). Clarke and Norman (1995)

suggested a derivation of a formula for the calculation of home advantage and that of

team performance by the use of least squares. Suppose the winning margin2 for home

team i against away team j is represented by wij, which is negative for the case of a loss.

2There are two possible definitions of wij which could be used. Firstly, it may be defined as 1 if the team
won, 0 for a draw or -1 if they lost. Alternatively, and the preferred method for this prediction model, is to define
it as the goals margin (or difference), as this allows for more sensitivity to home advantage. To illustrate this,
imagine a particular team wins 4-0 at home and also wins 2-1 away. Using the win, lose or draw method would
give zero home advantage, however, there would be a 3 goal home advantage using goal difference.
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This would produce an N ×N matrix for N teams, with no diagonals. Summing across

the Ith row gives the value of home goal difference (HGDI) and summing down the Ith

column gives the negative away goal difference (AGDI) for team I, i.e.

HGDI =
N∑

j=1(j 6=I)

wIj, AGDI = −
N∑

i=1(i 6=I)

wiI .

This can be modified as shown by

N∑
i=1

HGDi = −
N∑
i=1

AGDi,

where it can be seen that the wij are simply being summed in a different order.

By defining hi as a measure of the home ground advantage of an individual team i,

ui as a measure of their quality and εij as a zero-mean random error, Clarke and Norman

(1995) modelled wij by

wij = ui − uj + hi + εij. (3.1)

It is assumed in this model that ui and hi are constant throughout the progression of the

season. This is something that may need to be addressed in future models.

To make the model identifiable, an additional constraint is added, ensuring that
∑N

i=1 ui =

0 for N teams. The model can then be fitted to the data using a simple regression pack-

age. Dummy variables would be used for ui (1 for a home team, -1 for an away team and

0 for other teams in the league) and hi (1 for the home team and 0 for other teams).

The values of ui and hi can also be found using a Lagrange Multiplier technique which

seeks to minimise the sums of the squares of the errors. The derivation is shown in Ap-

pendix A. If data from complete balanced seasons are analysed, complicated regression

methods do not need to be employed in favour of simple calculus using the final table.

This is the method used in Table 3.1.

In a balanced league of N teams, each team plays the other N − 1 teams once at home

and once away. The total home advantage of the entire league is represented by H. This

is calculated by

H =
N∑
i=1

hi =

∑N
i=1 HGDi

N − 1
.
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Team i’s home advantage, hi, is given by the difference in their home and away goal

differences, minus the total home advantage, divided by N − 2, as shown by

hi =
HGDi − AGDi −H

N − 2
.

Finally, the individual team ability measure, ui, is given by

ui =
HGDi − (N − 1)hi

N
.

3.3 Data and Results

Data were provided by the industrial partner (ATASS Sports) for over 105,000 associa-

tion football matches, spread globally over 98 leagues with varying levels from 2001 to

2012. This initial analysis will restrict research to the top four English leagues (Premier

League, Championship, League One and League Two).

The data were arranged into the final end-of-year tables for each league and each year

(where data were available). These results were checked against the BBC sports website

to ensure the tables were correct and altered until agreement was obtained (BBC, 2012).

For the 22206 games played over all four leagues examined, 9892 (44.6%) home wins were

recorded, 6049 (27.2%) draws and 6262 (28.2%) losses. In terms of goals, home teams

scored 32758 (56.8%) of the total 57682 goals scored. As found by Clarke (1996) this

is just under the percentage of wins (1 for a win, 0.5 for a draw) 44.6+0.5×27.2 = 58.2%.

It was also found that the average home advantage per team from seasons 2001/02 to

2010/11 (due to incomplete data for 2011/12 in the lower leagues) decreased as the league

level decreased. This can be seen in Table 3.6.

League
Average Home Advantage (Goals per Match, H)

Overall Average
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Premier League 0.30 0.37 0.35 0.43 0.44 0.46 0.42 0.32 0.62 0.45 0.43

Championship 0.42 0.32 0.36 0.33 0.33 0.39 0.34 0.33 0.43 0.33 0.36

League One 0.42 0.31 0.42 0.33 0.34 0.32 0.34 0.31 0.43 0.31 0.35

League Two 0.53 0.34 0.40 0.39 0.31 0.32 0.11 0.32 0.34 0.25 0.33

Table 3.6: Average home advantage (H) per team for the top 4 leagues in English football.

The average per team home advantage in terms of goals scored for each league differs from

that found by Clarke and Norman (1995), who found the values to be 0.521, 0.529, 0.529
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League
Home Advantage (Goals per Match) Overall Standard

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Average Error

Sheffield U. - - - - - 1.11 - - - - - 1.11 -

Stoke C. - - - - - - - 1.37 0.42 1.06 1.08 0.98 0.17

Burnley - - - - - - - - 0.97 - - 0.97 -

Swansea C. - - - - - - - - - - 0.97 0.97 -

Crystal Palace - - - 0.91 - - - - - - - 0.91 -

Queens Park R. - - - - - - - - - - 0.75 0.75 -

Norwich City - - - 1.13 - - - - - - 0.14 0.63 0.35

Tottenham H. 0.78 0.31 0.84 0.74 0.35 0.66 0.59 0.87 0.97 0.22 0.64 0.63 0.07

Portsmouth - - 1.78 0.85 0.13 0.77 0.20 0.37 0.20 - - 0.61 0.21

Newcastle U. 0.34 0.87 1.06 0.07 0.68 0.33 0.53 0.14 - 1.11 0.64 0.58 0.11

Fulham 0.67 0.98 0.17 0.30 1.18 0.72 -0.25 0.70 1.03 -0.06 0.86 0.57 0.13

Birmingham C. - 0.26 0.11 0.85 0.63 - 1.20 - 0.47 0.33 - 0.55 0.13

Southampton 0.23 0.76 0.45 0.68 - - - - - - - 0.53 0.10

Ipswich T. 0.50 - - - - - - - - - - 0.50 -

Watford - - - - - 0.49 - - - - - 0.49 -

Liverpool -0.27 0.04 0.17 0.68 0.40 1.38 0.70 -0.02 0.97 1.22 0.08 0.49 0.16

West Ham U. 2.17 0.20 - - 0.24 0.61 -0.02 -0.08 0.47 0.22 - 0.48 0.24

Manchester C. - 0.20 0.34 0.18 0.46 -0.34 0.87 1.64 0.08 0.44 0.81 0.47 0.16

Manchester U. -0.11 0.70 0.45 -0.15 0.63 0.16 0.75 0.53 0.53 1.33 0.14 0.45 0.12

Middlesbrough 0.00 1.04 0.28 0.24 -0.15 0.55 0.53 0.92 - - - 0.43 0.14

Blackburn R. 0.89 0.09 -0.61 0.02 0.57 0.27 0.20 0.64 1.20 0.89 0.47 0.42 0.14

Everton 0.67 0.65 1.06 0.57 0.35 0.38 0.20 -0.13 0.25 0.06 0.47 0.41 0.09

Sunderland A. 1.11 -0.19 - - -0.87 - 1.03 0.31 1.20 -0.11 0.64 0.39 0.24

Chelsea 0.56 0.81 -0.11 -0.43 0.96 0.16 -0.08 -0.47 1.36 0.39 0.42 0.33 0.17

Bolton W. -0.55 0.48 0.39 0.02 0.85 0.44 1.09 0.31 0.14 0.83 -0.47 0.32 0.15

Derby County 0.67 - - - - - -0.08 - - - - 0.30 0.27

Aston Villa 0.28 1.09 -0.05 0.91 0.24 0.05 -0.25 -0.02 0.03 0.89 -0.08 0.28 0.13

Arsenal -0.83 0.20 -0.11 0.57 1.35 0.94 0.03 -0.41 0.64 -0.11 0.64 0.26 0.18

Reading - - - - - 0.22 0.25 - - - - 0.24 0.01

West Bromich A. - -0.30 - 0.13 0.68 - - 0.59 - 0.33 -0.14 0.22 0.15

Leeds U. -0.11 -0.58 1.11 - - - - - - - - 0.14 0.41

Wigan A. - - - - -0.32 -0.62 0.92 0.14 1.08 -0.67 0.14 0.10 0.24

Charlten A. -0.50 -0.24 -0.39 0.41 0.40 0.83 - - - - - 0.09 0.20

Blackpool - - - - - - - - - 0.00 - 0.00 -

Wolverhampton - - 0.45 - - - - - -0.36 0.61 -0.75 -0.01 0.28

Hull - - - - - - - -0.97 0.81 - - -0.08 0.63

Leicester C. -0.55 - -0.44 - - - - - - - - -0.50 0.04

Average 0.30 0.37 0.35 0.43 0.44 0.46 0.42 0.32 0.62 0.45 0.37 0.43 0.03

Table 3.7: Individual team home advantage for all teams playing in the Premier League for the
seasons starting in 2001/02 to 2011/12.

and 0.533 for divisions 1-4 respectively using similar calculations to those used here and

relating to seasons from 1981/82 to 1990/91. This may suggest that there is a negative

trend in home advantage over time.

To understand home advantage fully, a model may need to account for individual team or

match pairing home advantage. Utilising the methods laid out in Section 3.2, the home

advantages experienced by each team that played in the Premier League from 2001/02

to 2011/12 are shown in Table 3.7, which is arranged in decreasing order with regards to

the mean home advantage.

Because of the inherent variable nature of football games, an average value of home

advantage over a number of years is required to allow for reasonable conclusions. It is
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obvious from Table 3.7 that some teams have rarely been involved in the Premier League,

as such little significance can be attributed to their average home advantage. It should

also be noted that certain teams exhibit negative home advantage. This is noteworthy,

as a positive home advantage is thought to be present over all teams (Pollard, 1986).

One possible cause of home advantage that has been previously discussed is the team’s

familiarity with their home ground. However, this could also be due to the unfamiliarity

of visiting teams. Therefore, teams that are new to the division, or who have re-entered

after a period of absence, may be expected to have a high home advantage. Clarke and

Norman (1995) found this to be the opposite of empirical evidence, with a small non-

significant positive correlation between home advantage and years in the division. The

data analysed from the top four English leagues seems to follow the same result.

However, there are a few teams that exhibit the hypothesised behaviour. For example,

Sheffield United and Stoke City entered the Premiership in 2006 and 2008 respectively,

both showing high home advantage. Also after a period of a one season absence, Birm-

ingham City exhibited their highest home advantage over the period analysed. This can

be countered with examples of Reading and Derby County, who exhibited low or nega-

tive home advantage upon joining the league, which could suggest that certain aspects

of the grounds which follow this behaviour may help in causing unfamiliarity for visitors,

whilst other grounds less so. It may also suggest that upon promotion from one league to

another various factors such as increased crowd support and a better psychological con-

dition may affect home advantage. If this is the case, by deduction the home advantage

should be lower as teams go down by a division. This is shown for both Birmingham City

and Sheffield United, where home advantage decreased to 0.045 and 0.13 respectively in

the season following their demotion.

Many studies tend to look for seperate effects individually. Through a more sophisti-

cated modelling approach, different factors may be assesed simultaneously. This could

potentially reveal much more information. One such model is that proposed by Dixon

and Coles (1997), which considers the goals counts as Poisson random variables. This

will be covered in the following chapters.

3.4 Comparison of Clarke and Norman and Dixon and

Coles Models

Clarke and Norman (1995) modelled the winning margin of the home team, which gives

information at a match level about the relative strengths of teams. However, it is an

unsuitable model for many betting strategies as bookmakers asign probabilities to results
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rather than winning margins. More sophisticated models for the prediction of match

outcome exist, including that proposed by Dixon and Coles (1997).

Dixon and Coles (1997) based their model on Maher (1982), allowing each team an

attack and defence parameter and a home advantage parameter (γ) for the league. The

model defined in Dixon and Coles (1997) is used as a basis of research in the following

chapters, and as such is well defined there. However, using the simpler model defined

in Maher (1982), which considers home and away goals to occur independently of each

other, a comparison of home advantage was made as shown in Figure 3.1. It can be seen,

that both follow similar trends, which supports conclusions made from the Clarke and

Norman (1995) model about the nature of home advantage.

Figure 3.1: Comparison of additive and multiplicative home advantage parameters (a) H (Clarke
and Norman, 1995) and (b) γ (Maher, 1982) respectively.

Table 3.8 shows the root mean squared error (RMSE) of the winning margin estimates

(calculated as home goals minus away goals) from each model, using individual complete

seasons to allow a fair comparison. As discussed, one of the benefits of the generalised

linear models discussed in Maher (1982) and Dixon and Coles (1997) is that they allow

home and away goal estimates to be made, however, these cannot be compared. Under

this comparison, the RMSE of the Maher (1982) model is lower for most years, showing

a better fit of the data.



3.4. COMPARISON OF CLARKE AND NORMAN AND DIXON AND
COLES MODELS 37

Year
RMSEr of Winning Margin Estimate

Clarke and Norman Maher

1993 1.48 1.48

1994 1.54 1.47

1995 1.51 1.48

1996 1.56 1.54

1997 1.65 1.65

1998 1.56 1.53

1999 1.65 1.59

2000 1.54 1.51

2001 1.52 1.56

2002 1.46 1.45

2003 1.49 1.50

2004 1.45 1.39

2005 1.50 1.47

2006 1.46 1.41

2007 1.52 1.49

2008 1.43 1.46

2009 1.63 1.53

2010 1.58 1.55

2011 1.64 1.62

2012 1.49 1.48

2013 1.60 1.59

2014 1.49 1.46

2015 1.51 1.52

All Years 1.53 1.51

Table 3.8: Using data from the English Premier League between 1993/1994 to 2015/2016, root
mean squared error (RMSE) of the winning margin estimates under the models defined by
Clarke and Norman (1995) and Maher (1982).



Chapter 4

Dixon and Coles: Model and

Development

4.1 Introducing the Dixon and Coles Model

Dixon and Coles (1997) specified a feature set for the development of a statistical model

to predict the outcome of association football matches. The intended use of the model

was to create a profitable betting strategy. The specifications were:

• the quality of the two participating teams should both be taken into account;

• home advantage should be allowed for;

• it is likely that the most reasonable measure of a team’s quality is to base it on a

summary measure of recent performance;

• it is also reasonable to assume that due to the nature of football, team ability should

be quantified in terms of their attacking and defending abilities;

• the ability of the opposing teams should be taken into account when calculating a

specific team’s performance.

Dixon and Coles (1997) speculated that obtaining empirical estimates of the probabilities

of match outcomes which take into account all these parameters is impractical. There-

fore, a statistical model which incorporates the various factors needs to be formulated.

The basis of their model relied on that proposed by Maher (1982), which assumes the

number of home and away goals scored, X and Y respectively, are both independent

Poisson variables.

Let Xi,j be the number of home goals scored in a match between home team i and

away team j, and similarly let Yi,j be the number of goals scored by the away team in the

same match. The model formulated by Maher (1982) is given in equation (4.2), where

Xi,j and Yi,j are independent and αi, βi > 0,∀i, where αi represents a measure of the

38
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attack rate for team i and βi measures their defence rate. Maher (1982) originally used

attack and defence parameters for home and away performance for each team, however,

this is encapsulated by the home effect experienced, γ > 0:

Xi,j ∼ Poisson(αiβjγ), (4.1)

Yi,j ∼ Posson(αjβi). (4.2)

In a competition with n teams, there are then α = {α1, . . . , αn} attack parameters,

β = {β1, . . . , βn} defence parameters and the extent to which home advantage affects

the competition, γ, to be estimated. The constraint n−1
∑n

i=1 αi = 1 is introduced to

ensure that the model does not become over-parameterised. Alternatively, αn may be

fixed, for example αn = 1. Dixon and Coles (1997) found that there is a departure from

independence for low scoring games. They proposed a modification to the Maher (1982)

model which included a dependence parameter ρ, given by

Pr(Xi,j = x, Yi,j = y) = τλ,µ(x, y)
λxexp(−λ)

x!

µyexp(−µ)

y!
, (4.3)

where

λ = αiβjγ,

µ = αjβi,

and

τλ,µ(x, y) =



1− λµρ if x = y = 0,

1 + λρ if x = 0, y = 1,

1 + µρ if x = 1, y = 0,

1− ρ if x = y = 1,

1 otherwise,

(4.4)

where

max(−1/λ,−1/µ) ≤ ρ ≤ min(1/λµ, 1).

In this model, ρ = 0 corresponds to independence. However, for events which correspond

to x ≤ 1 and y ≤ 1 the independence distribution, τλ,µ(x, y), is perturbed when ρ 6=
0. The use of a dependence function was tested using data from the Premier League

between seasons 1995/1996 and 2013/2014. A hypothesis test was performed with a null

hypothesis that ρ = 0, and an alternative hypothesis that ρ 6= 0. In a chi-squared test

with one degree of freedom, the null was rejected at a 0.05 significance level, with a

p-value of 0.006 1.
1For reference, estimates for αi, βi, γ and associated ρ parameters for a range of seasons are given in Tables

B.1, B.2, B.3 and B.4 in Appendix B respectively
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4.1.1 Model Inference

Dixon and Coles (1997) and Maher (1982) used the likelihood function as their main tool

of inference for α, β, γ and ρ. For a total of N match pairings corresponding to team

i(k) at home and team j(k) away, where k = 1, . . . , N , with corresponding home and

away scores (xk, yk) and including the independence distribution, the likelihood is given

up to proportionality by

L(α,β, ρ, γ;x,y) =
N∏
k=1

τλk,µk(xk, yk)exp(−λk)λxkk exp(−µk)µykk , (4.5)

where

λk = αi(k)βj(k)γ, (4.6)

µk = αj(k)βi(k).

Dixon and Coles (1997) restricted their inference to direct numerical maximisation of

equation (4.5). Although this method has to handle the aspect of high dimensionality,

many parameter combinations are near orthogonal, making the process relatively simple.

Dixon and Coles (1997) stated that the attack and defence parameters must reflect the

relative quality of different divisions if more than one division is to be analysed. Un-

fortunately, reliable estimation of these parameters requires that teams from different

divisions have engaged in competition. This is resolved by the fact that there is a degree

of mobility between divisions due to relegation and promotion. Data from cup games may

also be included, which includes inter-division play. As was expected, Dixon and Coles

(1997) found that the average attack and defence ratings increased with higher league

level. This corresponds to an increase in the value of α and a decrease in the value of β.

4.1.2 Derivation of the Closed Form Expression for Home Advantage, γ

The home advantage parameter, γ, can be estimated as with the other parameters via

numerical maximisation of the likelihood. However, the closed form expression for home

advantage allows the estimation of γ without the need for numerical maximisation. This

can be derived using the model outlined by equation (4.3), provided data for complete

seasons of the league in question are available. The log-likelihood function describing

home and away goal counts for n teams in one season of a balanced league, is given by

` (α,β, ρ, γ;x,y) =
n∑
i=1

∑
j 6=i

log
[
τλi,j ,µi,j (xi,j, yi,j)

]
+ xi,j log (λi,j) (4.7)

− λi,j − log (xi,j!) + yi,j log (µi,j)− µi,j − log (yi,j!) ,

where
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λi,j = αiβjγ,

µi,j = αjβi,

and τλi,j ,µi,j (xi,j, yi,j) is given by equation (4.4).

Taking the first derivative of the log-likelihood function gives the Fisher’s score func-

tion denoted by

u (θ) =
∂ log L (θ; x)

∂θ
.

Considering the log-likelihood is concave, maximum likelihood estimators (MLEs) can be

calculated by setting the score function to zero and solving the system of equations

u
(
θ̂
)

= 0.

Taking the first derivative with respect to γ of the log-likelihood shown in equation (4.7)

is then given by

∂ log L

∂γ
=

n∑
i=1

∑
j 6=i

(
−αiβj +

xi,j
γ

)
.

Equating the score to zero and solving for γ gives the MLE

γ̂ =

∑n
i=1

∑
j 6=i xi,j∑n

i=1

∑
j 6=i α̂iβ̂j

. (4.8)

The first derivative with respect to αi of the log-likelihood shown in equation (4.7) is

then given by

∂ log L

∂αi
=
∑
j 6=i

(
−βjγ +

xi,j
αi
− βj +

yj,i
αi

)
.

Equating this to zero gives

∑
j 6=i

(
−β̂j γ̂ +

xi,j
α̂i
− β̂j +

yj,i
α̂i

)
= 0.

Rearranging gives ∑
j 6=i

(
−β̂j (γ̂ + 1) +

xi,j + yj,i
α̂i

)
= 0.
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This is true for all i = 1, . . . , n so

n∑
i=1

∑
j 6=i

(
−β̂j (γ̂ + 1) +

xi,j + yi,j
α̂i

)
= 0

and then
n∑
i=1

∑
j 6=i

α̂iβ̂j =
n∑
i=1

∑
j 6=i

xi,j + yi,j
γ̂ + 1

.

Substituting this expression into equation (4.8) gives

γ̂ = (1 + γ̂)

∑n
i=1

∑
j 6=i xi,j∑n

i=1

∑
j 6=i (xi,j + yi,j)

.

Rearranging gives

γ̂
n∑
i=1

∑
j 6=i

(xi,j + yi,j) = (1 + γ̂)
n∑
i=1

∑
j 6=i

xi,j

and therefore

γ̂ =

∑n
i=1

∑
j 6=i xi,j∑n

i=1

∑
j 6=i yi,j

, (4.9)

which, in words, equates home advantage to the sum of home goals over the sum of

away goals in a balanced league. This expression allows the use of final league tables to

calculate home advantage as only the total home and away goal counts are needed.

4.1.3 Dynamic Behaviour

Each team’s performance in terms of both offence and defence tends to be dynamic not

static. This means that it will vary from one time point to the next. Dixon and Coles

(1997) also included this in their model. Due to the nature of football, team formations

change almost every season as players are bought and sold or injured. Therefore, it is

reasonable to assume that a team’s performance is more likely to be related to their

performance in recent matches. Therefore, it is assumed that parameters are locally

constant in time and there is less value to older information. Parameter inference is then

performed using information which occurred before a certain time, t. This leads to the

‘pseudo-likelihood’, which is given for each time point t by

Lt(α,β, ρ, γ;x,y) =
∏
k∈At

{τλk,µk(xk, yk)exp(−λk)λxkk exp(−µk)µykk }
φ(t−tk), (4.10)

where tk is the time of match k and At = {k : tk < t} and φ is a positive non-increasing

function of time.
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The use of such φ allows the model a greater capacity to reflect current team perfor-

mance, with smaller φ values giving less weight. However, this induces the issue of how

much historical data are to be taken into account, i.e. how much downweighting should

be applied. Dixon and Coles (1997) chose to use the function

φ(t− tk) = exp [−ξ (t− tk)] , (4.11)

where ξ > 0.

A value of ξ = 0.0065, with time units of half week, was chosen which optimised the

prediction of match outcomes, although it was found that parameter estimates were ro-

bust when using a range of values for ξ. Due to the nature of the analysis being an

investigation of home advantage, prior to any predictory analysis for betting strategies,

it is prudent to use all of the available data not just data before time point t. This may

be done by allowing parameters to remain static within seasons, i.e. αi, βi and γ change

with seasons, s, for all i, and

λk = αi(k,s)βj(k,s)γs(k), (4.12)

µk = αj(k,s)βi(k,s),

or by employing down weighting on matches that occured after t, as well as before t, where

φ(t− tk) =

exp [−ξ (t− tk)] if t ≤ tk,

exp [−ξ (tk − t)] if t > tk.
(4.13)

To obtain a value of ξ, alternatively to optimising the prediction of match outcomes, cross

validation was performed using data from the Premier League between seasons 2001/2002

and 2011/2012, where each team has the same identifier, i, over all seasons (Arlot and

Celisse, 2009). A training set was created by removing every other 5 matches, without

replacement, from the sample. The log-likelihood given by

` (α,β, ρ, γ;x,y) =
N∑
k=1

φ (t− tk) {log [τλk,µk (xk, yk)] + xk log (λk) (4.14)

−λk − log (xk!) + yk log (µk)− µk − log (yk!)} ,

was then maximised using the down-weighting function shown in equation (4.13), over a

grid of values for ξ. The value of the log-likelihood was then evaluated for the validation
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set using the MLEs, at each value of ξ as shown in Figure 4.1 (left). The value of ξ which

maximises this curve is ξ = 0.0041.

As an alternative, a transformed normal pdf down-weighting function, as shown by

φ(t− tk) = exp

[
−(tk − t)2

2σ2

]
, (4.15)

was tested in the same way as above, where σ controls the extent of the down-weighting.

Figure 4.1 (right) shows the log-likelihood evaluated on the validation set using the MLEs

over a grid of values for σ, resulting in a value of σ which maximises the curve of σ = 147.

Figure 4.1: Log-likelihood evaluated using the validation set and parameter estimates for the
training set for (left) the exponential weighting function shown in equation (4.13) and (right)
the transformed normal pdf weighting function shown in equation (4.15), over a grid of values
for ξ and σ respectively.

Finally, cross validation was performed using the down-weighting function given in equa-

tion (4.13). However, each team was given a different identifier for each season, i(s),

treating them as independent teams and home advantage was also treated seasonally, γs.

For this analysis, the time scale was changed from half weeks, to every match, to give

better fidelity. This was not done previously, as the computational time would have been

too great. The value of ξ∗ which maximises the log-likelihood is found to be ξ∗ = 0.005,

as shown in Figure 4.2. This value cannot be compared directly with the above value

unless it is scaled, as t is incremented by matches and not half weeks, and so is denoted

by ∗.

4.2 Home Advantage Over Time

Using a data set of final tables from the the English Division 1, now the Premier League,

between seasons 1900/1901 and 2013/2014, the home advantage was estimated using γ̂ of
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Figure 4.2: Seasonal log-likelihood evaluated using the validation set and parameter estimates
for the training set for the exponential weighting function shown in equation (4.13) and over a
grid of values for ξ.

equation (4.9) with estimates shown over seasons in Figure 4.3 (left). It can be seen that

the home advantage decreases over time. As can be seen in Figure 4.4, the average total

number of home and away goals scored per team varies over time due to rule changes

and changes in attacking and defensive technique. For example, between 1920 and 1970

considerably more goals were scored, home and away, than during the period between

1970 and 2005. Figure 4.3 (right) shows a ratio of the home advantage and total goals

scored per season, which takes into account changes in the number of teams in the league

and any rule changes (e.g. 3 points for a win) which led to changes in the number of

goals scored. Under this measure, the decrease in home advantage over time appears less

significant.
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Figure 4.3: (Left) Seasonal home advantage and (right) seasonal home advantage over seasonal
total goals scored for English Division 1 between seasons 1900/1901 and 2013/2014.
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Figure 4.4: (Left) Average total home goals per team and (right) average total away goals per
team each season for English Division 1 between seasons 1900/1901 and 2013/2014.

Using the log-likelihood given by equation (4.7) and data from the Premier League be-

tween 1995/1996 and 2013/2014, a hypothesis test was carried out between an alternative

hypothesis that α, β and γ change with season, s, as given in equation (4.12), and a null

hypothesis that only α and β change over time, whilst γ remains constant over seasons,

i.e. λk = αi(k,s)βj(k,s)γ. The deviance value obtained was 16.06, which proves insignif-

icant in a chi-squared test with 18 degrees of freedom at a 0.05 significance level with

a p-value for the alternative hypothesis of 0.65, therefore the null is not rejected. This

provides some evidence that change in home advantage over time may not need to be

taken into account in the modelling process for this recent period of data, despite the

evidence of change from earlier seasons. Clearly, time is not a causal factor. It is however,

the measure over which rule changes (such as three points for a win) and new technology

and training methods enter the sport. This may lead to more significant results when

analysing how the relationship of home advantage with various covariates changes over

time.

Cross validation was also carried out under the above null and alternative hypotheses, to

analyse each model’s predictive power. Every other match in the data set was removed

(starting with the second match in the 1995/1996 season) without replacement and the

log-likelihood given by equation (4.7) was maximised to give MLEs which were used to

calculate the root mean squared error (RMSE) for home and away goal estimates as given

for individual parameters (represented by θ) by

RMSE(θ) =

√√√√∑k∈C 2
(
θ̂k − θk

)2

N
, (4.16)
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where C represents the validation set, which has length N/2.

This was repeated removing every other match in the data set starting with the first

match in the 1995/1996 season, and the average of the two RMSEs were calculated for

each model. Under the null model of constant home advantage, the average RMSE for

home goal estimates (θ = λ) was 1.300, whilst that for away goal estimates (θ = µ)

was 1.110. Comparing this to that for the alternative model, that home advantage also

changes over seasons, the average RMSE for home goal estimates increased to 1.301 and

that for away goal estimates also increased to 1.111, which indicates a very slight loss in

predictive power when including varying home advantage over seasons.

The reduction in predictive power may be due to the removal of large amounts of data,

leaving small samples from which to estimate seasonal home advantage. Leave-one-out

cross validation is an alternative method which removes only a single observation from

the data, then maximises the log-likelihood for the remaining observations. This process

is then repeated for each observation and the RMSE calculated using MLEs for each

point when that observation is removed. Due to its exhaustive approach, using the entire

data set would be computationally intensive. Therefore, a subset of seasons 2009/2010

to 2011/2012 was used in this analysis. Under the null model of constant home advan-

tage, the RMSE for home goal estimates was 1.274, whilst that for away goal estimates

was 1.1012. The RMSE for the alternative model of seasonally varying home advantage

decreased slightly for home goal estimates by 3× 10−4, however, that for away goal esti-

mates increased to 1.106, showing an overall decrease in predictive power, and agreeing

with the intitial analysis.

To look in more detail at any trend in home advantage over time, γ̂ can be evaluated us-

ing the down-weighting function given by equation (4.13), applied either over all seasons,

with attack and defence parameters indexed by i and home advantage γ, or within sea-

sons with attack and defence indexed by i(s) and home advantage γs. For computational

reasons, the data were reduced to seasons between 2001/2002 and 2011/2012. Under the

non-seasonal parameter model and using time increments of half weeks, the log-likelihood

was maxmised at each time step using values of ξ = 0.004 and 0.0065, as found in Section

4.1.3 and by Dixon and Coles (1997) respectively. The resulting values of γ̂ are shown in

Figure 4.5, alongside those estimated using a seasonal parameter model as discussed in

Section 4.1.3, with time increments of each match and a value of ξ∗ = 0.005.

It can be seen from Figure 4.5, that the estimates for γ follow a slightly positive trend

over the eleven seasons of data analysed. However, when treated seasonally, the home

advantage appears to increase over most seasons, with some large step changes between
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seasons. This trend can be explored using a log-linear model such as

log (γs,t) = φs + ηt, (4.17)

where η = 0 represents constant home advantage with a value of φs within seasons. For

this model, t is incremented by 5 matches. It should be noted at this juncture that con-

fidence intervals were not used in Figure 4.5 to allow a visual comparison of estimates

by overlaying them. However, comparing against them would aid the interpretation of

the different estimates. Confidence intervals may be derived from the associated estimate

and standard error (SE), where the SE is derived from the Hessian at the MLE. Then

95% confidence intervals are constructed by adding or subtracting 1.96 × SE from the

estimate.
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Figure 4.5: Values of γ̂ evaluated at each time step (half week or per match) for the non-seasonal
and seasonal team definitions. The dotted line shows the per season estimate of home advantage
evaluated using the closed form expression. Note that confidence intervals were not plotted to
allow visual comparison of estimates. However, 95% confidence intervals can be constructed by
taking the associated estimate and adding or subtracting 1.96 × SE. Comparing against these
intervals would aid the interpretation of the different estimates.

A hypothesis test was performed on data from the Premier League between seasons

1995/1996 and 2013/2014 with a null hypothesis of constant home advantage within

seasons, and an alternative hypothesis that there is a trend in home advantage within

seasons. In a chi-squared test with 1 degree of freedom, the null was not rejected at a

0.05 significance level, with a deviance of 3.26 and a p-value of 0.071. This result tests

significant at a level of 0.1, so it could be hypothesised that the within season trend of

home advantage changes over seasons, which can be written as
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log (γs,t) = φs + ηst, (4.18)

where t is incremented by each match. A second hypothesis test was performed with a

null hypothesis of no change in linear trend describing home advantage within seasons,

for all seasons, and an alternative hypothesis of varying trends in home advantage within

seasons. In a chi-squared test with 19 degrees of freedom, the null was not rejected at a

0.05 significance level, with a deviance of 9.59 and a p-value of 0.962.

4.3 Team Dependent Home Advantage

As discussed in the previous section, it is prudent to assume that home advantage may

not be a constant over time. However, it may also be necessary to consider the effect

of team dependent home advantage. Dixon and Coles (1997) did not implement this in

their model, as they took γ as constant over teams. The likelihood for this model is as

given by equation (4.5). However

λk = αi(k)βj(k)γi(k), (4.19)

where γi represents team specific home advantage and the likelihood is instead maximised

over a vector of parameters describing home advantage, γ = (γ1, . . . , γn) as well as α and

β.

4.3.1 Simulation Study

To illustrate the effect this may have, a simulation study was performed assuming team

dependent home advantages. For this simulation it was assumed that the outcome of the

home and away teams are independent, as in the model by Maher (1982), i.e. ρ = 0 in

the independence function given by equation (4.4).

Individual team parameters for attack, defence and home advantage were assigned to

a twenty team balanced league as shown in Tables 4.1 and 4.2. Note the value of α1 = 1,

this is to ensure that the model is not over parameterised. Outcomes for a full season,

in which every team played every other team once home and once away were simulated,

and the process was repeated 1000 times, with no seasonal change in parameter values.

These simulated match results could then be used in an attempt to estimate the in-

dividual attack and defence parameters, αi and βi and either a constant home advantage

over the league, as assumed by Dixon and Coles (1997), or a team dependent home

advantage, using the definitions for λk and µk as given by equations (4.6) and (4.19)
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respecitively. The log-likelihoods are then given by equation (4.7) and

` (αi, βi, ρ, γi; i = 1, . . . , n) =
N∑
k=1

log [τλk,µk (xk, yk)] + xk log (λk)− λk − log (xk!) (4.20)

+ yk log (µk)− µk − log (yk!) ,

respectively.

The log-likelihoods were maximised for both models over each of the 1000 seasons’ fi-

nal results. The average MLEs for αi and βi are shown in Table 4.1 when testing with

both constant home advantage and team dependent home advantage models. Table 4.2

shows the MLEs for γi when testing with a team dependent home advantage model.

These tables also show the RMSE and the absolute difference as given for a parameter θi

by

Abs. Diff. = |θ̂i − θi|,

where

θ̂i =
1

1000

1000∑
z=1

θ̂i,z

and z represents the simulation number.

When testing with a league constant home advantage model, the average MLE for home

advantage was ¯̂γ = 1.32, which is close to the average of the true individual team home

advantages,
∑n

i=1 γi/n = 1.3. However, the other parameters seem to have suffered under

this model with greater inaccuracies in many parameter estimates, the greatest of which

being the maximum absolute difference between the true value and the MLE of 0.73,

compared to 0.08 for the team dependent home advantage model.

Although much further investigation is needed, it may be concluded that ignoring team

or match dependent home advantage could lead to inaccuracies in the estimates of model

parameters. Including parameterisations such as team dependent home advantage greatly

increases the dimensionality of the model, though, modern methods of numerical optimi-

sation could handle the additional parameters and the information gained could poten-

tially justify their use.
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Parameter True Value
League Home Advantage Team Home Advantage

Mean MLE Abs. Diff. RMSE Mean MLE Abs. Diff. RMSE

α2 1.3 1.45 0.15 0.34 1.38 0.08 0.45

α3 0.7 0.65 0.05 0.16 0.74 0.04 0.28

α4 0.9 0.96 0.06 0.22 0.95 0.05 0.35

α5 0.8 0.90 0.10 0.22 0.85 0.05 0.31

α6 1.1 1.29 0.19 0.33 1.17 0.07 0.38

α7 1.8 1.93 0.13 0.39 1.90 0.10 0.61

α8 0.6 0.67 0.07 0.17 0.63 0.03 0.24

α9 1.4 1.49 0.09 0.31 1.47 0.07 0.48

α10 1.3 1.58 0.28 0.43 1.36 0.06 0.43

α11 1.6 2.33 0.73 0.86 1.68 0.08 0.54

α12 1.1 1.39 0.29 0.41 1.14 0.04 0.39

α13 0.8 0.93 0.13 0.25 0.84 0.04 0.31

α14 1.2 1.11 0.09 0.26 1.27 0.07 0.43

α15 0.9 1.18 0.28 0.38 0.95 0.05 0.34

α16 1.3 1.33 0.03 0.28 1.38 0.08 0.46

α17 1.0 0.97 0.03 0.22 1.06 0.06 0.38

α18 0.5 0.56 0.06 0.16 0.53 0.03 0.23

α19 0.7 0.82 0.12 0.23 0.73 0.03 0.28

α20 1.2 1.29 0.09 0.29 1.27 0.07 0.42

β1 0.8 0.73 0.07 0.18 0.80 0.00 0.22

β2 1.1 1.00 0.10 0.23 1.10 0.00 0.29

β3 1.3 1.19 0.11 0.26 1.31 0.01 0.34

β4 0.4 0.36 0.04 0.11 0.40 0.00 0.13

β5 0.8 0.73 0.07 0.18 0.80 0.00 0.23

β6 0.7 0.64 0.06 0.16 0.71 0.01 0.20

β7 1.2 1.09 0.11 0.25 1.20 0.00 0.31

β8 1.1 1.00 0.10 0.24 1.10 0.00 0.30

β9 1.0 0.91 0.09 0.21 1.00 0.00 0.27

β10 1.3 1.18 0.12 0.26 1.30 0.00 0.34

β11 0.7 0.63 0.07 0.16 0.70 0.00 0.20

β12 0.9 0.82 0.08 0.20 0.90 0.00 0.24

β13 0.8 0.73 0.07 0.18 0.80 0.00 0.22

β14 1.1 1.01 0.09 0.23 1.11 0.01 0.29

β15 1.8 1.63 0.17 0.35 1.79 0.01 0.45

β16 0.6 0.55 0.05 0.14 0.60 0.00 0.17

β17 1.4 1.27 0.13 0.29 1.40 0.00 0.37

β18 1.3 1.19 0.11 0.27 1.31 0.01 0.34

β19 1.6 1.46 0.14 0.31 1.61 0.01 0.40

β20 1.1 1.00 0.10 0.23 1.09 0.01 0.29

Table 4.1: Simulation results (mean MLEs, absolute difference and RMSEs for attack, α, and
defence, β, parameters) using individual team home advantage, γi.
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Parameter True Value Mean MLE Abs. Diff. RMSE

γ1 1.1 1.17 0.07 0.39

γ2 1.3 1.34 0.04 0.35

γ3 0.9 0.97 0.07 0.42

γ4 1.2 1.28 0.08 0.44

γ5 1.3 1.39 0.09 0.51

γ6 1.4 1.45 0.05 0.44

γ7 1.2 1.24 0.04 0.30

γ8 1.3 1.44 0.14 0.68

γ9 1.2 1.24 0.04 0.35

γ10 1.5 1.59 0.09 0.45

γ11 2.0 2.09 0.09 0.48

γ12 1.6 1.71 0.11 0.49

γ13 1.4 1.50 0.10 0.55

γ14 0.9 0.94 0.04 0.29

γ15 1.7 1.79 0.09 0.60

γ16 1.1 1.14 0.04 0.32

γ17 1.0 1.05 0.05 0.38

γ18 1.3 1.49 0.19 0.78

γ19 1.4 1.55 0.15 0.72

γ20 1.2 1.25 0.05 0.37

Table 4.2: Simulation results (mean MLEs, absolute difference and RMSEs for home advantage,
γ) using individual team home advantage, γi.

4.3.2 Application to Premiership Data

The log-likelihood given by equation (4.20) was maximised over data from the Premier

League between seasons 1995/1996 and 2013/2014 for three models, firstly considering

that home advantage varies over teams, secondly that home advantage varies over teams

and seasons, i.e. γi,s = γi + φs, where φs represents a seasonal home advantage, and

finally that team dependent home advantage varies over seasons, which can be written

γi(s) as for the attack and defence parameters, which are allowed to vary between seasons

in all of these models.

A hypothesis test was performed between a null hypothesis that home advantage is con-

stant over teams and seasons, H0 : γi = γ, and an alternative hypothesis that the home

advantage varies over teams, H1 : γi 6= γ. In a chi-squared test with 43 degrees of free-

dom (the number of teams observed in the data minus one), the null is rejected at a 0.05

significance level, with a deviance of 64.53 and a p-value of 0.018.

The log-likelihood of the model and the number of free parameters, p, can be used to

calculate the Akaike Information Criterion (AIC), which can be used as a measure of
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statistical quality of a model and is given by

AIC = 2p− 2 log(L).

The model with the minimum AIC value is preferred. The AIC value is 41971.42 under

the null model and 41992.89 for the alternative model, which opposes the p-value. Table

B.5 in Appendix B shows the value of γ̂i for all the teams that were present in the Premier

League between seasons 1995/1996 and 2013/2014.

Secondly, a hypothesis test was performed between a null hypothesis that home advan-

tage varies over teams, H0 : γi,s = γi, and an alternative hypothesis that home advantage

varies over teams and seasons, H1 : γi,s 6= γi. In a chi-squared test with 19 degrees

of freedom (the number of seasons observed in the data), the null is not rejected at a

0.05 significance level, with a deviance of 18.32 and a p-value of 0.501. The AIC sup-

ports this result with a value of 42012.56 for a model following the alternative hypothesis.

Finally, a hypothesis test was carried out between a null hypothesis that the home advan-

tage varies over teams, H0 : γi(s) = γi, and an alternative hypothesis that team dependent

home advantage varies over seasons, H1 : γi(s) 6= γi. In a chi-squared test with 336 degrees

of freedom (the number of teams in a complete season times the number of seasons minus

the number of teams obsevered in the data) the null is not rejected at a 0.05 significance

level, with a deviance of 371.16 and a p-value of 0.091. The AIC supports this finding,

with a value of 42293.71 for a model following the alternative hypothesis. Table B.6 in

Appendix B shows the individual home advantage MLEs, γ̂i(s), for each team, over each

season, obtained from this maximisation. The standard errors for each team over the in-

cluded seasons are relatively high. Performing a chi-squared hypothesis test, considering

a null hypothesis of constant home advantage over all teams and seasons, H0 : γi(s) = γ,

against an alternative hypothesis of team dependent home advantage, varying over sea-

sons, H0 : γi(s) 6= γ, the null is rejected at a significance level of 0.05, with a p-value for

the alternative hypothesis of 0.023.

The RMSE of the home and away goal counts achieved in the alternative and null models

may be compared as a percentage improvement (or reduction), v(θ), as given by

v(θ) =
Null RMSE(θ)− Alternative RMSE(θ)

Null RMSE(θ)
× 100, (4.21)

where RMSE(θ) is given by equation (4.16) and a value of alternative RMSE(θ) = 0

gives a value of v(θ) = 100 and represents a 100% reduction in the RMSE of the Null,

or zero error. It should be noted that this statistic requires null RMSE(θ) > 0, which

is empircally acceptable given a large number of observations and the nature of random
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effects. Evaluating this function for home goal count, x, and away goal count, y, with a

null hypothesis of constant home advantage and an alternative hypothesis of seasonally

constant team home advantage, results in values of v(x) = 0.21% and v(y) = 0.24%

respectively, whilst an alternative of seasonally varying team home advantage results in

values of v(x) = 1.48% and v(y) = 1.98% respectively. These both indicate that the

alternative models are fitting the data better than the null. However, this does not mean

that they are more accurately estimating the true parameters.

Cross validation was carried out under the constant team home advantage and season-

ally varying team home advantage hypotheses, to analyse each model’s predictive power.

Alternate matches in the data set were removed (starting with the second match in the

1995/1996 season) without replacement and the log-likelihood given by equation (4.7)

was maximised to give MLEs which were used to calculate the RMSE for home and away

goal estimates. This was repeated removing every other match in the data set starting

with the first match in the 1995/1996 season, and the average of the two RMSEs were

calculated for each model. Under the model of constant team home advantage, the av-

erage RMSE for home goal estimates was 1.313, whilst that for away goal estimates was

1.114. Under the model of seasonally varying team home advantage the average RMSE

for home goal estimates was 1.301 and that for away goal estimates was 1.130. These

values indicate a loss in predictive power in comparison to the model of constant home

advantage over teams and seasons, as given in Section 4.2.

As discussed in Section 4.2, the removal of large amounts of information from the data

set may impede the predictive capabilities of the models. Therefore, leave-one-out cross

validation shall also be used here (as described in Section 4.2), using the subset of sea-

sons 2009/2010 to 2011/2012. Under the model of constant team home advantage, the

RMSE for home goal estimates was 1.280, whilst that for away goal estimates was 1.110.

Under the model of seasonally varying team home advantage the RMSE for home goal

estimates was 1.289 and that for away goal estimates was 1.120. These results agree with

the above findings, as the RMSEs are greater than those values relating to the constant

home advantage model.

It was hypothesised that home advantage may be directly linked to the skill of a team,

more specifically, their attacking ability, αi. To investigate this over multiple seasons

for the full data set, a correction factor had to be applied to account for the fact that

α1(s) = 1, normalising the values to each season seperately. Considering that the nor-

malisation method prescribed by Dixon and Coles (1997) of
∑n

i=1 αi/n = 1 would allow

comparable parameters over seasons, the correction factor, cs, was derived as

cs =
n∑
αi(s)

,
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and α∗i(s) = csαi(s) and β∗i(s) = βi(s)/cs, are now comparable over seasons.

No significant relationship between either attack or defence and team dependent home

advantage, varying over seasons, γi(s) was found when comparing their estimates. There-

fore, it was further hypothesised that γi(s) may instead be dependent on the product

of a team’s attacking skill and the average defensive skill for the league. This can be

represented by Ti(s) as given by

Ti(s) = csα̂i(s)

n∑
j=1

β̂j(s)/cs
n

= α̂i(s)

n∑
j=1

β̂j(s)
n

. (4.22)

Figure 4.6 shows the seasonally varying team dependent home advantage MLEs, γ̂i(s)

with a confidence interval calculated using the Hessian, plotted against Ti(s). This can

be thought of as the expected goal count that team i would achieve on neutral ground,

when playing a team with the average defensive ability of those teams in each season.

Visually, Figure 4.6 shows a decreasing trend between γi(s), and the skill of the home team

measured through Ti(s), which could possibly be used in the development of a model for

home advantage.

One possible form for a team and season specific home advantage is

log
(
γi(k,s)

)
= φ+ η0 exp

(
−η1Ti(k,s)

)
, (4.23)

for some constants φ, η0 and η1. This relates γi(s) to Ti(s) in a match k using an expo-

nential curve model.

A hypothesis test was carried out with a null hypothesis of a constant home advan-

tage over seasons, against an alternative hypothesis that home advantage follows the

relationship with α̂i(k,s)
∑n

j=1

β̂j(k,s)
n

given in equation (4.23). There was no improvement

in the log-likelihood value between the null and alternative hypotheses. The fitted rela-

tionship under the alternative hypothesis is shown in Figure 4.6 as a blue dotted line,

which appears flat, but has a slight negative trend. This would be interpreted as a more

skillful team in attack and defence experiences a lower home advantage.
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Figure 4.6: Individual team home advantage as a function of α̂i(k,s)
∑n

j=1
β̂j(k,s)
n , using data from

the Premiership between seasons 1995/1996 and 2013/2014.

4.4 The Effect of Cards on Goals

Referee bias is often seen as a leading cause of home advantage, due to pressures arising

from crowd dynamics and other factors. Referees are susceptible to the same psychological

influences as players when on the pitch, and could provide a conduit of crowd influence

to the game (Boyko et al., 2007). In the Premiership between seasons 2001/2002 to

2011/2012, away teams received 1.49 times more red cards than home teams and 1.33

times more yellow cards, suggesting a very real home advantage in terms of cards given.

The effect of yellow cards on the actual gameplay is small in comparison to red cards, as

the latter changes the number of players on a team. The difference between the number

of players on each team at the end of the match, Rh
i,j, can be calculated by the number

of red cards awarded to away team j minus those awarded to home team i, where a value

of 1 indicates one additional player to the home team i.

The difference in cards can be employed in a log-linear model of home advantage as

given by

log (γi,j) = φ+ ηRh
i,j,
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where η describes a log-linear trend in γ with Rh. A hypothesis test was carried out

using the goal count model given by equation (4.5), with a null model of constant home

advantage, i.e. η = 0, and an alternative model where red cards are thought to be a

covariate of home advantage as modelled by a log-linear relationship of γ and Rh, i.e.

η 6= 0. Maximising the log-likelihood given by equation (4.7) under both the null and

alternative models resulted in a p-value of 0.000 when comparing to a chi-squared distri-

bution with one degree of freedom, which proves to be highly significant and in turn the

null can be rejected. The MLEs take the value φ̂ = 0.30 and η̂ = 0.24, which suggests

a positive trend between home advantage and Rh, i.e. more players on the home team

results in a higher home advantage.

It can be hypothesised that the away team would also benefit from an advantage if

they had more players than the home teams. Then, µk can be written

µk = αj(k,s)βi(k,s) exp
(
1− νRh

i,j

)
,

where ν allows the consideration of some away effect relative to −Rh. A hypothesis test

was then carried out between a null of home advantage with log-linear dependence on

Rh, i.e. η 6= 0 and ν = 0, and an alternative of both home and away effect equally

dependent on Rh and −Rh respectively, i.e. η = ν 6= 0. As there are no additional free

parameters, a positive value of deviance can be used to acertain the better model. The log-

likelihood given by equation (4.7) was maximised under the two models, giving a deviance

of 52.20, which indicates that the null can be rejected. Under this model, φ̂ = 0.30 and

η̂ = ν̂ = 0.26. This model accounts for both home and away card effects; comparing

exp(φ̂) = 1.35 to the MLE for constant home advantage γ̂ = 1.37, the reduction in home

advantage when considering games where equal amounts of players finish on each team

is small (i.e. Rh = 0), suggesting that there are other important factors to consider.

4.5 Conclusion

Estimates of home advantage can be seen to reduce over time for a historical data set

taken from the English Premier League. This reduction can be partially explained by

the evolution of strategy to a lower average goal count per match. Rule changes such

as the migration from two points for a win to three points may explain this change.

However, home advantage estimates appear to be increasing in recent years, although

no statistically significant change in home advantage with time was found for the period

2001 to 2012, suggesting that playing styles and any other driving factors have somewhat

stabilised in recent years.
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Home advantage was found to vary significantly over teams. However, performing a

form of exhaustive cross validation under this model showed that the predictive capabil-

ities were reduced from the null model which considers a constant home advantage over

teams. This suggests that the model could be either overfitting the data or that there

is too little data to accurately estimate these parameters. Modelling the heterogeneity

of the home advantage parameters on some predictor variables would serve to mitigate

this issue, but these are currently unknown and will require extensive hypothesis testing.

This topic is covered in the next chapter.

It has often been hypothesised that home advantage results from referee bias, which

could in turn be linked to other variables such as crowd dynamics. It was found that

home and away team advantages are both heavily dependent on red cards, or rather the

reduction in players and effects on team and crowd dynamics. However, modelling the

evolution of cards in a match is another issue that is beyond the scope of this analysis.

Titman et al. (2015) cover the joint modelling of goals and bookings in association foot-

ball, using a Markov counting process to accrue goals and bookings.

It has been discussed that any relationship of home advantage with time is not a causal

factor, but a measure over which changes happen to other possible covariates. Also, team

dependent home advantage and cards could be thought of as simple model extensions.

However, less obvious external covariates such as crowd dynamics and distance between

teams may also be affecting the outcome. This will be discussed in the following chapter.

4.6 Future Work

Extending this study to a larger data set, with more leagues and seasons, would allow

for a better insight into whether the provision of team dependent home advantage in the

model can be used to better predict goal counts.

The assessment of different team sports would aid the conclusions of this chapter. Al-

though different sports play to different rule sets and can be subcategorised in terms of

their winning aims, they have many common factors, such as players and referees, travel

and spectators.

Application of some joint models for home advantage and bookings may allow for consid-

erably better predictions of goal counts. In addition, red and yellow card count estimates

can be used in betting strategies to further profit from individual matches. Testing against

the model defined by Titman et al. (2015) would allow an assessment of the accuracy of

model estimates against current methods.



Chapter 5

Covariate Modelling of Home

Advantage

5.1 Introduction

Extensive discussion as to what causes home advantage in team sports has been docu-

mented in both academic journals and the media. Suggested causes include but are not

limited to: distance travelled, crowd size, stadium size, referee bias and pitch dimensions

(Pollard, 1986). However, little statistical evidence has been produced in the public do-

main to support any of these arguments.

This chapter aims to investigate a number of possible causes, focusing primarily on dis-

tance travelled between grounds and crowd attendance, for association football. Various

exploratory methods will be employed to examine the effects of the possible driving fac-

tors of home advantage, specifically changepoint methods and piecewise regression, which

allow us to build a picture of any relationships to allow ease of fitting a more sensible

regression model.

Non-parametric regression will also be explored, whereby the predictor derives its form

according to information obtained from the data. Unlike parametric regression the func-

tional relationships between response and explanatory variables can adapt better to non-

linear relationships, allowing them to capture more features present in the data. It is also

prudent to use non-parametric regression when the nature of the relationship is unknown,

whilst recognising a potential reduction in power of the inference.

Various methods and models will be used to analyse the extent to which the possible

driving factors relate to home advantage. Details of these will be given, including a de-

scription of how these models will be applied to the specific conditions of the analysis.

These models will follow a basis of the Dixon and Coles (1997) model, which is described
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in Section 4.1. Equations (4.5) and (4.7) describe the likelihood and log-likelihood of this

model respectively. The following analysis will use the same parameters and notation as

given in Section 4.1 unless otherwise stated. Attack and defence parameters, αi(s) and

βi(s), will be treated as seasonally varying. The derivation of the closed form expression

for home advantage, γ, under the basic model is outlined in Section 4.1.2. When max-

imising over parameters, γ in equation (4.7) can be replaced by the parameters describing

the relation of a certain covariate to γ.

5.2 Covariate and Data Selection

The covariates under analysis, for a match pairing of home team i and away team j,

are: distance (km), di,j, attendance (total home and away supporters at the match),

Ai,j, referee experience (years), Ri,j, pitch length (m), PL
i,j, and pitch width (m), PW

i,j . It

was noted during the analysis, that relative transformations of these covariates should

be used in some cases as they provided more significant results, whilst remaining con-

ceptually logical. For attendance Ai,j/Aj,i was employed to represent the ratio between

attendances at each of the two grounds where the pairing i, j played. For pitch length

and width PD
i,j/P

D
j,i was used, where D indicates the dimension, width or length. This

represents the ratio of each dimension of the pitch size between the two grounds where

the pairing i, j played.

Data were provided by the industrial partner, ATASS Sports, for match results over

many leagues worldwide and seasons between 2001 and 2012 (See Appendix C). Supple-

mentary data from England’s Premier League (2001/2002 to 2011/2012), France’s Ligue

1 (2003/2004 to 2011/2012) and Italy’s Serie A (2004/2005 to 2011/2012) were selected

to provide a range of distances, over a suitably large number of seasons. The following

sections will use these leagues to compare and contrast results ascertaining to the nature

of any relationship between distance between teams and home advantage.

Further data were obtained from thefootballarchives.com (2014) regarding the combined

home and away attendance, match referee, and home and away goal counts for the four

highest English divisions. Data for Division 1 (currently the Premier League) were ob-

tained between seasons 1995/1996 and 2013/2014, whilst that for the three lower leagues

were obtained between seasons starting in 2004/2005 and 2013/2014. The use of four

leagues within one specific country is more likely to ensure similar referee training, sim-

ilar distances between teams and similar psychological attitudes of players. A separate

breakdown of the crowd at a match into home and away team supporter attendances

would be beneficial to this analysis, however, they were not readily available in the pub-

lic domain. It is noteworthy that the level of attendance may imply a large team is within

a higher wealth bracket, which will be considered in any conclusions.
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Referee experience was determined by the length of time since they started profes-

sional refereeing as shown by internet records. A consensus was formed using various

sites including: wikepedia.com, soccerway.com, soccerbase.com, premierleague.com and

football-lineups.com. In a similar manner, pitch length and width were gathered for Pre-

mier League grounds, ascertaining to seasons 2001/2002 to 2011/2012.

The resulting relationships for the Premier League will be presented in the body of the

text in each section, due to its status and presence in all analyses, whilst other leagues

will be presented in appendices to allow a concise analysis.

5.3 Non-Linear Exploratory Methods

Linear models, generalised linear models (GLMs) and nonlinear models are all examples

of parametric regression, as the function describing the relation of the response to the

explanatory variable is known (Freund et al., 2006; Lee et al., 2006). In situations such as

this, the relationship is not known. In these cases, semi-parametric regression, which em-

ploys parametric and non-parametric components, allows the incorporation of unknown,

nonlinear relationships into regression analyses by capturing unusual or unexpected fea-

tures of the data, and does not seek to employ a predetermined relationship between the

dependent response and independent explanatory variables (Ruppert et al., 2003).

The following sections will detail the methods used to explore any relationships between

home advantage and various hypothesised covariates. These methods include: change-

points, which refers to any abrupt changes in the statistical properties of the data when

ordered by a covariate; piecewise constant regression, which can be treated as an exten-

sion of changepoint theory; and penalised spline smoothing, which is a method of fitting

a smooth curve using a spline function. Piecewise constant regression can also be thought

of as a reduction of penalised spline smoothing to the most basic form.

5.3.1 Changepoint Methods and Piecewise Constant Regression

Changepoint models may be used to decide whether a stochastic process is homogeneous

or not with respect to some or all of its descriptive statistics (Eckley et al., 2011; Chen

and Gupta, 2011; Muller, 1992). Within the context of this application detection models

will base their decision on data ordered sequentially according to the covariate in ques-

tion, distance for example.

Formally, in a discretised case, respective to the measure being used (time in the majority

of changepoint applications), and considering a single changepoint X1, X2, . . . , Xn denote

the sequence of n independent random variables. The elements X1, . . . , Xτ are identi-
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cally distributed according to some density function f0 and Xτ+1, . . . , Xn are identically

distributed according to some density function f1. If the location of the changepoint

position, τ , is unknown a hypothesis test would then seek to compare a null hypothesis

of f0 = f1 against an alternative of f0 6= f1 for each value 1 < τ < n (Eckley et al., 2011).

By discretising the covariate to some resolution such models can be used to test for the

existence of a changepoint within home advantage relative to the covariate in question

and estimate its position and parameter set. Both Bayesian and non-Bayesian approaches

exist (Atherton et al., 2009; Eckley et al., 2011). For this initial analysis we will use a

classical maximised likelihood method, due to the nature of the base model for goal count

prediction being employed.

Changepoint detection methods may be used as an exploratory tool to assess the re-

lationship of a covariate, δi,j, to home advantage. This can be done using a hypothesis

test, as stated earlier in this section, which allows an assessment of the goodness of fit

using the deviance statistic, however, this is a time consuming process. These methods

may also allow for the use of the closed form expression for home advantage, which may

create a better picture of the relationship by allowing many leagues to be quickly analysed

separately or together. This is only possible if pairing i, j is in the same segment as j, i.

Consider the single changepoint case, whereby

γi,j =

 γ1 if δi,j ≤ δ∗

γ2 if δi,j > δ∗
, (5.1)

where τ is relabelled as δ∗ to signify the different measures of various covariates. This may

be expanded to a multiple changepoint model describing γm, where m = 1, . . . ,M + 1,

which indicates M changepoints, as given by

γi,j =



γ1 if δ∗0 < δi,j ≤ δ∗1

γ2 if δ∗1 < δi,j ≤ δ∗2

...

γM+1 if δ∗M < δi,j ≤ δ∗M+1

, (5.2)

where δ∗0 represents the minimum value and δ∗M+1 represents the maximum value of the

covariate’s range. In the case of changepoint analysis, γ = (γ1, . . . , γM+1).

A special case of this model is when δi,j = δj,i,∀i, j, for example under the covariate

of distance, whereby the closed form expression for the home advantage estimate in each
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segment can be calculated, allowing the estimation of γi,j without the use of numerical

optimisation. Consider the single changepoint model, as given by equation (5.1), the

derivation follows: the first derivative with respect to γ1 of the log-likelihood shown in

equation (4.7), under this model for home advantage, is given by

∂ log L

∂γ1

=
n∑
i=1

∑
{j 6=i:δi,j≤δ∗}

(
−αiβj +

xi,j
γ1

)
. (5.3)

Indexing N pairings of i and j by k = 1, . . . , N and equating the score given in (5.3) to

zero and solving for γ̂1 gives

γ̂1 =

∑
{k:δi,j≤δ∗} xi,j∑
{k:δi,j≤δ∗} α̂iβ̂j

. (5.4)

Similarly the MLE γ̂2 is given by

γ̂2 =

∑
{k:δi,j>δ∗} xi,j∑
{k:δi,j>δ∗} α̂iβ̂j

.

The first derivative with respect to αi of the log-likelihood is given by

∂ log L

∂αi
=

∑
{j 6=i:δi,j≤δ∗}

(
−βjγ1 +

xi,j
αi
− βj +

yj,i
αi

)
+

∑
{j 6=i:δi,j>δ∗}

(
−βjγ2 +

xi,j
αi
− βj +

yj,i
αi

)
.

Equating this to zero and rearranging gives

∑
{j 6=i}

(xi,j + yj,i)− (γ1 + 1)
∑

{j 6=i:δi,j≤δ∗}

α̂iβ̂j − (γ2 + 1)
∑

{j 6=i:δi,j>δ∗}

α̂iβ̂j = 0.

Summing over i : δij ≤ δ∗ and representing the pairings of i and j by k, gives

∑
{k:δk≤δ∗}

(xi,j + yj,i)− (γ1 + 1)
∑

{k:δk≤δ∗}

α̂iβ̂j = 0.

Substituting the expression for γ̂1 given in equation (5.4) gives

∑
{k:δk≤δ∗}

(xi,j + yj,i) =
∑

{k:δk≤δ∗}

(xi,j) +
∑

{k:δk≤δ∗}

α̂iβ̂j.

Therefore,

∑
{k:δk≤δ∗}

yj,i =
∑

{k:δk≤δ∗}

α̂iβ̂j
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and

γ̂1 =

∑
{k:δk≤δ∗} xi,j∑
{k:δk≤δ∗} yj,i

,

and similarly the closed form expression for γ̂2 may be given by

γ̂2 =

∑
{k:δi,j>δ∗} xi,j∑
{k:δi,j>δ∗} yj,i

.

This derivation can be expanded simply to the multiple changepoint form, where

γ̂m =

∑
{k:δ∗m−1<δk≤δ∗m} xi,j∑
{k:δ∗m−1<δk≤δ∗m} yj,i

,

where γ̂m is the ratio of the total home and away goal counts that occur in all matches

where the home and away team grounds are a distance between δ∗m−1 and δ∗m from each

other.

If δ∗m are determined by equally sized bins of match pairings ordered by the covariate,

rather than being included as free parameters in the maximum likelihood estimates, this

can be referred to as piecewise constant regression. This method allows a more complete

picture of the relationship between the dependent variable and regressors, with respect

to the data. However, it should be noted that as the bin size is decreased, by increasing

segmentation, the approximation error increases. In the case of δi,j = δj,i, ∀i, j, using a

closed form expression for the home advantage will allow a much faster computational

time and thereby, the use of many matches from many leagues. In doing so, the approx-

imation error of the parameter estimates will be decreased as overall sample size is made

much larger. Even so, without some measure of fit, this method can only be used as an

outline for other methods.

The sole covariate in this analysis which follows this prerequisite is distance, as teams

do not regularly move grounds and always in a league play once at home and once away

against each opposing team. Figure 5.1 shows a piecewise constant regression relating

distance to home advantage, at a resolution of 50 bins of equal size, carried out on ap-

proximately 104,000 matches over all complete, balanced leagues in the data set provided

by ATASS Sports (See Appendix C for full details). It can be seen that there is a pos-

itive relationship between increasing distance between teams and home advantage. As

distance increases, the rate of increase of home advantage seems to decrease, although

care has to be taken when interpreting this as there are few data at large distance values.
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Figure 5.1: Piecewise constant regression performed at a resolution of 50 bins on 104000 matches
between 2001/2002 and 2011/2012 seasons from the data set provided by ATASS Sports (see
Appendix C for inclusive leagues and time periods) where 95% confidence intervals are shown
in red.

To estimate the location of δ∗ in a single changepoint model, as given by equation (5.1),

the log-likelihood given by equation (4.7) is maximised over the leagues selected for the

analysis (see Section 5.2), using incremental values of ∆δ = 1
q
δmax, where δmax is the max-

imum value of the covariate for the data set and q controls the number of increments.

The value of q = 100 was used in the analysis. However, this leads to plateaus in the

maximum log-likelihood; although the covariates are continuous, only certain values are

observed and they are given to a certain degree of accuracy (for example years of referee

experience). In this case, the smallest covariate value which maximises the log-likelihood

is considered the changepoint, which follows the above definition.

The results of this analysis for the covariates of distance, relative attendance, referee

experience, relative pitch length and relative pitch width, are shown in Tables 5.1 to 5.4

respectively. Hypothesis tests were carried out with a null hypothesis that γ1 = γ2 and

an alternative hypothesis that γ1 6= γ2 for each of the covariates. The resultant deviance

statistics can be used to perform a chi-squared test with two degrees of freedom, consider-

ing the location parameter δ∗ as an additional free parameter. The relevant p-values are

shown along with the AIC in Tables 5.1 to 5.4. It should be noted that in the presence

of a nuisance parameter, such as δ∗, which does not exist in the null hypothesis, tradi-

tional methods of hypothesis testing, such as a chi-squared test, come into question due

to non-regularity (Davies, 1987). In such cases a sampling distribution could be sought

numerically. However, changepoint detection methods often use a chi-squared test with

2 degrees of freedom per changepoint (Zhang et al., 2010; Hawkins, 2001).



5.3. NON-LINEAR EXPLORATORY METHODS 66

Under the distance based changepoint model, as can be seen in Table 5.1, the null is

rejected at a 0.05 significance level for both the Premier League and Ligue 1. However,

this is not the case for Serie A. When all three leagues are combined the null is rejected

and the value of δ∗ is the same as for Ligue 1. It can be seen in Table 5.2 that the null

is rejected under the attendance based changepoint model for both the Premier League

and League 2, though it is not rejected for the Championship and League 1. None of the

leagues display significant changepoints under the referee experience based changepoint

model or those for relative pitch dimensions as can be seen in Tables 5.3 and 5.4.

League γ̂1 γ̂2 p-value AIC δ̂∗ (km) 95% CI

Premier League (England) 1.33 1.43 0.038 24090.94 193 [164, 273]

Ligue 1 (France) 1.31 1.48 0.004 18777.53 290 [277, 302]

Serie A (Italy) 1.36 1.47 0.167 17258.46 710 NA

Combined 1.35 1.44 0.000 60126.96 290 [126, 302]

Table 5.1: Resultant parameter estimates, changepoint position and test statistics for distance
based single changepoint model for home advantage using data from Premier League (England)
2001/2002-2011/2012, Ligue 1 (France) 2003/2004 - 2011/2012 and Serie A (Italy) 2004/2005 -
2011/2012

English League γ̂1 γ̂2 p-value AIC δ̂∗ 95% CI

Premier League 0.35 0.29 0.042 41969.09 1.0 [0.8,0.1]

Championship 1.15 0.26 0.239 31543.27 0.2 NA

League 1 0.26 0.20 0.118 31933.39 1.1 NA

League 2 0.26 0.18 0.017 31845.2 0.9 [0.5,1.1]

Table 5.2: Resultant parameter estimates, changepoint position and test statistics for atten-
dance (Aij/Aji) based single changepoint model for home advantage using data from the Pre-
mier League (1995/1996 - 2013/2014), Championship, League 1 and League 2 (2004/2005 -
2013/2014).

5.3.2 Penalised Spline Smoothing

Parametric models used to describe the dependence of the expected value of some re-

sponse variable on one or more covariates are often not flexible enough to describe the

data (Dierckx, 1995; Ahlberg et al., 1967). Nonparametric regression models allow the

response to be modelled using a smooth, unspecified function of covariates. The draw-

back of nonparametric regression is the possibility that such methods are too flexible,

leading to overfitting of the data. Therefore, it still relies on ‘professional’ input to the

model constraints.
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English League γ̂1 γ̂2 p-value AIC δ̂∗ (years) 95% CI

Premier League 1.33 1.39 0.320 26287.77 6 NA

Championship 1.41 1.31 0.598 37969.46 1 NA

League 1 1.33 1.29 0.364 38446.27 2 NA

League 2 1.33 1.26 0.076 38068.81 6 NA

Table 5.3: Resultant parameter estimates, changepoint position and test statistics for referee
experience based single changepoint model for home advantage using data from the Premier
League, Championship, League 1 and League 2 (2000/2001 - 2011/2012).

Dimension γ̂1 γ̂2 p-value AIC δ̂∗ (years) 95% CI

Length 0.84 1.38 0.130 24089.40 0.94 NA

Width 1.75 1.36 0.147 24093.64 0.93 NA

Table 5.4: Resultant parameter estimates, changepoint position and test statistics for pitch
length and width based single changepoint models for home advantage using data from the
Premier League (2001/2002 - 2011/2012).

Penalised spline regression is one such nonparametric regression technique, which is de-

fined by piecewise polynomial functions linked by smooth transitions at values called

knots (Hall and Opsomer, 2005). Now consider a p-degree spline model between the log

of home advantage, log(γ), and some covariate δ in match observation k, as given by

log(γk) = a0 + a1δi,j(k) + a2δ
2
i,j(k) + . . .+ apδ

p
i,j(k) +

Q∑
q=1

φq
(
δi,j(k) − tq

)p
+
,

where a0, . . . , ap are unkown parameters that need to be estimated, the φq denote the

spline coefficients at knots t1, . . . , tQ and (δ − t)p+ represents the truncated basis function

and is given by

(δ − t)p+ =

 (δ − t)p δ > t

0 otherwise.

The smoothness of the estimated function can be controlled by limiting the number of

basis functions. However, this method is discontinuous and cannot allow for local fea-

tures. Therefore, the smoothness at each knot is controlled by a roughness penalty term

which can be added to the log-likelihood to give a pseudo log-likelihood (Bell et al.,

2012; Dierckx, 1995; Ahlberg et al., 1967). Let the basis function be given by Bb(x) for

b = 0, . . . , p+Q, i.e. 1, . . . , xp, (x−t1)p+, . . . , (x−tQ)p+. Let Ω be a (p+Q+1)×(p+Q+1)

penalty matrix with elements Ωij, given by
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Ωij =

∫ v

u

B
′′

i (z)B
′′

j (z)dz,

where u ≤ t1 ≤ . . . ≤ tK ≤ v. The penalty term is then written as ΨΦ′ΩΦ, where

Φ = (a,φ), and Ψ is the smoothing parameter, which is typically (but not necessarily)

in (0,1].

The pseudo log-likelihood under this model is then given by

` (α,β, ρ, a0, a1, b;x,y) =
N∑
k=1

log [τλk,µk (xk, yk)] + xk log (λk)− λk − log (xk!) (5.5)

+ yk log (µk)− µk − log (yk!) + ΨΦ′ΩΦ,

where

λk =αi(k)βj(k) exp

[
a0 + a1δi,j(k) + a2δ

2
i,j(k) + . . .+ apδ

p
i,j(k) +

Q∑
s=1

φs
(
δi,j(k) − ts

)p
+

]
,

µk =αj(k)βi(k).

In this analysis, the number of knots, Q = 40. The value of Ψ may be best estimated

using cross validation or similar methods, however, this would be computationally slow.

Therefore, two values of Ψ were used to give a low penalty, Ψ = 1, and a high penalty,

Ψ = 10, to allow a representation of any high and low smoothing features. The pseudo

log-likelihood given in equation (5.5) is maximised for both values of Ψ, using each covari-

ate and relevant data set. The resultant curves for home advantage regarding the Premier

League and covariates of distance, relative attendance, referee experience, relative pitch

length and relative pitch width are plotted in Figures 5.2 to 5.5 respectively.

For all other leagues in the analysis (as given in Section 5.2), the resulting high and

low penalty linear-spline curves, alongside piecewise constant regression models for home

advantage with respect to the various covariates are shown in Appendices D to F ; for

distance see Figures D.1 and D.2, for relative attendance see Figures E.1 to E.3, and for

referee experience see Figures F.1 to F.3.

Note that splines inherently may overfit extreme values in a sample, leading to poor

extrapolation under the penalised spline regression model. This can be see, for exam-

ple, in Figure 5.2, where the spline fits both deviate highly from the piecewise constant

regression at high values.
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Figure 5.2: Premier League (England) 2001/2002 - 2011/2012: Penalised spline smooth curves
describing the relationship of home advantage with distance (km), with high (Ψ = 10) and low
(Ψ = 1) penalties, compared to a piecewise constant regression.
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Figure 5.3: Premier League (England) 1995/1996 - 2013/2014: Penalised spline smooth curves
describing the relationship of home advantage with relative attendance, with high (Ψ = 10) and
low (Ψ = 1) penalties, compared to a piecewise constant regression.
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Figure 5.4: Premier League (England) 2000/2001 - 2011/2012: Penalised spline smooth curves
describing the relationship of home advantage with referee experience, with high (Ψ = 10) and
low (Ψ = 1) penalties, compared to a piecewise constant regression.

Figure 5.5: Premier League (England) 2001/2002 - 2011/2012: Penalised spline smooth curves
describing the relationship of home advantage with (left) relative pitch length and (right) relative
pitch width, with high (Ψ = 10) and low (Ψ = 1) penalties, compared to a piecewise constant
regression.

5.4 Parametric Models

5.4.1 Log-Polynomial Regression Model

Consider the classical linear regression model

yi = xi1β1 + xi2β2 + · · ·+ xikβk + εi,
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where the indexing i = 1, . . . , N describes N successive observations (Seber and Lee,

2012). This model assumes that the variable yi is linearly dependent on the regressors xi.

An unobserved error variable εi adds noise to the relationship between yi and xi. Written

in vector form this gives

y = Xβ + ε,

where β are the regression coefficients and

y =



y1

y2

...

yn


, X =



x11 · · · x1p

x21 · · · x2p

...
. . .

...

xn1 · · · xnp


, β =



β1

β2

...

βp


and ε =



ε1

ε2

...

εn


.

Simple linear regression describes the relationship between x and y for observations

i = 1, . . . , n using the function

yi = a0 + a1xi + εi,

where each εi is normally distributed with a zero mean conditioning on the regressor xi

and a0 and a1 are the regression coefficients. This may also be referred to as a first order

polynomial.

The response is unbounded and therefore cannot be used directly to model non-negative

goal counts without some modification. Taking the exponential allows the regression

model to be applied to output quantities lying in the range 0 to∞ and this is known as a

log-linear regression model. Considering home advantage, γ, to be log-linearly dependent

on some covariate, δ, then

γi,j = exp (a0 + a1δi,j) .

Polynomial models are linear when considering estimation, though they allow a non-linear

relationship between the independent variable and the conditional mean of the dependent

variable (Fan and Gijbels, 1996). Log-polynomial regression employs an exponentiated

p-th order polynomial, and can be used to describe the relationship of γ and δ, as given by

γi,j = exp
(
a0 + a1δi,j + a2δ

2
i,j + a3δ

3
i,j + · · ·+ apδ

p
i,j

)
(5.6)
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Caution must be taken to prevent overfitting. For example a high degree log-polynomial

function may pass through each data point in a series, however, a first order log-polynomial

or log-linear function may be a better model of the true relationship. If the regression

curve were to be used to extrapolate the findings, a model which overfits to the data may

produce considerably worse estimates of future observations.

Using the data specified in Section 5.2 first (p = 1) to third (p = 3) order log-polynomials

were used in an attempt to model any relationship between γ and the covariates of dis-

tance, relative attendance, referee experience, relative pitch length and relative pitch

width. The log-likelihood given by equation (4.7) was maximised relating γ to the covari-

ate using equation (5.6) and the data selected for each analysis. The resultant parameters

relating to the Premier League are given in Tables 5.5 to 5.9 and the parametric rela-

tionships are shown visually in Figures 5.6 to 5.9. Note that in Figure 5.9 for relative

pitch length and relative pitch width, the curves under the first, second and third order

log-polynomial models are similar.

For all other leagues in the analysis (as given in Section 5.2), the resulting polynomial

regression models for home advantage with respect to the various covariates are shown

in Appendices D to F ; for distance see Tables D.1 and D.2 and Figures D.3 and D.4, for

relative attendance see Tables E.1 to E.3 and Figures E.4 to E.6, and for referee experi-

ence see Tables F.1 to F.3 and Figures F.4 to F.6.

The appropriateness of each model, in terms of significance and predictive capability,

will be discussed in a later model comparison in Section 5.5. Visually, under the first

order polynomial model, home advantage appears to have a relatively highly positive

relationship with distance, and a negative relationship with relative attendance and rel-

ative pitch length, whilst referee experience shows only a slight positive relationship and

relative pitch width shows a slight negative relationship. At the highest values of dis-

tance and relative attendance, the second and third order polynomials appear to provide

evidence against the overall positive and negative trends respectively. It should be noted

that there are few observations of high values in both cases.
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Figure 5.6: Premier League (England) 2001/2002 - 2011/2012: Log-polynomial models describ-
ing the relationship of home advantage with distance (km), compared to a piecewise constant
regression.

â0 â1 â2 â3

p = 1 2.78× 10−1 2.10× 10−4 NA NA

p = 2 2.69× 10−1 3.61× 10−4 −4.15× 10−7 NA

p = 3 2.94× 10−1 −4.69× 10−4 4.74× 10−6 −8.34× 10−9

Table 5.5: Premier League (England) 2001/2002 - 2011/2012: Parameter values for first, second
and third order polynomial regressions relating a regressor of distance between teams to home
advantage.
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Figure 5.7: Premier League (England) 1995/1996 - 2013/2014: Log-polynomial models de-
scribing the relationship of home advantage with relative attendance, compared to a piecewise
constant regression.

â0 â1 â2 â3

p = 1 3.62× 10−1 −3.62× 10−2 NA NA

p = 2 4.53× 10−1 −1.69× 10−1 3.88× 10−2 NA

p = 3 4.53× 10−1 −1.69× 10−1 3.88× 10−2 1.27× 10−8

Table 5.6: Premier League (England) 1995/1996 - 2013/2014: Parameter values for first, sec-
ond and third order polynomial regressions relating a regressor of relative attendance to home
advantage.
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Figure 5.8: Premier League (England) 2000/2001 - 2011/2012: Log-polynomial models de-
scribing the relationship of home advantage with referee experience, compared to a piecewise
constant regression.

â0 â1 â2 â3

p = 1 3.06× 10−1 1.58× 10−3 NA NA

p = 2 2.28× 10−1 2.00× 10−2 −9.40× 10−4 NA

p = 3 2.54× 10−1 9.99× 10−3 1.46× 10−4 −3.48× 10−5

Table 5.7: Premier League (England) 2000/2001 - 2011/2012: Parameter values for first, sec-
ond and third order polynomial regressions relating a regressor of referee experience to home
advantage.
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Figure 5.9: Premier League (England) 2001/2002 - 2011/2012: Log-polynomial model curves
describing the relationship of home advantage with (left) relative pitch length and (right) relative
pitch width, compared to a piecewise constant regression.

â0 â1 â2 â3

p = 1 1.53 −1.22 NA NA

p = 2 1.53 −1.22 −1.90× 10−5 NA

p = 3 1.53 −1.22 −1.95× 10−5 −1.50× 10−5

Table 5.8: Premier League (England) 2001/2002 - 2011/2012: Parameter values for first, second
and third order polynomial regressions relating a regressor of relative pitch length to home
advantage.

â0 â1 â2 â3

p = 1 4.36× 10−1 −1.19× 10−1 NA NA

p = 2 4.36× 10−1 −1.19× 10−1 −6.93× 10−6 NA

p = 3 4.36× 10−1 −1.19× 10−1 −1.7× 10−5 −9.44× 10−6

Table 5.9: Premier League (England) 1995/1996 - 2013/2014: Parameter values for first, second
and third order polynomial regressions relating a regressor of relative pitch width to home
advantage
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5.4.2 Exponential Curve Model

Figures 5.1 and 5.3 suggest that a more subtle exponential curve may describe the rela-

tionships of distance and relative attendance with home advantage more accurately, i.e.

γ = exp [c0 + c1exp (c2θ)] . (5.7)

As with all regressions there are issues if the sub-sample that is being analysed does not

display the overall characteristics of the sample, i.e. the range of values for the regressor

is too narrow to define the curve. Also, the data may be highly noisy. Therefore it is

easier in this situation to choose initial starting values that are not too far from their

correct values when numerically maximising the likelihood. This may be overcome to

some extent by using starting values similar to those achieved under, for example, the

log-linear or log-polynomial models.

The log-likelihood given by equation (4.7), under the model for home advantage given

by equation (5.7), was maximised for the covariates of distance and relative attendance,

using the data selected for each analysis as given in Section 5.2. The resultant parame-

ters are given in Tables 5.10 and 5.11 respectively, and the parametric relationships are

shown visually in Figures 5.10 and 5.11 respectively, where home advantage has a positive

relationship with distance and a negative relationship with relative attendance. These

findings are consistent with the log-polynomial and piecewise constant models.

League ĉ0 ĉ1 ĉ2

Premier League 0.28 0.10 0.89

Ligue 1 0.09 0.33 0.17

Serie A 0.18 0.18 0.20

Combined 0.25 0.15 0.40

Table 5.10: Exponential curve parameters using individual and combined data from Premier
League (England) 2001/2002-2011/2012, Ligue 1 (France) 2003/2004 - 2011/2012 and Serie A
(Italy) 2004/2005 - 2011/2012.

5.5 Model Comparisons

A number of models have been investigated, relating various covariates to home advan-

tage using the model outlined by Dixon and Coles (1997). Three statistics shall be used

to compare and contrast the models; the p-value, the AIC and the RMSE. It should

be noted that the penalised spline model cannot be compared using the p-value or AIC

statistics due to its pseudo-likelihood.
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Figure 5.10: Comparison of exponential curves using individual and combined data from Premier
League (England) 2001/2002-2011/2012, Ligue 1 (France) 2003/2004 - 2011/2012 and Serie A
(Italy) 2004/2005 - 2011/2012.

League ĉ0 ĉ1 ĉ2

Premier League 0.16 0.16 -0.42

Championship 0.13 0.13 -0.01

League 1 -0.14 0.38 -0.12

League 2 0.13 0.08 -0.72

Table 5.11: Parameters relating to exponential curve model for home advantage as a function of
Ai,j/Aj, i using data from the Premier League (1995/1996 - 2013/2014), Championship, League
1 and League 2 (2004/2005 - 2013/2014).

Deviance cannot be used to compare all models as they are not necessarily nested. How-

ever, it may be used in conjunction with the additional number of degrees of freedom

over the null model of constant home advantage (shown in Table 5.12) to perform a chi

squared test between a null of constant home advantage and an alternative of each model.

This will allow an assessment of the statistical significance of each variable as a covariate

for home advantage under each model.

5.5.1 Distance

Table 5.13 shows the p-value for each parametric model for each league used in the

analysis of distance as a covariate of home advantage (see Section 5.2), and all leagues

combined, with the cases where the null is rejected at a 0.05 significance level highlighted.
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Figure 5.11: Comparison of exponential curve models relating Aij/Aji to home advantage using
data from the Premier League (1995/1996 - 2013/2014), Championship, League 1 and League
2 (2004/2005 - 2013/2014).

Model +D.F. χ2
.050

Changepoint 2 5.99

Log-Linear 1 3.84

Log-Quadratic 2 5.99

Log-Cubic 3 7.82

Exponential Curve 2 5.99

Piecewise Constant 9 16.92

Table 5.12: Additional degrees of freedom (compared to null hypothesis of constant home
advantage) for each model in the comparison and the associated 0.05 significance level in a chi
squared test.

When considering individual leagues, the changepoint model may be considered statis-

tically significant at a level of 0.05 in a chi squared test for Ligue 1 and the Premier

League. All models are significant at this level for the combined analysis of all leagues,

suggesting that there is a statistically significant relationship between distance and home

advantage.

The AIC was calculated for each parametric model in each league in the distance study

and all leagues combined, and is presented in Table 5.14 as the AIC value for each model

in the comparison minus the AIC of the model with the lowest (or best) value. In this

case, zero represents the best model. For both the Premier League and Ligue 1, the

changepoint model relating distance to home advantage is the best model according to

this statistic. For Serie A of Italy, the constant home advantage model is the best model
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Model Ligue 1(France) Serie A (Italy) Premier League (England) Combined

Changepoint 0.004 0.167 0.038 0.000

Log-Linear 0.129 0.192 0.083 0.007

Log-Quadratic 0.101 0.391 0.204 0.005

Log-Cubic 0.205 0.532 0.165 0.011

Exponential Curve 0.208 0.375 0.219 0.001

Piecewise Constant 0.167 0.251 0.862 0.014

Table 5.13: p-values values comparing alternate hypotheses of each model to a null hypothesis of
constant home advantage for each model in the comparison relating to distance between teams
as a covariate of home advantage.

according to the AIC. Finally, when combining data from all leagues, the changepoint

model for home advantage with respect to distance is the best model under the AIC.

Model Ligue 1 (France) Serie A (Italy) Premier League (England) Combined

Constant (Null) 6.86 0 2.54 12.71

Changepoint 0 0.42 0 0

Log-Linear 6.55 0.3 1.54 7.44

Log-Quadratic 6.27 2.12 3.36 6.1

Log-Cubic 8.28 3.8 3.44 7.62

Exponential Curve 7.72 2.03 3.5 2.64

Piecewise Constant 11.95 6.63 15.86 9.96

Table 5.14: AIC values with division minimum AIC value subtracted for each model and division
in the comparison relating to distance between teams as a covariate of home advantage. A zero
value represents the best model under this test statistic.

The p-value and AIC both give a representation of statistical significance, though they

do not give an impression of the practical benefits. The RMSE may be used to compare

the actual goal counts to the expected values under each model. It can also be used

to compare the spline model fit to the other models, which could not be done with the

p-value or AIC. To allow the impression of any improvement, this will be presented as a

percentage improvement in RMSE of goal estimates over the model for constant home ad-

vantage, as given by equation (4.21), for home and away goals, v(x) and v(y) respectively,

Table 5.15 shows the values of v(x) and v(y) for all models tested for the Premier League.

It can be seen that the linear spline fit shows the greatest overall improvement, which is

not surprising as it allows the largest amount of flexibility. However, the amount of im-

provement is extremely low in all cases. It can therefore be concluded, that the inclusion

of a model solely relating distance to home advantage and not allowing for other factors,



5.5. MODEL COMPARISONS 81

may not be of practical benefit in a betting strategy over a short time horizon.

Model v(x) v(y)

Log-Linear 0.036 0.003

Log-Quadratic 0.044 0.001

Log-Cubic 0.078 -0.004

Exponential Curve 0.035 0.006

Piecewise Constant 0.087 0.002

Changepoint 0.061 0.015

Linear Splines (Ψ = 1) 0.129 0.007

Linear Splines (Ψ = 10) 0.102 0.001

Table 5.15: Values of v(x) and v(y) given for each model relating distance to home advantage,
to allow a comparison of the RMSE values to a constant home advantage model for the Premier
League (England) 2001/2002 - 2011/2012

5.5.2 Relative Attendance

Comparing a null hypothesis of a constant home advantage to alternatives of each other

parametric model, a chi-squared test was performed to allow the assessment of significant

deviation of the log-likelihood values for each league in the analysis of relative attendance

as a covariate of home advantage (see Section 5.2). Table 5.16 shows the p-values under

an alternative hypothesis of each parametric model against a null of constant home ad-

vantage, with the values which test significant at a 0.05 significance level highlighted (see

Table 5.12 for significance levels).

Model Premier League Championship League 1 League 2

Changepoint 0.042 0.239 0.118 0.017

Log-Linear 0.111 0.920 0.126 0.036

Log-Quadratic 0.024 0.568 0.097 0.079

Log-Cubic 0.059 0.009 0.198 0.065

Exponential Curve 0.077 1.000 0.177 0.014

Piecewise Constant 0.310 0.580 0.284 0.023

Table 5.16: p-values values comparing alternate hypotheses of each model to a null hypothesis
of constant home advantage for each model in the comparison relating to relative attendance
as a covariate of home advantage.

Table 5.17 shows the AIC values of each parametric model minus the lowest AIC values

in the analysis of relative attendance as a covariate of home advantage. Again, in this

analysis, the best model then has a value of zero. The log-quadratic and log-cubic models
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are the best models under the AIC for the highest three divisions, whilst the exponential

curve model fits the data from League 2 better according to this statistic.

Premier League Championship League 1 League 2

Constant (Null) 3.43 5.68 0.67 4.54

Log-Linear 2.89 7.67 0.33 2.12

Log-Quadratic 0.00 8.55 0.00 3.46

Log-Cubic 2.00 0.00 2.00 3.32

Exponential Curve 2.30 9.67 1.22 0.00

Changepoint 1.10 6.81 0.40 0.39

Piecewise Constant 10.91 16.12 7.79 3.21

Table 5.17: AIC values with division minimum AIC value subtracted for each model and division
in the comparison relating to relative attendance as a covariate of home advantage. A zero value
represents the best model under this test statistic.

As discussed in Section 5.5.1, the RMSE allows a view of the practical benefits, and also

permits a comparison of the semi-parametric spline model. Table 5.18 shows the value of

v(x) and v(y), as defined in equation (4.21), for each model in the comparison, including

the linear spline models, using data from the Premier League. Under this statistic, the

piecewise constant model displays the greatest percentage improvement in RMSE. Again,

little practical impact to the values of RMSE can be seen when implementing relative

attendance as a covariate for home advantage in this way.

Model v(x) v(y)

Log-Linear 0.007 0.015

Log-Quadratic 0.061 0.011

Log-Cubic 0.061 0.011

Exponential Curve 0.033 0.013

Piecewise Constant 0.072 0.012

Changepoint 0.041 0.015

Linear Splines (Ψ = 1) 0.064 0.013

Linear Splines (Ψ = 10) 0.060 0.014

Table 5.18: Values of v(x) and v(y) given for each model relating attendance to home advantage,
to allow a comparison of the RMSE values to a constant home advantage model for the Premier
League (England) 2001/2002 - 2011/2012.
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5.5.3 Referee Experience

Similarly to the previous sections, chi-squared tests were performed considering a null hy-

pothesis of constant home advantage and alternative hypotheses of each parametric model

tested, relating home advantage and a covariate of referee experience for all leagues cho-

sen for this analysis as discussed in Section 5.2. Table 5.19 shows the p-values from

these tests. None of the models relating home advantage and referee experience tested

significant at a 0.05 level (see Table 5.12 for significance levels).

Model Premiership Championship League 1 League 2

Changepoint 0.321 0.596 0.363 0.076

Log-Linear 0.635 0.164 0.103 0.066

Log-Quadratic 0.380 0.179 0.167 0.128

Log-Cubic 0.569 0.119 0.203 0.111

Piecewise Constant 0.538 0.084 0.080 0.175

Table 5.19: p-values values comparing alternate hypotheses of each model to a null hypothesis
of constant home advantage for each model in the comparison relating to referee experience as
a covariate of home advantage.

Table 5.20 shows the AIC values of each parametric model minus the lowest AIC values

in the analysis of referee experience as a covariate of home advantage. Interestingly, the

changepoint model proved to have the lowest AIC value for the Premiership and League

2, whilst the log-linear model had the lowest AIC value for League 1. These results are

contradictory to the p-values given in Table 5.19.

Model Premiership Championship League 1 League 2

Constant (Null) 0.28 0.00 0.66 3.16

Changepoint 0.00 0.97 0.63 0.00

Log-Linear 2.05 0.06 0.00 1.79

Log-Quadratic 2.34 0.56 1.08 3.04

Log-Cubic 4.26 0.15 2.05 3.14

Piecewise Constant 10.32 2.74 3.23 8.41

Table 5.20: AIC values with division minimum AIC value subtracted for each model and division
in the comparison relating to referee experience as a covariate of home advantage. A zero value
represents the best model under this test statistic.

Again, little practical impact to the values of RMSE can be seen when implementing

referee experience as a covariate for home advantage in this way. It shall not be shown

in a tabular format as in previous sections, as little benefit can be perceived due to the
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lack of signficance for all models.

5.5.4 Relative Pitch Dimensions (Length and Width)

Finally, chi-squared tests were performed comparing a null hypothesis of constant home

advantage against alternatives of each other parametric model, for each league in the

analysis of relative pitch length and width as covariates of home advantage as discussed

in Section 5.2. Table 5.21 shows the respective p-values, with the values which test signif-

icant at a 0.05 significance level highlighted (see Table 5.12 for significance levels). Only

the log-linear model caused the null hypothesis to be rejected, suggesting a significant

negative log-linear trend between home advantage and relative pitch length.

Model PL
i,j/P

L
j,i PW

i,j /P
W
j,i

Changepoint 0.131 0.147

Log-Linear 0.034 0.825

Log-Quadratic 0.107 0.976

Log-Cubic 0.214 0.997

Piecewise Constant 0.572 0.063

Table 5.21: p-values values comparing alternate hypotheses of each model to a null hypothesis
of constant home advantage for each model in the comparison relating to relative pitch length
and relative pitch width as covariates of home advantage.

Table 5.22 shows the AIC values of each parametric model minus the lowest AIC values

in the analysis of relative pitch width as a covariate of home advantage. Again, in this

analysis, the best model then has a value of zero. The log-linear model proved to be

the best model under the AIC for relative pitch length in the Premier league, whilst no

model relating home advantage to relative pitch width could be found that had a lower

AIC than the null model of constant home advantage.

The values of v(x) and v(y) are given in Table 5.23. It can be seen that there is some

improvement in the RMSE over the null model for all tested models, though it is only

slight.

5.6 Combining Models

To ascertain the best combination of covariates to employ when modelling home advan-

tage, data from the Premiership between seasons 2001/2002 and 2011/2012 were analysed

for each of the best covariate models. Table 5.24 shows the resulting AIC and p-values
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Model PL
i,j/P

L
j,i PW

i,j /P
W
j,i

Constant (Null) 2.48 0.00

Changepoint 2.41 0.16

Log-Linear 0.00 1.95

Log-Quadratic 2.00 3.95

Log-Cubic 4.00 5.95

Piecewise Constant 12.85 1.78

Table 5.22: AIC values with division minimum AIC value subtracted for each model and division
in the comparison relating to relative pitch length and relative pitch width as covariates of home
advantage. A zero value represents the best model in under this test statistic.

Model v(x) v(y)

Log-Linear 0.04 0.05

Log-Quadratic 0.04 0.05

Log-Cubic 0.04 0.05

Changepoint 0.04 0.07

Piecewise Constant 0.05 0.01

Linear Splines (Ψ = 1) 0.08 0.05

Linear Splines (Ψ = 10) 0.06 0.05

Table 5.23: Values of v(x) and v(y) given for each model relating relative pitch length to home
advantage, to allow a comparison of the RMSE values to a constant home advantage model for
the Premier League (England) 2001/2002 - 2011/2012

from a hypothesis test between a null of constant home advantage and an alternative

of each individual model under test. Note, referee experience showed no significant rela-

tionship with home advantage in any of the models tested, so no model for it is tested here.

In this time range, the changepoint model relating distance and home advantage and

the log-linear model relating relative pitch length and home advantage caused the null

to be rejected at a 0.05 significance level in a chi-squared test. However, the log-linear

model for the covariate of relative attendance did not prove significant at this level for

the shorter time period used here.

Covariate Model p-value AIC

Distance Changepoint 0.038 24090.94

Relative Attendance Log-quadratic 0.376 24095.52

Relative Pitch Length Log-linear 0.034 24091.00

Table 5.24: AIC and p-value results for each best covariate model.
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All combinations of these models (both for two or three covariates) were tested, combining

parameters where appropriate. Hypothesis tests were carried out with null hypotheses

of each individual component covariate model for home advantage and an alternative

of a model formed from the combination of those components, e.g. an alternative of a

combined model for home advantage of a changepoint with distance and a log-quadratic

relationship with relative attendance was tested against a null model of a changepoint

with distance and a null model relating relative attendance by a log-quadratic curve.

Under this cross testing, the only combination which rejected all null models at a 0.05

significance level, was that relating home advantage to a changepoint over distance (at

193 km) and a log-linear trend with pitch length (with p-values of 0.035 and 0.039 re-

spective to the null component models). This can be written

γi,j =

 γ1 + a1P
L
i,j/P

L
j,i if Di,j ≤ D∗

γ2 + a1P
L
i,j/P

L
j,i if Di,j > D∗

.

This model also had the lowest value of AIC of any of the models under testing for

this data set, suggesting that it is the best model with respect to this statistic. To test

the impact on the predictive power of the model, a leave one out cross validation study

was carried out in a similar fashion as described in Section 4.2. The subset of seasons

2009/2010 to 2011/2012 was used, siimilarly to the study performed in Section 4.2. Under

the model relating home advantage to a changepoint over distance and a log-linear trend

with pitch length, the RMSE for home goals was 1.270, whilst that for away goals was

1.100. These result in values of v(x) = 0.31% and v(y) = 0.11%, when compared to the

model of constant home advantage, suggesting that the predictive power has increased

when considering parametric models for home advantage relating to covariates of distance

and pitch length.

Table 5.25 shows the ten highest and ten lowest home advantage estimates for the dataset.

From these data, it can be seen that a common theme of Manchester City having the

lowest home advantage, and playing as away team in the matches which experience the

highest home advantage.

5.7 Conclusion

Various linear and non-linear models have been used to explore the relationship of home

advantage with predictor variables, such as distance between teams, match attendance,

pitch dimensions and referee bias. Exploratory methods such as piecewise regression and

penalised spline smoothing provided an initial picture of any trends.

Using the closed form expression for piecewise constant home advantage, regression could
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Home Team Away Team x y Distance Pitch Length γ̂

Manchester City Bolton Wanderers 2 0 17 1.07 1.22

Manchester City Bolton Wanderers 6 2 17 1.07 1.22

Manchester City Everton 3 1 53 1.07 1.22

Manchester City Liverpool 0 3 53 1.07 1.22

Manchester City Liverpool 2 2 53 1.07 1.22

Manchester City Everton 5 1 53 1.07 1.22

Manchester City Wolverhampton Wanderers 3 3 102 1.07 1.22

Manchester City Birmingham City 1 0 117 1.07 1.22

Manchester City Birmingham City 0 0 117 1.07 1.22

Aston Villa Birmingham City 0 2 4 1.05 1.25

. . . . . . . . . . . . . . . . . . . . .

Fulham Newcastle United 1 0 402 0.95 1.51

Fulham Newcastle United 5 2 402 0.95 1.51

Crystal Palace Newcastle United 0 2 414 0.95 1.51

Tottenham Hotspur Manchester City 0 2 258 0.93 1.54

Tottenham Hotspur Manchester City 1 1 258 0.93 1.54

Arsenal Manchester City 2 1 264 0.93 1.54

Fulham Manchester City 0 1 264 0.93 1.54

Fulham Manchester City 2 2 264 0.93 1.54

Arsenal Manchester City 2 1 264 0.93 1.54

West Ham United Manchester City 0 0 266 0.93 1.54

Table 5.25: English Premier League 2001/2002 - 2012/2013: Home advantage estimates, dis-
tance between teams and pitch lengths for the ten highest and ten lowest estimates.
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be quickly carried out over many leagues simultaneously. It became clear that home ad-

vantage has a positive relationship with distance. This hypothesis was confirmed with

statistical hypothesis testing and under the AIC. However, it appears that a change-

point model better modelled the hidden relationship than a smooth curve as was seen in

the exploratory analysis. This could be because individual leagues with varying change-

points combine to form the curve seen under the piecewise constant regression, or that

the leagues tested did not have a wide enough range of distance values.

Crowd dynamics have often been discussed as a driving factor in home advantage. One

possible measure of this is the crowd size or match attendance, which in this case was

treated as the relative attendance. No obvious trend was found under exploratory analy-

sis. However, under hypothesis testing between various alternative models and the null of

a standard Poisson model, a significant negative trend was found between home advan-

tage and relative attendance for three of the four leagues tested. No consistent regression

model was found across all leagues tested, however.

No significant relationship between referee experience and home advantage was found.

This might suggest that although experience is thought to bring consistency, some refer-

ees may still suffer a predisposition to awarding home advantage far into their careers.

Pitch dimensions were tested finally (although only for one league, due to a lack of data),

with home advantage experiencing a significant negative log-linear relationship with rel-

ative pitch length. No significant relationship was found between home advantage and

relative pitch width. This suggests that home teams playing on a short pitch as opposed

to the away team who usually plays on a longer pitch, will experience a higher home

advantage. This could be because the team does not have as much room to play to their

usual style.

In combining these models, it was found that the most statistically significant combi-

nation was that of a changepoint with distance and a log-linear relationship with pitch

length. Table 5.25 shows the matches displaying the highest and lowest home advantages

under this model, whereby Manchester City appears to display the most disadvanta-

geous characteristics, as opposed to West Ham United, Arsenal, Fulham and Tottenham

Hotspur.

5.8 Future Work

Alongside further testing of the models discussed in this chapter, on both larger data sets

and different leagues, the evolution of models through innovative regression characteristics

and higher order changepoint models may lead to a better fit and higher predictive power.
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Crowd dynamics may have shown some significant relationship with home advantage,

however, it was not conclusive. The lack of available home and away crowd split has

limited the analysis. If these data were attained, it may show a much more significant

relationship between home advantage and attendance.



Chapter 6

Overdispersion and Threshold

Effects

6.1 Introduction

Previous attempts to increase the goodness of fit and predictive capabilities of the model

defined in Dixon and Coles (1997) have related to solely parametric additions to allow

the model to consider various variables which goal count may depend on (see Chapters

4 and 5). This chapter aims to challenge the class of distribution used in the modelling

process, and to ascertain whether or not a mixture distribution of some sort would better

fit the data.

Right censoring of the Poisson model defined by equation (4.3), hereafter referred to

as Dixon and Coles model (4.3), will be used to illustrate the effect that poor fitting in

the extreme right tail has on the fit of the body. Under this censored model the extent

to which the Poisson distribution underperforms in modelling the home and away goal

counts will be discussed.

Finally, threshold mixture modelling will be introduced as a method of increasing the

goodness of fit in the right tail, with a selection of distributions. The use of threshold

mixture modelling opens up the ability to implement a high scoring home advantage

parameter, which may help to reduce the probabilistic error and better model home ad-

vantage when teams of very high and low abilities play each other.

It should be noted that more traditional mixture models were tested, though there were

none which were found to increase the goodness of fit, as all regressed to a sole Poisson

distribution. This is not to say that some other reparameterisation would not allow such

models. This could be an area of further work.

90
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6.2 Overdispersion

Goal count data in association football is thought to follow a Poisson distribution (Dixon

and Coles, 1997). One of the main features of the Poisson distribution is the equality of

the mean and variance. A sensible measure of dispersion in home and away goal counts

can therefore be calculated using the variance-to-mean ratio, i.e.,

D =
σ2

µ
. (6.1)

Under the assumption that goal counts are identically distributed within teams and using

a data set of over 100,000 professional level association football matches1, D = 1.07 for

both home and away goals. This may be interpreted as a slight overdispersion in goal

count. However, as we knew teams differ in ability this could equally be due to that

reason.

Table 6.1 shows the quantiles for home and away goal count in steps of 10%. In fact, less

than 1% of all goal counts are greater than 5. These few high goal count events have a

greater effect on the variance than on the mean.

Quantile 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Home 0 0 0 1 1 1 2 2 2 3 10

Away 0 0 0 0 1 1 1 2 2 3 11

Table 6.1: 10% quantiles of home and away goal counts

Figure 6.1 shows a plot comparing the empirical and estimated Poisson cumulative prob-

abilities, assuming identically distributed goals over home teams and identically dis-

tributed goals over away teams, given a single parameter describing home goal count

(λ = E(X) = 1.51) and a single parameter describing away goal count (µ = E(Y ) = 1.34).

This shows that the probability estimates reflect the empirical probabilites with little

discrepancy. Figure 6.2 shows the ratio between the emprical probabilities and the es-

timated Poisson probabilities, which indicates that the estimated Poisson probabilities

depart from the empirical probabilities as counts increase, placing relatively less proba-

bility mass on high goal count events.

However, as can be seen in Figure 6.3, most of this error occurs below 5 counts; for

home and away goal counts, 85% and 90% of the error in the probability mass occurs

1Dataset provided by ATASS sports, multiple leagues from 2001-2012, see Table 6.2 and Appendix C for
further details.
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below 5 counts, respectively.

Empirical Probabilities

Figure 6.1: Comparison plot of empirical and Poisson cumulative probabilities for (left) home
goal count and (right) away goal count, using a single parameter model for each distribution.

Figure 6.2: Ratio of empirical over estimated Poisson probabilities for home and away goal
count, using a single parameter model for each distribution.

The apparent over-dispersed nature of goal count data, when considering goal counts

for each team to be identically distributed, can be accounted for in a number of ways.

Another approach could be used, for example the negative binomial distribution which

considers any unobserved heterogeneity. Alternatively, data above some level, c, could

be censored to account for any doubt in the model above a certain threshold value.

However, the assumption of identically distributed goal counts for all teams or games

is a naive one, and the model can be altered to capture the varying mean goal counts for

each team or each game. The following sections will cover the approaches that have been
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Figure 6.3: Difference between emprical and estimated Poisson probabilities for home and away
goal count, using a single parameter model for each distribution.

considered and how these affect the predictive nature of the model.

6.3 Increased Poisson Variation

An important feature of the Poisson distribution is that the mean and variance are equal.

Empirical count data, such as goal counts, often exhibit overdispersion, whereby the vari-

ance is greater than the mean. A common alternative to the Poisson distribution when

encountering overdispersion is to add a multiplicative gamma random effect, which can

be used to represent any unobserved heterogeneity (Hilbe, 2011). Negative binomial re-

gression is an example of this process and is commonly used in cases of overdispersion in

count data.

Consider the conditional distribution of X given an unobserved variable θ to be Pois-

son with mean and variance θµ, so

X|θ ∼ Poisson (θµ) .

This model still assumes Poisson distributed goal counts, but recognises that the mean

goal counts of all teams are not the same, and θ captures the variability in performance

of each team over games.

Consider θ to follow a gamma distribution with a shape parameter α and scale parameter

β. The mean (α/β) and variance (α/β2) of the θ distribution are taken to be 1 and σ2

respectively, therefore α = β = 1/σ2. Using this assumption θ may be integrated out

allowing the effective computation of the unconditional distribution of X:
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Pr (X = x) =

∫ ∞
0

Pr (X = x|θ) f (θ) dθ =
Γ (ν + x)

x!Γ (ν)

ννµx

(µ+ ν)ν+x , x = 0, 1, . . . , (6.2)

where ν = 1/σ2 is referred to as the dispersion parameter or ‘size’. The negative binomial

distribution which uses this definition of α and β has mean E (X) = µ and variance

Var (X) = µ (1 + σ2µ). and D = 1 + σ2µ. If σ2 = 0 there is no unobserved heterogeneity

and the variance is equal to the mean, i.e. D = 1. If σ2 > 0 the variance will be larger

than the mean and D > 1, therefore the distribution will be over-dispered relative to the

Poisson distribution.

6.3.1 Negative Binomial vs Poisson Regression Models

This is a simple analysis, whereby all match pairings are assumed to follow identical

distributions, with a single set of parameters (one in the Poisson case and two in the neg-

ative binomial case) estimated over all the available match results in each league (from

the data set provided by ATASS Sports - seasons starting in years 2001 - 2011 in most

cases, only those leagues with over 500 matches were used).

To analyse the extent of dispersion in goal data the variance of goal counts may be

divided by the mean, to gain the variance-to-mean ratio as defined in equation (6.1).

This will show whether the variance is greater than, less than or similar to the mean,

allowing the identification of any cases of over or under dispersion.

Two tests will be carried out to analyse the most appropriate model to use, the Poisson

or negative binomial model. To test whether the sample goal counts are consistent with

the hypothesised distribution, a goodness of fit test was carried out. To test whether the

sample goal counts are more likely to follow the negative binomial model, a hypothesis

test was carried out between a null hypothesis that σ = 0 and an alternative hypothesis

that σ > 0 for both home and away goals.

The overall goodness of fit may be analysed using the right tailed p-values, calculated

using the Pearson chi-squared statistic, which compares the estimated count frequency

to the empirical count frequency. When the right tailed p-value is larger than 0.1 it can

be said that the result provides a strong presumption that the data follows the fitted dis-

tribution. The p-values for both Poisson and negative binomial regression models have

been collated, along with the measure of dispersion mentioned in the previous paragraph

in Table 6.2.

It can be seen from Table 6.2 that in many cases overdispersion occurs. On average

the variance is approximately 7% larger than the mean goal count. In these cases the

negative binomial model, which can account for such over-dispersed behaviour, may seem
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to produce a better fit.

Further evidence may be seen in Table 6.2 in the form of the resultant p-values in hy-

pothesis tests which compare an alternative hypothesis that the data follow a negative

binomial distribution to a null hypothesis that they are Poisson distributed. In those

leagues highlighted in grey, the null hypothesis may be rejected in a chi-squared test at

a significance level of 0.05. In numerous cases the null is not rejected and in some cases

under dispersion is present, which raises the question whether the variability comes from

any unseen heterogeneity or whether it is coming from another factor. The use of a more

complex model is necessary to find out what is the cause of these features.

It is noteworthy that the Australian, German, Scottish and Swedish leagues all reject

the null, suggesting an overdispersed nature in goal count, whilst the Brazilian, French,

Italian and Mexican leagues are better fit by either a Poisson distribution or an underdis-

persed distribution. The English leagues are mixed in terms of over- and underdispersion,

as are the Spanish leagues. Overdispersion in this case suggests leagues which have teams

of more varying ability, leading to higher variability in the goal counts, and vice versa for

underdispersion.

6.3.2 Goodness of Fit in the Right Tail

The initial analysis, performed in Section 6.3.1, compared the overall fit of the Poisson

distribution to that of the negative binomial using the naive assumption of identically

distributed data. The aim of the following process is to ascertain whether the goodness

of fit is better throughout the range of the distribution using a more complex model

allowing for different means for each match pairing. The right-tail fit, describing high

scoring matches, is the current area of interest due to the apparent over-dispersed nature

of the goal count data.

Regression is initially performed on goal count data from the English Premier League

between seasons 2001/2002 - 2011/2012, using both Poisson and negative binomial mod-

els. The regression uses a multiplicative mean in both cases, as in the model proposed

by Dixon and Coles (1997), as discussed in Section 4.1, and the likelihood of the Poisson

model is given by equation (4.5).

The negative binomial is described by the mean, µ, and dispersion parameter, ν, as

in Section 6.3. In both cases the home and away goal counts are analysed seperately and

there is no dependence between home and away goals in the initial fit. Equation (6.2) can

be rewritten, substituting νx into the numerator and denominator for numerical stability,

as given by
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P (> χ2)
Division Var/Mean

Poisson Neg. Binomial
p-value

Home Away Home Away Home Away Home Away

aus0 1.15 1.17 0.00 0.00 0.20 0.17 0.000 0.000

aus1 1.03 1.16 0.73 0.00 0.68 0.30 0.493 0.000

bel0 1.12 1.09 0.00 0.00 0.31 0.10 0.000 0.002

bra0 0.98 1.03 0.17 0.03 0.05 0.02 1.000 0.225

bra1 0.92 0.97 0.03 0.75 0.01 0.50 1.000 1.000

brassp 0.91 1.01 0.01 0.79 0.01 0.66 1.000 0.888

eng0 1.10 1.11 0.00 0.00 0.42 0.15 0.000 0.000

eng1 0.99 1.01 0.35 0.16 0.13 0.12 1.000 0.488

eng2 0.99 1.01 0.33 0.72 0.16 0.61 1.000 0.777

eng3 1.03 0.98 0.17 0.07 0.27 0.02 0.099 1.000

eng4 1.06 1.08 0.00 0.00 0.03 0.01 0.002 0.000

engfac 1.15 1.13 0.00 0.00 0.32 0.08 0.000 0.001

englcup 1.16 1.18 0.06 0.01 0.90 0.36 0.001 0.000

fre0 0.99 1.06 0.34 0.03 0.18 0.38 1.000 0.004

fre1 0.93 0.98 0.00 0.46 0.00 0.22 1.000 1.000

ger1 1.06 1.11 0.27 0.00 0.86 0.06 0.013 0.000

ger2 1.09 1.10 0.03 0.00 0.60 0.13 0.001 0.000

ger3 1.09 1.11 0.16 0.05 0.60 0.48 0.018 0.005

ger4 1.10 1.12 0.00 0.00 0.50 0.46 0.000 0.000

ger4n 1.31 1.11 0.00 0.02 0.75 0.08 0.000 0.028

ger4s 1.15 1.14 0.00 0.03 0.00 0.26 0.004 0.006

ger4w 1.15 1.10 0.02 0.01 0.65 0.04 0.001 0.000

ire0 1.18 1.07 0.01 0.01 0.57 0.01 0.000 0.130

ita0 0.97 1.01 0.21 0.29 0.06 0.21 1.000 0.632

ita1 0.90 0.99 0.00 0.76 0.00 0.54 1.000 1.000

mex0 1.01 1.01 0.37 0.38 0.28 0.29 0.718 0.632

sco0 1.14 1.10 0.00 0.00 0.51 0.08 0.000 0.000

sco1 1.07 1.13 0.24 0.00 0.68 0.31 0.028 0.000

sco2 1.12 1.06 0.00 0.60 0.12 0.87 0.000 0.084

sco3 1.24 1.19 0.00 0.00 0.17 0.53 0.000 0.000

spa1 1.06 1.11 0.20 0.00 0.74 0.63 0.012 0.000

spa2 0.97 1.00 0.48 0.25 0.20 0.13 1.000 1.000

swe0 1.13 1.05 0.01 0.65 0.78 0.88 0.000 0.121

swe1 1.18 0.99 0.00 0.74 0.09 0.58 0.001 1.000

Table 6.2: Representation of dispersion and p-values for Poisson and Negative Binomial Re-
gressions for Home and Away Goals

Pr {X = x} =
Γ (ν + x)

νxx!Γ (ν)

νν+xµx

(µ+ ν)ν+x , (6.3)

where

Γ (ν + x)

νxΓ (ν)
=

(
1 +

x− 1

ν

)
. . .

(
1 +

1

ν

)
,
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and

νν+x

(µ+ ν)ν+x =
(

1 +
µ

ν

)−(ν+x)

.

This numerical stability ensures that larger dispersion parameters can be used in the

optimisation process.

The likelihood for the negative binomial model may be defined by

L(α,β, ρ, νx, νy, γ;x,y) =
N∏
k=1

Γ (νx + xk)

νxkx xk!Γ (νx)

ννx+xk
x λxkk

(λk + νx)
νx+xk

Γ (νy + yk)

νyky yk!Γ (νy)

ν
νy+yk
y µykk

(µk + νy)
νy+yk

,

where νx and νy represent the respective home and away dispersion parameters.

A hypothesis test may be performed to compare an alternative hypothesis of the negative

binomial model to a null of the Poisson model. However, the fitted negative binomial

model is identical to an equivalent Poisson model as σ̂ = 0. Therefore, the negative

binomial model provides no improvement in terms of goodness of fit and shall not be

further compared.

To analyse the goodness of fit of the Poisson distribution in the right tail, the proba-

bility that, above a certain threshold, the observed home and away goals resulted from a

Poisson distribution can be estimated. This may be done using the following process.

Both the expected and observed values are reordered to reflect the expected values in

ascending order. A value c above which to analyse can now be chosen, discarding all

expected values, and their observed counterparts, with values less than or equal to c.

The expected values and observations are then pooled according to the ordered expected

values to ensure that each pool is greater than 10, this accounts for the low nature of the

counts. The Pearson’s residuals are then evaluated and summed for all pools 1, . . . , n, as

shown by

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
, (6.4)

to obtain a test statistic, χ2.

An empirical sampling distribution of goal count (home or away) was evaluated under the

null model using the pooled expected values, with a sample size of 200 for each pooled

expectation. The observed test statistic was then compared to the sampling distribution
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to obtain the right tailed p-value. This process was repeated for a range of values for c.

Figures 6.4 and 6.5 show the test statistic and right tailed p-values as functions of c for

Poisson regression performed on the English Premiership inclusive of seasons 2001/2002

to 2011/2012 comparing a model using seperate home advantage parameters γs for each

season s, where E (Xi,j) = αiβjγs and a model using constant home advantage over all

seasons, for home and away goals respectively.

It can be seen from Figures 6.4 and 6.5 that, although erratic, the p-value is relatively

high over most of the tested values of c, suggesting that the null Poisson model should

not be rejected, for both home and away goals. It should also be noted, that adding a

seasonally varying home advantage does not improve the fit in the right tail. Further in-

vestigation is therefore required in an attempt to better explain and model the difference

between the mean and variance of goal counts.
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Figure 6.4: Constant and seaonal home advantage parameter models of home goals (Left) χ2

test statistic and (Right) right-tailed p-value as functions of c.

6.4 Censored Likelihood

Further investigation is required to account for discrepancies in the model distribution:

overdispersion and error in the fitted Poisson probability mass function (pmf) relative to

the empirical probabilities are present. However, the negative binomial regression model

regressed to a homogeneous Poisson model, where σ = 0, so a more complex approach

is required. Censoring may be employed to account for the low confidence in the model

above a certain level.

If we have a model and choose to censor aspects of the model it is helpful to know
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Figure 6.5: Constant and seaonal home advantage parameter models of away goals (Left) χ2

test statistic and (Right) right-tailed p-value as functions of c

what information is lost if in fact the model was correct. To estimate this loss of informa-

tion the variance of parameter estimates can be compared with those of an uncensored

model. The following sections give the derivations of the variance of a single mean esti-

mate under the uncensored and censored Poisson models, to allow their comparison for

different levels of censoring.

6.4.1 Uncensored Poisson Likelihood

The likelihood for a Poisson (λ) distributed independent and identically distributed vari-

able X is defined by

L (λ) =
n∏
i=1

λxie−λ

xi!
.

Then the log likelihood is given by

` (λ) =
n∑
i=1

xi log (λ)− nλ−
n∑
i=1

log (xi!).

The first and second derivatives are then

`′ (λ) =
n∑
i=1

xi
λ
− n,

`′′ (λ) = −
n∑
i=1

xi
λ2
.
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The expected information can be calculated by

IE (λ) = E [−`′′ (λ)]

=
1

λ2
E

[
n∑
i=1

Xi

]
=

n

λ2
E (X)

=
n

λ
,

which can be used to calculate the variance

var
(
λ̂
)

= IE (λ)−1 .

=
λ

n

6.4.2 Independent Poisson Likelihood, Censoring Above c

The likelihood function for a Poisson distributed variable Xc with censored observations

greater than a known value c is defined by

L (λ) =
m∏
i=1

λxie−λ

xi!

n∏
i=m+1

(
1−

c∑
u=0

λue−λ

u!

)
,

when x1, . . . , xm are all less than or equal to c, and xm+1, . . . , xn are all greater than c.

Taking the logarithm of the above gives the log-likelihood

` (λ) =
m∑
i=1

xi log (λ)−mλ−
m∑
i=1

log (xi!) + (n−m) log

(
1−

c∑
u=0

λue−λ

u!

)
.

The first and second derivatives of this log-likelihood are calculated as

`′ (λ) =
m∑
i=1

xi
λ
−m+ (n−m)

(
λce−λ/c!

1−
∑c

u=0 λ
ue−λ/u!

)
,

`′′ (λ) =
m∑
i=1

−xi
λ2

+ (n−m)
d

dλ

(
λce−λ/c!

1−
∑c

u=0 λ
ue−λ/u!

)
.

and
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d

dλ

(
λce−λ/c!

1−
∑c

u=0 λ
ue−λ/u!

)
=

e−λ(c−λ)λc−1

c!

(
1−

∑c
u=0

λue−λ

u!

)
−
(
λce−λ

c!

)2

(
1−

∑c
u=0

λue−λ
u!

)2

=
e−λ (c− λ)λc−1

c!
(

1−
∑c

u=0
λue−λ

u!

) −
 λce−λ

c!
(

1−
∑c

u=o
λue−λ

u!

)
2

.

The expected information is then given by

IE (λ0) = E [−`′′ (λ0)]

= E

[
m∑
i=1

xi
λ2

0

]
+ E

(m− n)

 e−λ (c− λ)λc−1

c!
(

1−
∑c

u=0
λue−λ

u!

) −
 λce−λ

c!
(

1−
∑c

u=0
λue−λ

u!

)
2 .

As m is the number of complete observations out of a total n observations and so

m ∼ Binomial(n, p), where

p = P(Xc ≤ c) =
c∑

u=0

λue−λ

u!

and

E (m) = np = n
c∑

u=0

λue−λ

u!
.

This property can be used to derive an expression for E (
∑m

i=1 xi), as given by

E

(
m∑
i=1

xi

)
= E (m) E (Xc) ,

where

E (Xc) =
c∑
i=0

iP (X = i|X ≤ c)

=

∑c
i=1 iλ

ie−λ/i!∑c
j=0 λ

je−λ/j!
.

The expected information is then given by
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IE (λ) =
n

λ2

(
c∑

u=0

λue−λ

u!

)∑c
i=1 iλ

ie−λ/i!∑c
j=0 λ

je−λ/j!

+

(
n

c∑
u=0

λue−λ

u!
− n

) e−λ (c− λ)λc−1

c!
(

1−
∑c

u=0
λue−λ

u!

) −
 λce−λ

c!
(

1−
∑c

u=0
λue−λ

u!

)
2

=
n

λ2

c∑
i=1

iλie−λ

i!

+

(
n

c∑
u=0

λue−λ

u!
− n

) e−λ (c− λ)λc−1

c!
(

1−
∑c

u=0
λue−λ

u!

) −
 λce−λ

c!
(

1−
∑c

u=0
λue−λ

u!

)
2 .

The expected information can then be inverted to derive the variance of λ̂c the mle of λ

under censoring at c.

Figures 6.6 and 6.7 show the variance calculated with uncensored and censored likeli-

hoods and a comparative ratio of the two for different levels of censoring and different

values of λ. It can be seen that the ratio of the variances rapidly decreases after the

point of censoring. As the value of c decreases the information lost at higher values of

λ become increasingly great, suggesting that caution should be used when interpreting

estimates resulting from low values of c.

Figure 6.6: (Left) Variance of Poisson parameter estimated from an uncensored likelihood,
giving λ̂, and a likelihood censored above c = 3, giving λ̂c. (Right) Ratio of variances,
var(λ̂)/var(λ̂c). In each subplot, values are plotted against the true value, λ.
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Figure 6.7: (Left) Variance of Poisson parameter estimated from an uncensored likelihood,
giving λ̂, and a likelihood censored above c = 7, giving λ̂c. (Right) Ratio of variances,
var(λ̂)/var(λ̂c). In each subplot, values are plotted against the true value, λ.

6.4.3 Dependent Joint Poisson Likelihood, Censoring Above c

We now consider a bivariate Poisson distribution (Xk, Yk) for home and away goals in a

match k, with means λk and µk respectively and some dependence as in the Dixon and

Coles model (4.3). To assess the effect of censoring goal counts over c for either team on

the variance of estimators in censored and uncensored cases a numerical approach must

be employed. The resultant characteristics of the loss of efficiency may then be compared

to the relationships found in Sections 6.4.2 for the tested values of c.

By simulating goal count data under the Dixon and Coles model (4.3) and fitting with the

correct model and a censored model, we can estimate the variance of parameter estimates

in each case. This is shown for 1000 observations (n = 1000) in Figures 6.8 and 6.9 for

parameter values between 0.5 and 10 at a resolution of 0.5 and values of c equal to 3 and

7 respectively. Each plot includes the equivalent analytically obtained expression for the

independent case, as in Section 6.4.2, displayed as a dotted line. It should be noted that

5 is approximately the limit of the Poisson mean parameter values encountered when

regressing real data.

It can be seen from Figures 6.8 and 6.9 that the efficiency of censoring the Dixon and

Coles model (4.3) follows similar features of increasing variance under the censored model

as that seen for the independent goals case as in Section 6.4.2. This is consistent for both

values of c tested, suggesting that the inclusion of an independence function and a joint

likelihood model describing home and away goals, as in the Dixon and Coles model (4.3),
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does not affect the increase in variance (interpreted as a loss of information) when cen-

soring.

Figure 6.8: (Left) Variance of Poisson parameter estimates calculated from an uncensored
likelihood which gives (top) λ̂ describing home goals and (bottom) µ̂ describing away goals, and
a likelihood censored above c = 3 and n = 1000, which gives (top) λ̂c and (bottom) µ̂c. Dotted
lines describe the equivalent independent models. (Right) Ratio of variances for the dependent
and independent models.

6.4.4 Goodness of Fit

It is prudent to check the goodness of fit of the censored model at varying levels of censor-

ing for both home and away goals, based on the Dixon and Coles model (4.3), compared

to the null uncensored model. This will allow the analysis of whether either or both home

and away goals would benefit from the right tail beyond a certain value, cx for home goals

and cy for away goals, being modelled in some alternative fashion.

The test statistic prescribed in Section 6.3.2, as given by equation (6.4), may be cal-

culated for the censored model and compared to that obtained under the uncensored
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Figure 6.9: (Left) Variance of Poisson parameter estimates calculated from an uncensored
likelihood which gives (top) λ̂ describing home goals and (bottom) µ̂ describing away goals, and
a likelihood censored above c = 7 and n = 1000, which gives (top) λ̂c and (bottom) µ̂c. Dotted
lines describe the equivalent independent models. (Right) Ratio of variances for the dependent
and independent models.

Dixon and Coles model (4.3). Larger pools of 100 counts shall be used in this case as

only the overall goodness of fit is to be calculated.

A way of censoring the right tail is to shift the probability mass from counts greater

than c onto c+ 1, to represent the portion of counts which are greater than the threshold

value c, as given for home goals by

Xc = min (X, cx + 1) .

Censoring X > cx and Y > cy in this way, it follows that Xc has a probability mass

function (and similarly for Y ) defined by
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PXc (x) =

λxe−λ

x!
, if x = 0, . . . , cx,

1−
∑cx

u=0
λue−λ

u!
, x = cx + 1.

(6.5)

The censored likelihood based on the Dixon and Coles model (4.3) is then given by

L (α,β, ρ, γ, cx, cy;x,y) =
N∏
k=1

τλk,µk(xk, yk)(
λxkk e

−λk

xk!

)1{xk≤cx}
(

1−
cx∑
u=0

λuke
−λk

u!

)
1{xk>cx}

(
µykk e

−µk

yk!

)
1{yk≤cy}

(
1−

cy∑
u=0

µuke
−µk

u!

)
1{yk>cy}

,

where k denotes the match pairing of home team i and away team j.

To calculate the goodness of fit statistic, a well defined expected value must first be

derived for the censored model, as given by

E (Xc) =
cx∑
x=0

xλxe−λ

x!
+ (cx + 1)

(
1−

cx∑
u=0

λue−λ

u!

)
.

As the censored probability mass is not removed but placed on index c+1, the test statis-

tic is obtained for the censored model by comparing the expected values to observations

which are adjusted to reflect the censoring. Specifically, the observations which contain

greater count values than c are given the value of c + 1, as the model is not attempting

to be exact above this censoring value.

Figure 6.10 shows the percentage increase in the χ2 test statistic, defined in equation

(6.4), between that calculated under the censored model, χ2
c , and that calculated under

the uncensored model, χ2
u, for home and away goal counts combined, as given by

χ2
c − χ2

u

χ2
u

× 100,

where a negative value indicates a better fit. Negative values are shown in green and

positive in red, with a gradient of colour in between. The values of cx = 1 and cy = 6

give the best overall improvement in goodness of fit under the conditions of the test. This

suggests that the censoring of home goals causes an improvement on the fit of data at

lower values, though censoring the away goals has little effect.
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Figure 6.11 shows this measure broken down for home and away counts seperately. Re-

garding home goals, the censoring levels which show the greatest improvement in the

test statistic, cx = 1 and cy = 4. Censoring values must be considered together in this

way due to the low scoring dependence considered in the Dixon and Coles model (4.3).

For away goals, the censoring levels which give the greatest improvement are the same

as those for combined, however, there is an improvement for almost all combinations of

cx and cy. Considered together, this may suggest that the distribution describing home

goals would benefit most from a change in modelling technique to aid the fit in the right

tail.

Figure 6.10: Percentage difference in χ2 test statistic between the censored model defined in
equation (6.5) and the standard Poisson model (including dependency function) over home and
away goal counts

6.5 Threshold Mixture Regression

In Section 6.4.4 a goodness of fit test was used to determine whether censoring home and

away goals to some threshold would increase the goodness of fit below the threshold level.

It was determined that censoring did increase the goodness of fit when comparing to the

null Dixon and Coles model (4.3). Following this result, it could be hypothesised that

some non-Poisson class of left truncated count distribution could be used in conjunction

with a right truncated Poisson distribution to create a more effective model.

Threshold mixture regression refers to the use of different distributions seperated by

a threshold level, c. In the simplest two distribution case, the portion to the right of the
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Figure 6.11: Percentage difference in χ2 test statistic between the censored model defined in
equation (6.5) and the standard Poisson model (including dependency function) (top) home
goal count, X, (bottom) away goal count, Y .

threshold is adjusted to match the missing probability mass of the initial distribution.

Modelling the goal counts as a threshold mixture of a Poisson and another discrete dis-

tribution which allows for overdispersion may increase the accuracy of predictions by

increasing the goodness of fit in the right tail. Two such right tail models which can be

used in conjunction with a Poisson body are the negative binomial distribution and the

geometric distribution. The following sections will derive the threshold mixture models

for these cases.
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6.5.1 Poisson-Geometric

Section 6.4.4 showed that the upper tail of the emprical goal count distribution is not

well captured by a Poisson distribution, therefore, it is prudent to seek a mixture model

that better fits the right tail, one example being the Poisson-Geometric threshold mixture

model. The Dixon and Coles model (4.3) uses the Poisson rate parameter to determine

the mean. To allow ease of comparison a similar parameterisation describing the mean

through attack, defence and home advantage, a model considering the mean must be

saught. The pmf of the geometric distribution is typically written as

p (n) = p(1− p)n, n = 0, 1, . . .

However, it can be reparameterised so that the mean, λ, is the parameter (as with the

Poisson distribution) as given by

λ =
1− p
p

.

Therefore,

p =
1

λ+ 1
,

so

p (n) =
1

λ+ 1

(
λ

λ+ 1

)n
, n = 0, 1, . . .

Using this definition of a geometric pmf, a threshold-mixed Poisson-Geometric model for

goal counts may be implemented, where counts in the range 0, . . . , c follow a Poisson

distribution and from c + 1, . . . ,∞ follow a geometric distribution, adjusted to match

the remaining probability mass. The condition c ≥ 1 is introduced to ensure a mixture

with a Poisson model describing the body. This also allows the independence function

for low scoring games as given in Dixon and Coles (1997) to be used. To ensure that the

probabilities sum to 1, the geometric portion is adjusted by

h (x) =
g (x) [1−

∑c
u=0 f (u)]∑∞

u=c+1 g (u)
, for x > c

where

f (x) =
λxe−λ

x!
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and

g (x) =

(
1

λ+ 1

)(
λ

λ+ 1

)x
,

so

∞∑
u=c+1

g (u) =

(
λ

λ+ 1

)c+1

,

and

h (x) =

(
λ
λ+1

)x−c−1
(

1−
∑c

u=0
λue−λ

u!

)
λ+ 1

, x > c+ 1.

Now, cx and cy are parameters which are used to describe the threshold level for home

and away goals, i.e. they are considered as unknown and treated as parameters in the

likelihood inference. The pmf describing home goal count probabilities may then be given

by

PXc (x) =


λxe−λ

x!
, if x = 0, . . . , cx,[

( λ
λ+1)

x−c−1
(

1−
∑c
u=0

λue−λ
u!

)
λ+1

]
, if x > cx.

This may be regarded as a threshold mixture of a Poisson and a Geometric variable, i.e.,

PXc (x) =

[
λxe−λ

x!

]1{x≤c} ( λ
λ+1

)x−c−1
(

1−
∑c

u=0
λue−λ

u!

)
λ+ 1

1{x>c} ,
and the expected value of X is given by E(X) =

∑x=∞
x=0 xPXc(x).

The likelihood is then defined by
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L (α,β, ρ, γ, cx, cy;x,y) =
N∏
k=1

τλk,µk(xk, yk)

[
λxkk e

−λk

xk!

]1{xk≤cx} 
(

λk
λk+1

)xk−cx−1 (
1−

∑cx
u=0

λuke
−λk

u!

)
λk + 1


1{xk>cx}

[
µykk e

−µk

yk!

]
1{yk≤cy}


(

µk
µk+1

)yk−cy−1 (
1−

∑cy
u=0

µuke
−µk

u!

)
µk + 1


1{yk>cy}

.

Under testing, the mixture regressed to a Poisson variable, with a value of ĉx and ĉy equal

to the highest respective home and away observations, which shows that the mixture does

not increase the accuracy of estimates, for all leagues tested (see Section 5.2 for details).

6.5.2 Poisson-Negative Binomial

The same procedure as the previous section may be used to produced a Poisson-negative

binomial mixture model, the pmf of this model may be defined as

PXc (x) =



λxe−λ

x!
, if x = 0, . . . , cx,

Γ(νx+x)
νxxx!Γ(νx)

ννx+x
x λx

(λ+νx)νx+x

(
1−

∑cx
u=0

λue−λ

u!

)
(

1−
∑cx

u=0
Γ(νx+u)
νuxu!Γ(νx)

ννx+u
x λu

(λ+νx)νx+u

)−1

, if x > cx.

This variable may be regarded as a mixture of a Poisson and a Negative Binomial vari-

able, i.e.

PXc (x) =

[
λxe−λ

x!

]1{x≤c} [Γ (νx + x)

νxxx!Γ (νx)

ννx+x
x λx

(λ+ νx)
νx+x

(
1−

cx∑
u=0

λue−λ

u!

)
(

1−
cx∑
u=0

Γ (νx + u)

νuxu!Γ (νx)

ννx+u
x λu

(λ+ νx)
νx+u

)−1
1{x>c} ,

and the expected value of X is again given by E(X) =
∑x=∞

x=0 xPXc(x).

The likelihood may then be defined by
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L (α,β, ρ, γ, cx, cy, νx, νy;x,y) =
N∏
k=1

τλk,µk(xk, yk)[
λxkk e

−λk

xk!

]1{xk≤cx} [ Γ (νx + xk)

νxkx xk!Γ (νx)

ννx+xk
x νxkx

(λk + νx)
νx+xk

(
1−

cx∑
u=0

λuke
−λk

u!

)
(

1−
cx∑
u=0

Γ (νx + u)

νuxu!Γ (νx)

ννx+u
x λuk

(λk + νx)
νx+u

)−1
1{xk>cx}

[
µxkk e

−µk

yk!

]
1{yk≤cy}

[
Γ (νy + yk)

νyky yk!Γ (νy)

ν
νy+yk
y µyk

(µk + νy)
νy+yk

(
1−

cy∑
u=0

µuke
−µk

u!

)
(

1−
cy∑
u=0

Γ (νy + u)

νuyu!Γ (νy)

ν
νy+u
y µuk

(µk + νy)
νy+u

)−1
1{yk>cx} ,

Similar to the Poisson-geometric threshold mixture model, the MLEs ĉx and ĉy were equal

to the highest value of goal count and the model regressed to a standard Poisson.

6.6 Poisson-Poisson Threshold Mixture Regression

To address the issue of error in low and high goal count probabilities as discussed in

Section 6.4, a more complex model must be implemented. Consider the expected home

and away goals counts as given by equation (4.2), under this definition the expected away

goal count in a match between home team i and away team j would be adjusted by a

multiple γ to give the expected home goal count when played at team j’s home ground.

A simple two team league will be used to illustrate the fact that this current specifica-

tion of home advantage parameter may be leading to a reduction in goodness of fit in

the right tail. This will be followed by the introduction of a Poisson-Poisson threshold

mixture model which adds an additional parameter to describe the home advantage in

high scoring games. A further parameter may be added to aid the modelling of high away

goal counts. The model will be verified using hypothesis testing and a goodness of fit test.

The previous threshold mixture models had an expected value which remained unchanged

either side of the threshold. To create a Poisson-Poisson threshold mixture model the

expected value of the distribution contributing to the probability mass function when

x > cx or y > cy may be adjusted by a multiplicative factor, mx and my respectively,

allowing the use of a bivariate Poisson threshold mixture model, which is defined here.
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The pmf of the Poisson-Poisson model is defined as

PXc (x) =



λxe−λ

x!
, if x = 0, . . . , cx,

[
(mxλ)xe−mxλ

x!

(
1−

∑cx
u=0

λue−λ

u!

)
(

1−
∑cx

u=0
(mxλ)ue−mxλ

u!

)−1
]
, if x > cx.

(6.6)

The resulting expected value of Xc is

E (X) =
cx∑
x=0

xP (X = x) +
∞∑

x=cx+1

xP (X = x)

=
cx∑
x=0

xλxe−λ

x!
+

∞∑
x=cx+1

[
x (mxλ)x e−mxλ

x!(
1−

cx∑
u=0

λueλ

u!

)(
1−

cx∑
u=0

(mxλ)u e−mxλ

u!

)−1


and a joint likelihood describing home and away goal counts is given by

L (α,β, ρ, γ, cx, cy,mx,my;x,y) =
N∏
k=1

τλk,µk(xk, yk)(
λxkk e

−λk

xk!

)1{xk≤cx}
(
µykk e

−µk

yk!

)
1{yk≤cy}

(mxλk)
xk e−mxλk

xk!

(
1−

cx∑
u=0

λuke
−λk

u!

)(
1−

cx∑
u=0

(mxλk)
u e−mxλk

u!

)−1
1{xk>cx}

(myµk)
yk e−myµk

yk!

(
1−

cy∑
u=0

µuke
−µk

u!

)(
1−

cy∑
u=0

(myµk)
u e−myµk

u!

)−1
1{yk>cy} .

This section will not include the specifications of the Poisson-geometric or Poisson-

negative binomial bivariate threshold mixture models as it follows on from the definitions

given in Sections 6.5.1 and 6.5.2.

6.6.1 Model Comparison

Three bivariate threshold mixture models were investigated, Poisson-geometric, Poisson-

negative binomial and Poisson-Poisson. The deviance values from a hypothesis test com-

paring these models to a null Dixon and Coles model (4.3) using the English Premier
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League data set described in Section 6.3.2 are shown in Table 6.3. It can be seen that

the Poisson-Poisson model, with fewer degrees of freedom and a deviance approximately

equal to that achieved under the Poisson-negative binomial model is the most statisti-

cally significant out of the three and in a chi-sqaured test at a 0.05 significance level the

null hypothesis of a single Poisson model may be rejected in favour of this alternative.

Maximum likelihood estimates for the threshold levels under this model took the values

ĉx = 1 and ĉy = 5, whilst those for the multiplicative parameters were m̂x = 0.85 and

m̂y = 0.09. This is contrary to the idea that the Poisson model is under-representing the

tails, which could suggest that an underdispersed distribution should be investigated.

Model Deviance df p-value

Poisson-Geometric 8.08 4 0.089

Poisson-Neg. Binomial 35.77 6 0.000

Poisson-Poisson 35.77 4 0.000

Table 6.3: Deviance values of the three threshold mixture models tested

Table 6.4 shows the deviance values for each possible threshold level of ĉx and ĉy. The

green cell shading represents a drop of 5.99 which is equivalent to a 0.05 significance level

of a χ2 test on 2 degrees of freedom. This value represents the range of values that ĉy

could take and still be a significant addition to the model. The maximum deviance is

obtained at cx = 1 and cy = 5.

Figure 6.12 shows the percentage difference in the χ2 test statistic defined by equation

(6.4) between the bivariate Poisson threshold mixture model defined in equation (6.6)

and the uncensored Dixon and Coles (1997) model. As previously stated in Section 6.4.4,

an average was taken from measures created using pooling ordered by the expected values

of the standard model and the censored model. Figure 6.13 shows this measure for home

and away counts seperately. It is interesting to note that the greatest percentage differ-

ence in the goodness of fit statistics when combining home and away goals is achieved

at ĉx = 1 and ĉy = 5, the same values which give the highest deviance. However, when

analysing home and away goals seperately this is not the case.

Under seperate analysis, the home and away goals experience the lowest RMSE at values

of cx = 1 and cy = 5, and cx = 1 and cx = 4 respectively. This finding, alongside the

fact that the maximum reduction of RMSE is greater for home goals than away goals

(and the maximum increase is also lower), suggests that this model is more important

for home goals than away goals.
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ĉy

1 2 3 4 5 6

1 32.43 31.24 31.64 30.52 35.77 29.20

2 12.77 11.74 12.17 11.13 16.46 9.91

3 5.02 4.05 4.52 3.53 8.89 2.38

4 2.51 1.61 2.04 1.12 6.36 0.04

5 2.58 1.69 2.12 1.15 6.53 0.08

6 2.67 1.76 2.21 1.23 6.54 0.15

7 2.82 1.86 2.35 1.42 6.68 0.29

8 2.81 1.90 2.31 1.41 6.60 0.29

ĉx

9 2.50 1.61 2.06 1.12 6.34 0.00

Table 6.4: Deviance values for the Poisson-Poisson threshold mixture model at all possible
threshold levels. Green cells indicate values contained within a drop 5.99, representing the
equivalent χ2 statistic at a 0.05 significance level for 2 degrees of freedom.

Figure 6.12: Percentage difference in χ2 test statistic between the threshold mixture model
defined in equation (6.6) and the standard Poisson Dixon and Coles model (4.3) for both home
and away goal counts

To correctly understand how the threshold model affects probabilities, Table 6.5 shows

the ratio of Poisson and Poisson-Poisson model probabilities for λ = 1, . . . , 10 and

x = 1, . . . , 10, with cx = 4 and mx = 1.3. Table 6.6 shows the same ratio. How-

ever, now mx = 0.8. Values of mx < 1 result in an initial increase in probability, which



6.6. POISSON-POISSON THRESHOLD MIXTURE REGRESSION 116

Figure 6.13: Percentage difference in χ2 test statistic between the censored model defined in
equation (6.6) and the standard Poisson Dixon and Coles model (4.3) (top) home goal count,
X, (bottom) away goal count, Y .

also increased with λ, over the null Poisson model, followed by a decreasing ratio of prob-

ability as x increases at points above cx, whilst values of mx > 1 result in the opposite.

This shows that if m is greater than 1, there is a lower probability of higher goal counts,

however there is a sharp inorganic step between cx and cx + 1, and again vice versa for

values of mx < 1.

To assess the predictive power of the model a leave one out cross validation study was

carried out as described in Section 4.2, using the same data set from the Premier League

between seasons 2009/2010 - 2011/2012. Under the Poisson-Poisson threshold mixture
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model, the RMSE for home goals was 1.293 and that for away goals was 1.106. Both of

these values are greater than those for the standard Dixon and Coles (1997) model as

given in Section 4.2, suggesting a loss in predictive power when employing this model.

x

1 2 3 4 5 6 7 8 9 10

1 1.00 1.00 1.00 1.00 1.07 0.83 0.63 0.49 0.38 0.29

2 1.00 1.00 1.00 1.00 1.18 0.91 0.70 0.54 0.41 0.32

3 1.00 1.00 1.00 1.00 1.33 1.03 0.79 0.61 0.47 0.36

4 1.00 1.00 1.00 1.00 1.56 1.20 0.93 0.71 0.55 0.42

5 1.00 1.00 1.00 1.00 1.90 1.46 1.12 0.86 0.66 0.51

6 1.00 1.00 1.00 1.00 2.37 1.83 1.41 1.08 0.83 0.64

7 1.00 1.00 1.00 1.00 3.05 2.35 1.81 1.39 1.07 0.82

8 1.00 1.00 1.00 1.00 4.00 3.08 2.37 1.82 1.40 1.08

9 1.00 1.00 1.00 1.00 5.31 4.08 3.14 2.42 1.86 1.43

λ

10 1.00 1.00 1.00 1.00 7.10 5.46 4.20 3.23 2.49 1.91

Table 6.5: Ratio of Poisson to Poisson-Poisson probabilities for a range of parameter values,
cx = 4 and mx = 1.3.

x

1 2 3 4 5 6 7 8 9 10

1 1.00 1.00 1.00 1.00 0.96 1.19 1.49 1.87 2.33 2.92

2 1.00 1.00 1.00 1.00 0.90 1.13 1.41 1.76 2.20 2.75

3 1.00 1.00 1.00 1.00 0.84 1.05 1.31 1.64 2.05 2.56

4 1.00 1.00 1.00 1.00 0.77 0.96 1.20 1.50 1.88 2.35

5 1.00 1.00 1.00 1.00 0.69 0.87 1.08 1.35 1.69 2.11

6 1.00 1.00 1.00 1.00 0.61 0.76 0.96 1.19 1.49 1.87

7 1.00 1.00 1.00 1.00 0.53 0.66 0.83 1.04 1.30 1.62

8 1.00 1.00 1.00 1.00 0.45 0.57 0.71 0.89 1.11 1.38

9 1.00 1.00 1.00 1.00 0.38 0.48 0.60 0.75 0.93 1.17

λ

10 1.00 1.00 1.00 1.00 0.32 0.40 0.50 0.62 0.78 0.98

Table 6.6: Ratio of Poisson to Poisson-Poisson probabilities for a range of parameter values,
cx = 4 and mx = 0.8.
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6.7 Conclusion

The Poisson model for goal counts works under the assumption that the mean and vari-

ance are equal. However, it is clear that this is not always the case. Although dispersion

in goal counts can be quickly analysed when assuming they are identically distributed,

this ignores any hidden heterogeneity. Therefore, the only way to create better models is

to hypothesise novel models and statistically test their fit.

Over or under dispersion in the overall mean of goal counts represents either more sim-

ilarly or dissimilarly skilled teams respectively. However, an over or under dispersed

nature when considering heterogeneity (in the form of the Dixon and Coles model (4.3))

represents any increased or decreased variability in goals scored, respectively. Under test-

ing, evolving the Dixon and Coles model (4.3) to a negative binomial model did not more

effectively model the data.

To allow a deeper investigation, the body and tail of the model were considered sep-

arately using censoring and threshold mixture modelling. Right censoring above some

value led to a better fit of values below the censoring value and increased variability for

higher estimates, due to the reduction in information given to the model. Although the

body below the censoring value may have been better fit, this is not a total representation

of the probability space.

Various threshold mixture models were tested, with the aim of better modelling the

right tail and informing the interpretation of any over or under dispersion. From the

models tested, a Poisson-Poisson threshold mixture model, with the right tail portion

modified by a multiplicative parameter, proved the best fit, with threshold estimates of

ĉx = 1 and ĉy = 5 and multiplicative parameter estimates of m̂x = 0.85 and m̂y = 0.09.

These parameter estimates indicate that the right tail is under dispersed for both home

and away goal counts. However, exhaustive cross validation indicated that the predictive

power was lower than the null Dixon and Coles model (4.3).

Comparing the probabilities of goal counts at different parameter values for the Poisson-

Poisson model and the Dixon and Coles model (4.3), showed that the Poisson-Poisson

threshold mixture distribution does not have a smooth kernel at values where m 6= 1.

Instead it has a sharp step change in the probability of observations above the threshold

value. This could be the source of the reduction in predictive power and goal counts

might be better modelled using some smooth transition.
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6.8 Future Work

Modelling home and away goals using an under dispersed model, based on the binomial

distribution, would capture any under dispersion. However, there is a difficulty in esti-

mating the number of trials, which would logically be the number of times a goal was

attempted. This could possibly be done using total of the goals scored, goals saved and

corners given. However, the number of goals saved was unavailable for the data set used.

This would, however, entail predicting the total number of shots and the conversion rate

to forecast the estimated shots on target. It may also benefit the method to jointly model

corners, goals and goals saved as this increases the range of possible bets an investor could

make.



Chapter 7

Weighted Likelihood Based

Changepoint Detection Methods

7.1 Introduction

In Chapter 6 a threshold mixture model between two Poisson distributions was formu-

lated in an attempt to better model the right tail or extreme values in the distribution

of goals in association football. This model can lead to a step change in the pdf as dis-

cussed in Section 6.6.1. Some form of smoothing across the transition could lead to a

more natural pdf. Such a method could not only be used for smoothing the transition of

probabilities, but also for modelling smooth changepoints in any ordered series.

The term changepoint refers to any abrupt change in the structure of a time series,

dividing the data into distinct homogeneous sections (Eckley et al., 2011). Assuming an

ordered sequence of data x1:n = (x1, . . . , xn), the typical definition of a discrete single

changepoint can be interpreted in two ways:

1. A changepoint can be thought to occur when there exists a time or index posi-

tion, τ ∈ {1, . . . , n − 1}, such that the statistical properties of {x1, . . . , xτ} and

{xτ+1, . . . , xn} are different in some way.

2. A changepoint can be thought to occur when there exists a time or index position,

τ ∈ {2, . . . , n}, such that the statistical properties of {x1, . . . , xτ−1} and {xτ , . . . , xn}
are different in some way.

From this point on definition 1 will be used unless otherwise stated and will be referred

to as a ‘generic’ discrete changepoint model. These definitions can be extended to the

multiple changepoint case (see Section 7.5), though the focus here is primarily on the

single changepoint case.

Figure 7.1 shows simulated Poisson distributed data exhibiting a changepoint from a

mean of λ1 = 5 to λ2 = 7 at index position τ . Accurate changepoint detection methods

120
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are of high importance to sports data analysis due to the occurrence of many time series

and indexed data sets and the expectation of some change in the observed processes due

to changes in strategies, training or rules. Often these data sets are small (under 100

data points) and are limited by both the age of the sport on a professional level and the

amount of freely available information. Due to the small size of such data sets, likelihood

based inference for the generic discrete changepoint model can produce a lot of noise in

the likelihood surface.
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Figure 7.1: An example of a changepoint: Data from index position 1, . . . , τ follows a Poisson
distribution with mean of λ1 = 5 and that from τ + 1, . . . , n follows a Poisson distribution with
mean of λ2 = 7.

The detection of a changepoint can be achieved using a hypothesis test, whereby the null

hypothesis, H0, considers the state of no changepoint and the alternative hypothesis, H1,

represents the existence of a changepoint (Eckley et al., 2011), where independent obser-

vations x1, . . . , xτ are considered to be distributed according to f(xt,λ1) and independent

observations xτ+1, . . . , xn are considered to be distributed according to f(xt,λ2), where

λ1 and λ2 refer to the vector of model parameters for the relevant segment. Then the

log-likelihood is given by

`(τ,λ1,λ2) =
τ∑
i=1

log [f(xt,λ1)] +
n∑

i=τ+1

log [f(xt,λ2)] . (7.1)

When testing for no changepoint in this model under H0: λ = λ1 = λ2, the deviance

surface can be defined for an alternative hypothesis H1: λ1 6= λ2, by taking the deviance

shown in equation (7.2) for each possible value of τ , the hypothesised changepoint posi-

tion, from index position 1 to n.

D(τ) = 2{`(τ, λ̂1, λ̂2)− `(0, λ̂, λ̂)}, (7.2)



7.1. INTRODUCTION 122

where λ̂1 and λ̂2 refer to the vectors of maximum likelihood estimates (MLEs) for the al-

ternative hypothesis when the tested changepoint parameter is equal to τ (i.e. `(τ, λ̂1, λ̂2)

is the profile log-likelihood for τ) and λ̂ is the vector of MLEs for the common value of

λ = λ1 = λ2 under the null hypothesis. Note here λ̂1 and λ̂2 are functions of τ but the

notational dependence is suppressed.

Changepoints should not only be identified by their point estimates, but also by the

confidence interval. In the single changepoint case for Poisson distributed data, as in

Figure 7.1, two MLEs are to be calculated: λ̂1 using data between 1 and the index be-

fore the suspected changepoint parameter, τ , (i.e. x1, . . . , xτ ), and λ̂2 using xτ+1, . . . , xn,

where n is the total number of indices. As τ is moved an index value passes from one set

to another altering the MLE estimates.

If the set from which an MLE of λ1 or λ2 is to be derived is small, the introduction

of another data value can drastically change the estimate (and vice versa for the removal

of the same value from the set which is used to calculate the MLE for the other side of the

changepoint). This causes noise in the deviance surface, as described earlier, which may

lead to the production of a broken confidence interval or confidence ‘set’ (Siegmund, 1988).

In the generic discrete changepoint model, each observation to one side of τ is considered

to carry the same amount of information regarding τ and the associated parameters, λj,

in that segment. However, the level of information carried by observations is not con-

stant. The observations far from τ , carry less information about τ and more information

about λj than observations near to τ . The technique that is developed here to account

for this relies on the use of a weighting function, φh(t, c), which uses information about

how far an observation at index t is from the centre of a smooth change represented

by the position of equal weighting, c, where h controls the smoothness of the weighting

function, specifically φh (t, c)→ 0 as t→ −∞ and φh (t, c)→ 1 as t→∞.

An example deviance surface, relating to a generic discrete changepoint model applied

to the data shown in Figure 7.1 and a smooth surface resulting from a weighted likeli-

hood method (that is developed in Section 7.2) are shown in Figure 7.2. It should be

noted that the generic discrete method is joined linearly between integer values of the

index in Figure 7.2 to look continuous and allow visual comparison. The 95% confidence

set relating τ is {42, 44, . . . , 60, 62, . . . , 66}, whereas the 95% confidence interval for c is

[37.35, 75.01].

Traditional changepoint methods rely on a bounded discrete definition of changepoint

position, i.e τ = {1, . . . , n}. However, due to the nature of the weighted method, the po-
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Figure 7.2: Deviance functions comparing alternative hypotheses of one generic discrete change-
point (black) or one smooth change between two distributions (red) to a null hypothesis of zero
changepoints, simulating from a generic discrete changepoint model. Here n = 100 and the true
changepoint position τ = 50. In the case of the generic discrete changepoint the integer values
are joined linearly.

sition of equal weighting between segments may be used as the changepoint position and

this is a well defined unbound continuous definition of a changepoint, i.e. c ∈ (−∞,∞).

This permits the method to learn about c occurring outside of the sample unlike with

existing changepoint methods. Of particular importance is the case when c occurs after

the end of the sample, allowing the forecasting of a changepoint position to be explored

using data only in the sample.

7.2 Defining the Method

The variation of confidence in information obtained from observations about changepoint

position and parameter estimates close to and distant from the changepoint position may

be accounted for using a smooth weighting function across the changepoint boundary.

This weighting function is employed to mix parameter estimates and thereby aid the

description of uncertainty over to which segment of observations a certain index should

belong. Such a method inherently allows the modelling of both sudden (discrete) and

smooth (continuous) changes.

A naive approach to account for the discontinuity of information about changepoint po-

sition, τ , and parameters, λj, carried by observations is to mix model parameters within

a distribution using a suitable smooth weighting function. This method is detailed in

Section 7.2.1.
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However, a more subtle approach, whereby differing distributions are mixed using a

smooth weighting function, may result in better forecasting ability. This method, cov-

ered in Section 7.2.2, will be the focus of discussion, using the smoothly weighted mixed

parameters method comparatively.

7.2.1 Smoothly Weighted Mixed Distribution Parameters

Consider the single changepoint case for n observations x1, . . . , xn of a random variable

X, described by two vectors of distribution parameters, λ1 and λ2, mixed with the

probability φh (t, c) to describe a smooth change. The continuous-index position which

experiences equal weighting between λ1 and λ2 is defined as c, where −∞ < c < ∞,

unlike the generic changepoint τ ∈ {1, . . . , n − 1}. The weighting function is given by

φh (t, c), where t describes the index of observations and h controls the amount of smooth-

ing.

The likelihood is then given by

L (c, h,λ1,λ2) =
n∏
t=1

f {xt;φh(t, c)λ1 + [1− φh(t, c)]λ2} . (7.3)

Taking the logarithm of this likelihood gives

` (c, h,λ1,λ2) = log

{
n∏
t=1

f {xt;φh(t, c)λ1 + [1− φh(t, c)]λ2}

}

=
n∑
t=1

log {f {xt;φh(t, c)λ1 + [1− φh(t, c)]λ2}} .

To illustrate the approaches, all initial model comparisons will be carried out using a

change in the Poisson mean, λ. Assuming thatXt ∼ Poisson (φh(t, c)λ1 + [1− φh(t, c)]λ2)

and substituting in a Poisson probability mass function to describe the data results in

the log-likelihood

` (c, h, λ1, λ2) =
n∑
t=1

log

{
{φh (t, c)λ1 + [1− φh (t, c)]λ2}xt e−{φh(t,c)λ1+[1−φh(t,c)]λ2}

xt!

}
.

(7.4)

Under this model, when t� c, Xt ∼ Poisson (λ1) and when t� c, Xt ∼ Poisson (λ2).

7.2.2 Smoothly Weighted Mixed Distributions

Consider the single changepoint case for n observations x1, . . . , xn of a random variable X,

where λ1 and λ2 correspond to the vectors of parameters of two distributions which are
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mixed with the probability φh(t, c) to describe a smooth change. The continuous-index

position which experiences equal weighting between distributions f(x,λ1) and g(x,λ2) is

defined, similarly to Section 7.2.1, as c.

The likelihood is then given by

L (c, h,λ1,λ2) =
n∏
t=1

{φh (t, c) f (xt;λ1) + [1− φh (t, c)] g (xt;λ2)} . (7.5)

Taking the logarithm of this likelihood gives

` (c, h,λ1,λ2) = log

{
n∏
t=1

{φh (t, c) f (xt;λ1) + [1− φh (t, c)] g (xt;λ2)}

}
(7.6)

=
n∑
t=1

log {φh (t, c) f (xt;λ1) + [1− φh (t, c)] g (xt;λ2)} .

Assuming f an g are both Poisson, then

Xt ∼

Poisson (λ1) w.p. φh (t, c) ,

Poisson (λ2) w.p. [1− φh (t, c)] .

Substituting a Poisson probability mass function into equation (7.6) results in the log-

likelihood given by

` (c, h, λ1, λ2) =
n∑
t=1

log

[
φh (t, c)

λxt1 e
−λ1

xt!
+ [1− φh (t, c)]

λxt2 e
−λ2

xt!

]
. (7.7)

Similarly to the case of mixed distribution parameters described in Section 7.2.1, under

this model, when t� c, Xt ∼ Poisson (λ1) and when t� c, Xt ∼ Poisson (λ2).

7.2.3 Weighting Function

The weighting function considers the variation of confidence in information obtained from

observations about the changepoint position and parameter estimates close to and dis-

tant from the centre of a smooth change or point of equal weighting between segments,

c. Various weighting functions were tested. The most consistently performing method is

based on the Gaussian cumulative distribution function (cdf), Φ, and is given by

φh(t, c) = 1− Φ

(
t− c
h

)
, (7.8)

where t is the index value or time step and h > 0 controls the smoothing level. This may
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be interpreted visually as shown in Figure 7.3.
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Figure 7.3: (Left) Gaussian weighting function for a single changepoint where c = 50 and
h = 10. (Right) Gaussian weighting function for a single changepoint where c = 75 and h = 5.

As h→ 0 under the Gaussian weighting function, the likelihood shown by equation (7.5)

reduces to the case of a single generic discrete changepoint. This can be shown by

φh (t, c) = 1− Φ

(
t− c
h

)
h→0−−→


0, if t > c,

1
2

if t = c,

1, if t < c.

(7.9)

In the case where t = c the weighting function φh(t, c) = 1
2

and, under the mixed distri-

bution model described in Section 7.2.2, the log-likelihood component when t = c would

take the form

` (c, h,λ1,λ2) = log

{
1

2
f (xc;λ1) +

1

2
g (xc;λ2)

}
.

However, c is continuous and c 6= t for all values of t, so this term does not arise in

practice. The log-likelihood in the case of h→ 0 is therefore given by

` (c, h,λ1,λ2) =

bcc∑
t=1

log [f (xt,λ1)] +
n∑

t=bcc+1

log [f (xt,λ2)] . (7.10)

A similar derivation can be followed for the mixed parameter model described in Section

7.2.1.

Figure 7.4 shows how the deviance surface varies as h is increased for both the mixed
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parameter and mixed distribution models. It can be seen that as h increases the smooth-

ness of the surface increases in both cases, resulting in the loss of information about the

changepoint position and respective parameter values as h→∞.

h

Figure 7.4: Deviance surfaces relating to varying h (as given by coloured legend) for (left) mixed
parameter model and (right) mixed distributions model. Note, black curves relate to discrete
generic changepoint case or h = 0 as shown by equation (7.10). Sample simulated using a
generic discrete change (or h = 0), from a Poisson parameter of λ1 = 5 to one of λ2 = 7, where
n = 100 and c = 50.

Cross-validation techniques have been explored to allow auto-tuning of h to the dataset

(see Appendix G.1), however, these methods prove to be slow in practice. However,

unlike in usual smoothing methods, h can be treated as a parameter and estimated via

likelihod methods as shown in Sections 7.2.1 and 7.2.2. Under this definition of h, when

h = 0 the model is the generic discrete changepoint method as shown by equation (7.10).

7.3 Overcoming Local Maxima in the Deviance Surface

Figure 7.5 shows a deviance surface for various h and c relating to a single smooth change

between two Poisson distributions, simulated using n = 200, c0 = 100, h0 = 50 and pa-

rameter values λ1 = 5 and λ2 = 7. It can be seen that at low values of h local maxima

occur in the deviance when varying c. This may cause generic optimisation methods to

become trapped. This is also true for the mixed means model described in Section 7.2.1.

The difficulties encountered due to the existence of local features in the deviance surface

at low values of h may be overcome by using heuristic methods which seek to find the

global maximum.
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Figure 7.5: Contour plot showing the deviance surface of a simulated smoothly weighted mixed
distribution change over a grid of c and h.

Figure 7.5 provides evidence that the parameters c and h are approximately orthogonal

to one another under the smoothly weighted mixed distribution model when 0 < c ≤ n

and may be treated as independent from one another in this range. Therefore, fixing h

or c at a sensible value (not too small in the case of h) and maximising over the other

parameters may give a fast initial estimate. Discretising the parameter(s) may also aid

in both overall speed and reducing the possibility of becoming trapped. Following this

process with a constrained search around these intial estimates will provide the necessary

accuracy for achieving a global maximum, i.e. the maximum likelihood estimates.

Section 7.3.2 will discuss how estimates of parameters c and h are no longer orthogo-

nal when c occurs close to and outside of the bounds of the sample space. Finally, a

method will be detailed, which seeks to account for this by quantifying correlation be-

tween the two parameters.

However, in Figure 7.4 the mixed parameter model can be seen to lack orthogonality

within the bounds of the sample, 0 < c ≤ n. Therefore, the more complex method

defined in Section 7.3.2 must be used for this method at all times.
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7.3.1 Discretisation of c and Piecewise Linearisation of Parameter

Estimates within 0 < c ≤ n Under the Smoothly Weighted Mixed

Distribution Model

To reduce the possibility of an optimisation routine becoming trapped by one of the lo-

cal maxima when mixing two Poisson distributions in this way, in the first instance,

the log-likelihood may be maximised using a reasonable value of h and discretising

c ∈ C = {∆c, 2∆c, . . . , n} where ∆c represents a sensible increment of c. The log-

likelihood is maximised to give MLEs by

θ̂|h ⊆ arg max
θ|h∈Θ|h

` (c, h, λ1, λ2) , (7.11)

where θ|h = (c, λ1, λ2) and Θ|h = C × [0,∞)2, where the Poisson parameters λ1, λ2 > 0.

To clarify that the maximisation is over the grid for c we denote the value of c at θ̂|h as ĉ∆.

Define θ|c,h = (λ1, λ2) as the vector of parameters when fixed values of c and h are

given. The log-likelihood is maximised under these conditions by

θ̂|c,h ⊆ arg max
θ|c,h∈[0,∞)2

` (c, h, λ1, λ2) . (7.12)

Figure 7.6 shows how λ̂1|c,h and λ̂2|c,h might vary with c. It can be seen that incremental

linearisation of λ̂1|c,h and λ̂2|c,h gives a good approximation to the estimates. In this case,

the value of ∆c = 10, so the range between piecewise segments is given by 2∆c = 20.

To achieve linearisation between segments adjacent to ĉ∆ parameter estimates λ̂i|c,h for

i = 1, 2 are obtained by evaluating θ̂|c,h at values of c = ĉ∆−∆c and c=ĉ∆ + ∆c, and are

denoted λ̂−i and λ̂+
i respectively.

The linearised estimates λ̃1|c,h and λ̃2|c,h corresponding to λ̂1|c,h and λ̂2|c,h respectively

are calculated for a given value of c as

λ̃i|c,h = λ̂−i +

(
λ̂+
i − λ̂−i
2∆c

)
[c− (ĉ∆ −∆c)] (7.13)

for i = 1, 2 and c ∈ [ĉ∆ −∆c, ĉ∆ + ∆c].

Penultimately, maximisation is performed over parameters h and c, using λ̃1|c,h and λ̃2|c,h

in place of λ1 and λ2, as given by

θ̂|λ ⊆ arg max
θ|λ

`
[
c, h, λ̃1|c,h, λ̃2|c,h

]
,

where θ|λ = (c, h), h ∈ R+ and c ∈ [ĉ∆ −∆c, ĉ∆ + ∆c]. The parameter estimates ĉ|λ and

ĥ|λ and the corresponding estimates λ̃1|c,h and λ̃2|c,h gained from equation (7.13) may then
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Figure 7.6: Using a simulated data set with h = 10, c = 250, n = 500, λ1 = 5 and λ2 = 10:
(Top left) Maximum likelihood estimate λ̂1|c,h for c = 1, . . . , n. (Top right) Maximum likelihood

estimate λ̂2|c,h for varying values of c = 1, . . . , n. (Bottom left) Piecewise linearisation of λ̂1|c,h
for c = 200, . . . , 300 by increments of 20. (Bottom left) Piecewise linearisation of λ̂2|c,h for
c = 200, . . . , 300 by increments of 20.

be used to give a starting value to maximise over all parameters, θ = (c, h, λ1, λ2), al-

lowing the optimiser to more effectively find the global maximum in the range of c ∈ [0, n].

7.3.2 Quantifying the Correlation Between c and h

Contrary to the evidence provided by Figure 7.5, if c occurs close to or outside of the

bounds of the sample under the smoothly weighted mixed distribution model, c and h

are no longer orthogonal and cannot be treated as independent from one another. This

is logical as the smoothness, h, of the weighting function controls the range of significant

mixing between distributions, low smoothly weighted mixing centred distant from the

bounds of the sample cannot be perceived.

It can also be seen in Figure 7.4 that the more naive method of smoothly weighted

mixed means within a Poisson distribution lacks orthogonality whether or not c occurs

inside or outside of the bounds of the sample space.

Therefore, the assumption of independence between c and h due to orthogonality when

maximising the likelihood is not valid unless 0 < c ≤ n under the model considering

smoothly weighted mixed distributions. A new method seeks to linearise a vague esti-



7.3. OVERCOMING LOCAL MAXIMA IN THE DEVIANCE SURFACE 131

mate of c with respect to the value of h and maximise over h to gain a starting position

near to the global maximum parameter estimates.

a b

Figure 7.7: Contour plot showing the deviance surface of a simulated weighted changepoint over
c and h, where n = 500 and c = 510, outside of the bounds of the sample space. The values of
h which are fixed as to maximise over discretised c are represented by a and b.

Figure 7.7 relates to such a method which takes into account any correlation between c

and h. Again, considering a pair of Poisson distributions as a weighted mixture according

to equation (7.7), the method is as follows: Maximising the log likelihood, as shown by

equation (7.11), over discretised c ∈ C = {∆c, 2∆c, . . . ,mc∆c}, where mc∆c represents

the maximum value of c to be analysed, at fixed low and high values of h, a and b re-

spectively, gives a pair of estimates for c: ĉ∆,a and ĉ∆,b respectively. These estimates can

be used to form a linear equation which allows the calculation of c at a given value of h,

i.e. fc(h), as given by

fc(h) = ĉ∆,a +

(
ĉ∆,b − ĉ∆,a

b− a

)
(h− a) . (7.14)

This function may then be used to maximise over discretised h ∈ H = {∆h, 2∆h, . . . ,mh∆h},
where mh∆h represents the maximum value of h to be analysed.

θ̂|c ⊆ arg max
θ|c∈Ψ

` [fc(h), h, λ1, λ2] ,

where θ|c = (h, λ1, λ2) and Ψ = H × [0,∞)2. To clarify that the maximisation is over

the grid for h we denote the value of h at θ̂|c as ĥ∆.



7.4. MODEL COMPARISONS 132

The parameter estimate ĥ∆ and the corresponding value of c|h gained from equation

(7.14) may then be used to give a starting value to maximise over θ, allowing the opti-

miser to more effectively find the global maximum in the range of c ∈ (−∞,∞).

7.4 Model Comparisons

To analyse the usability of the models discussed in Section 7.2 they must be cross-tested

to ensure that they work effectively. This testing will be achieved by simulation under

each model and testing for changepoints within and outside of the bounds of the sample,

effectively allowing an investigation of modelling and forecasting ability.

7.4.1 Within the Bounds of the Sample

To ensure a concise and meaningful comparison, the models under experimentation will

be renamed and all models will use the Poisson distribution as their basis. Model 0 refers

to the generic discrete changepoint model, which is equivalent to either alternative model

when h = 0. The log-likelihood corresponding to Model 0 is given by equation (7.10).

Model 1 will refer to the main model of interest, that of the smoothly weighted mixed

distribution model described in Section 7.2.2. The log-likelihood corresponding to Model

1 is given by equation (7.7). Finally, Model 2 will refer to the more naive alternative of

smoothly weighted mixed means within similar distributions, described in Section 7.2.1,

where the log-likelihood is given by equation (7.4).

Models 1 and 2 separately nest Model 0, and therefore should never perform worse than

Model 0 in terms of maximised likelihood. However, when fitting Models 1 and 2 it is

assumed that h > 0 as the nature of the log-likelihood surface when h = 0 causes difficulty

when optimising.

A series of experiments were performed to ascertain the ability of each model to fit

observations simulated from each model according to two test statistics:

1. The summed root mean squared error (SRMSE), T , of MLEs λ̂i,k to the true value

λi, as given for Model k by

Tk =
2∑
i=1

√√√√∑m
j=1

(
λ̂i,k,j − λi

)2

m
, (7.15)

where i indicates parameter 1 or 2, j gives the simulation number and k refers to

Model number 1 or 2. To allow comparison, the percentage relative improvement

in, T , under Models 1 and 2 relative to Model 0 will be presented as a percentage

relative difference, d, given for Model k by
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dk =
(T0 − Tk)

T0

× 100, (7.16)

where dk = 0 indicates no improvement in T over Model 0, dk > 0 indicates an

improvement in T over Model 0 and dk < 0 indicates a worse T than Model 0.

2. The log-likelihood, ln (L), of the model and the number of free parameters, p, are

used to calculate the Akaike Information Criterion (AIC), which can be used as a

measure of statistical quality of a model and is given by

AIC = 2p− 2 ln(L).

The model with the minimum AIC value is preferred.

In each case the true statistics were evaluated over m repetitions of the data. This process

of cross-testing allows the comparison of these statistics over a grid of h and c, or solely

c in the case of Model 0. In this section c will be limited to the bounds of the sample,

i.e. c ∈ (0, n].

The smoothing parameter h in the Gaussian weighting function, φh(t, c), is constrained

by h ≥ 0. Therefore, when comparing to a null model where h = 0, if a 0.05 significance

level is desired, a 0.025 significance test should be performed using the standard test.

The reasons for this are explained in Appendix G.2.

Figure 7.8: Percentage relative improvement in T over Model 0 for Models 1 and 2, d1 and d2

respectively, when simulating from Model 0 with m = 200, n = 500, λ1 = 5 and λ2 = 10 and
changepoint τ at values of τ = 50, 60, . . . , 450.

Figure 7.8 shows d1 and d2 when simulating data from Model 0 with m = 200, n = 500,

λ1 = 5 and λ2 = 10 and changepoint τ at values of τ = 50, 60, . . . , 450. It can be seen that
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Model 1 performs similarly to Model 0 across the range of tested τ . However, at values

near the bounds of the sample, Model 2 performs relatively worse by approximately 3%

in terms of T .

When simulating under Model 0 and cross-testing alternative hypotheses of Models 1

and 2 against a null hypothesis of Model 0, Model 0 was rarely (less than 1%) rejected

in favour of Models 1 or 2 under each simulation at all values of τ tested.

Figure 7.9 shows d1 and d2 over m = 200 repeated simulations under Model 1, where n =

500, λ1 = 5, λ2 = 10 over a discretised grid of c = 50, 100, . . . , 450 and h = 10, 20, . . . , 100.

It can be seen that both Models 1 and 2 perform considerably better than Model 0 at

high values of h. However, Model 1 exceeds Model 2 according to this statistic when

simulating from Model 1. As h → 0 both Models 1 and 2 collapse to Model 0 and their

improvement decreases, which is expected given the results shown in Figure 7.8.

Figure 7.9: Contour plots (units of percentile) showing (left) d1 and (right) d2, when simulating
from Model 1 using n = 500, λ1 = 5, λ2 = 10 over a discrete grid of c = 50, 100, . . . , 450 and
h = 10, 20, . . . , 100.

Figure 7.10 shows the percentage of replicated cases, m, when either Model 0, 1 or 2

was the best fitting model according to the AIC when simulating under Model 1 over

the same grid as above. This shows that Model 1 performs better than Models 0 or 2 at

high values of h when simulating from Model 1. However, as h → 0, the percentage of

m where Model 0 was the best fitting model increases. Model 2 is rarely the best fitting

model in this test.

Figure 7.11 shows d1 and d2 over m = 200 repeated simulations under Model 2, where n =

500, λ1 = 5, λ2 = 10 over a discretised grid of c = 50, 100, . . . , 450 and h = 10, 20, . . . , 100.

It can be seen that both methods perform considerably better than Model 0 at high values

of h when c is close to the centre of the sample, Model 2 in this sense being significantly

better than Model 1 when simulating from Model 2 according to this statistic. In the

same manner as before, as h→ 0 both Models 1 and 2 collapse to Model 0 and their im-
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Figure 7.10: Contour plots (units of percentile) showing the percentage of occurrences when
simulating from Model 1 using n = 500, λ1 = 5, λ2 = 10, where Model 0 (left), Model 1
(middle) or Model 2 (right) was the best fitting model according to the AIC, over a discrete
grid of c = 50, 100, . . . , 450 and h = 10, 20, . . . , 100.

provement decreases. However, when cross-testing under Model 2, parameter estimates

obtained under both Model 1 and 2 decrease in accuracy as c approaches the bounds of

the sample space (i.e. c→ 0 or c→ n).

Figure 7.11: Contour plots (units of percentile) showing (left) d1 and (right) d2, when simulating
from Model 2 using n = 500, λ1 = 5, λ2 = 10 over a discrete grid of c = 50, 100, . . . , 450 and
h = 10, 20, . . . , 100

Figure 7.12 shows the percentage of m when either Model 0, 1 or 2 was the best fitting

model according to the AIC when simulating under Model 2 over the same grid as above.

This shows that Model 2 performs better than Models 0 and 1 at high values of h when

simulating from Model 2. However, again, as h→ 0, the percentage of m where Model 0

was the best fitting model increases. Model 1 is rarely the best fitting model in this test.

As c → 0 or c → n, Model 1 begins to lose out to Model 0. Due to these results it can

be confirmed that data following Model 2, with c occuring outside of the sample space,

would be difficult to model (e.g. when forecasting a change) using either Model 1 or 2.
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Figure 7.12: Contour plots (units of percentile) showing the percentage of occurrences when

simulating from Model 2 using n = 500, λ1 = 5, λ2 = 10, where Model 0 (left), Model 1

(middle) or Model 2 (right) was the best fitting model according to the AIC, over a discrete

grid of c = 50, 100, . . . , 450 and h = 10, 20, . . . , 100.

7.4.2 Forecasting Outside of the Bounds of the Sample

Time series forecasting is the process of utilising current observations to predict future

ones. Forecasting the occurence of a step change, as used in the generic discrete change-

point model, is impossible from information contained in a single series, due to the nature

of the change. However, gradual changes often occur in practice and the prediction of

a change and the related parameters is possible using the models discussed in Sections

7.2.1 and 7.2.2.

In Section 7.4 the log-likelihood was maximised over all data points in each sample.

However, data streams can produce large volumes of data which require online process-

ing, where memory is often limited. In these cases analysing historical data may be

impractical or not useful. To account for this a rolling window can be used to check for

structural changes in the time-series, whereby, as new data enter the sample, old data

leave the sample. This addresses both speed and scalability.

In practical use on real data, the length of the window can be related to the timescale

of the system. To allow the model to capture changes in the structure of the time series

a smaller window should be used for a fast timescale and a longer window for a slow

timescale. The evolution of parameter estimates from a rolling window method can also

help to assess any statistical noise present in the data.

For the following examples a rolling window shall be used, with a length that repre-

sents the initial sample size over which the data is thought to follow one distribution.

The window will move incrementally and remain constant in size, introducing new data

points to allow a comparison of the forecasting ability of Models 0, 1 and 2 (see Section

7.4.1 for model nomenclature), whilst removing the oldest or first data points. The posi-

tioning of this window relative to the data index is given by the first point, w1 and the end
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point w2 in the window, where w2 > w1. The window size is then w2 − w1. In practice,

this increases the efficiency of analysing the data, rather than using fixed w1 = 0, whilst

ensuring a constant sample size.

Under Model 0, m = 200 data sets were simulated, where n = 1100, τ = 1000, λ1 = 5

and λ2 = 10. A window of size w2 − w1 = 900 was then moved incrementally over

w2 − τ = −100,−90, . . . , 100, representing the point at which the window reaches the

changepoint τ by w2−τ = 0 and maximising the log-likelihood of Models 1 and 2 at each

position. Using the MLEs obtained through these maximisations, two test statistics were

applied, the individual RMSE for parameter λi, RMSEλi , and the SMRSE, T . These are

presented as percentage relative improvements over Model 0. The improvement in T , d,

given by equation (7.16), is here relabelled as dT whilst the improvment in RMSE for

parameter λi, d
RMSE
i , is given for Model k by

dRMSE
i,k =

RMSEλi
0 − RMSEλi

k

RMSEλi
0

× 100. (7.17)

A null model of no changepoint will also be introduced for comparative purposes. As

model index 0 is already defined, this model will be referred to as null and given index

k = 3 to ensure completeness in definition of k.

Figure 7.13 shows dRMSE
1 , dRMSE

2 and dT for Model 1 and 2 and a null model of no

changepoint for the tested sample subsets. It can be seen from Figure 7.13 that Models

0, 1, 2 and the null model all perform similarly well over the period of no change, with

respect to the test statistics used. After w2− τ = 0 it can be seen that Model 1 performs

better than Model 2, but takes around 100 post τ observations to regain similar perfor-

mance to Model 0.

This process was repeated simulating from Model 1 with n = 1100, c = 1000, h = 100,

λ1 = 5 and λ2 = 10. Figure 7.14 shows dRMSE
1 , dRMSE

2 and dT for Model 1 and 2 and

a null model of no changepoint for the tested sample subsets. However the scale for the

window is now w2 − c to represent the correct model parameter c, although the same

window positions, w2 − c = −100,−90, . . . , 100, were analysed.

It can be seen from Figure 7.14 that Model 1 achieves the greatest improvement over

Model 0 in the accuracy of both parameter estimates λ̂1 and λ̂2 prior to the position of

equal weighting, c, when simulating from model 1. After c has passed, Model 2 steadily

reaches a similar level of improvement as model 1 by approximately 50 post c observations.

Finally, simulating from Model 2 with n = 1100, c = 1000, h = 100, λ1 = 5 and λ2 = 10,

Figure 7.15 shows dRMSE
1 , dRMSE

2 and dT for Model 1 and 2 and a null model of no change-
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Figure 7.13: Simulating from Model 0 using τ = 1000, w2 − w1 = 900, λ1 = 5 and λ2 = 10.
(Top left) dRMSE

1 , (top right) dRMSE
2 and (bottom) d, for Models 1 and 2 and a null model of

no changepoint.

point for the tested sample subsets using window positions w2− c = −100,−90, . . . , 100.

Interestingly, it can be seen that Model 1 achieves the greatest improvement over Model

0 in T prior to the position of c, when simulating from Model 2. This is in contrast

to simulation from Models 0 and 1, where the correct model performs best out of those

tested. After c has passed, Model 1 remains as the greatest improvement in T over

Model 0 for approximately 20 post c observations and is consistently better than Model

2 in RMSEλ1 over the tested range. After 20 post c observations, Model 2 experiences

the most improved T with respect to Model 0.

7.4.3 Comparison Discussion

In this model comparison, the discrepancy between parameter estimates and their true

values has been used as a measure of model quality. This is due to the range of possible

applications which aim to predict or model the portion of the sample before and after

the change. The changepoint position is not under scrutiny due to its ambiguity under a

smooth change model when comparing to the generic discrete changepoint model. Models

1 and 2 may be referred to as smooth change models rather than changepoint models.

In a bounded scenario, when forecasting is not necessary, each model performs well when

tested on simulations using that model. The situations which cause exception apply to
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Figure 7.14: Simulating from Model 1 using c = 1000, h = 100, w2 − w1 = 900, λ1 = 5 and
λ2 = 10. (Top left) dRMSE

1 , (top right) dRMSE
2 and (bottom) d, for Models 1 and 2 and a null

model of no changepoint.

Model 2, which struggles to give a better estimate of parameter values when c (or τ) is

close to the bounds of the sample. In these cases, Model 0 shows the highest quality when

consulting the AIC, which takes into account the number of model parameters. This fact

leads to the hypothesis that Model 2 may not be effective in a forecasting situation when

the position of c may occur outside of the bounds of the sample.

Under forecasting conditions (i.e. 0 < c <∞) Model 1 continues to perform well. Under

the measure of percentage improvement of T , dT , it seems to be performing much worse

than Model 0 when simulating from Model 0, but the actual difference has a relatively

low order of magnitude.

Figure 7.15 shows that Model 1 performs better than Model 2 until approximately

w2 − c = 20 when simulating from Model 2. It can be deduced that simulated sam-

ples under Model 2 cause difficulties when forecasting parameters due to the fact that

there is no visible end point to the smooth change. Whereas Model 1 uses the available

data points in a more effective way, building a picture of future changes more slowly, but

less chaotically. This is the reason why testing under Model 2 sees more noise in the

parameter describing the data after the change.
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Figure 7.15: Simulating from Model 2 using c = 1000, h = 100, w2 − w1 = 900, λ1 = 5 and
λ2 = 10. (Top left) dRMSE

1 , (top right) dRMSE
2 and (bottom) d, for Models 1 and 2 and a null

model of no changepoint.

7.5 Extension to Multiple Changepoints

The generic discrete changepoint model can be extended to the multiple changepoint case

quite simply. Building on the current definition of the single changepoint (definition 1,

Section 7.1) a series of J changepoints, τ1, . . . τJ can be thought to occur when the statis-

tical properties of neighbouring segments
{
xτj−1

, . . . , xτj
}

and
{
xτj+1

, . . . , xτj+2

}
, where

τ0 represents the first index and τJ+1 represents the last index of the sample, are different

in some way.

To be used as an effective alternative or inline model to the generic discrete changepoint

model the smoothly weighted mixed distribution model defined in Section 7.2.2 needs to

account for the multiple changepoint scenario. The smoothly weighted mixed parameter

model described in Section 7.2.1 will not be considered here, however, similar derivations

can be applied. To mark its completeness in describing the multiple changepoint sce-

nario, and to ensure concise and legible analysis, the smoothly weighted multiple mixed

distribution model shall now be referred to as Smooth Distribution Transitions (SDT).
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7.5.1 Definition of Smooth Distribution Transitions (SDT)

Consider J multiple smoothly weighted mixed distribution changes (as described in Sec-

tion 7.2.2) indexed by j, c = (c1, . . . , cJ), between J+1 segments, indexed by i, following

probabilillty distribution functions given by f (xt,λi). The likelihood under this model

is given by

L (c,h,λ1, . . . ,λJ+1) =
n∏
t=1

[
J+1∑
i=1

φh,i (t, c) f (xt,λi)

]
,

where

J+1∑
i=1

φh,i (t, c) = 1,

and h = (h1, . . . , hJ) is the vector of smoothing parameters respective to c.

To illustrate the model it shall be assumed that

Xt ∼



Poisson (λ1) w.p. φh,1 (t, c) ,

Poisson (λ2) w.p. φh,2 (t, c) ,
...

Poisson (λJ+1) w.p. φh,J+1 (t, c) .

The likelihood is then given by

L (c,h, λ1, . . . , λJ+1) =
n∏
t=1

[
J+1∑
i=1

φh,i (t, c)
λxti e

−λi

xt!

]
.

Taking the log of the right hand side gives the log-likelihood as shown by

` (c,h, λ1, . . . , λJ+1) = log

{
n∏
t=1

[
J+1∑
i=1

φh,i (t, c)
λxti e

−λi

xt!

]}

=
n∑
t=1

log

{
J+1∑
i=1

[
φh,i (t, c)

λxti e
−λi

xt!

]}
.

7.5.2 SDT Weighting Functions

Similarly to that described in Section 7.2.3, a weighting function based on a Gaussian

cumulative distribution function may be employed in SDT to mix the probability density

functions used to describe each segment. In the two changepoint case, where J = 2, the
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weighting function can be defined as shown in equation (7.18):

φh,1(t, c) = 1− Φ

(
t− c1

h1

)
,

φh,3(t, c) = Φ

(
t− c2

h2

)
,

φh,2(t, c) = φh,1(t, c)− φh,3(t, c). (7.18)

However, this cannot be translated into the case where the number of changepoints is

greater than two. To account for this, we can set:

φh,j (t, c) =
αh,j (t)∑J+1
k=1 αh,k (t)

. (7.19)

The two changepoint case can then be described by

αh,1(t, c) = 1− Φ

(
t− c1

h1

)
,

αh,2(t, c) = min

{
Φ

(
t− c1

h1

)
,

[
1− Φ

(
t− c2

h2

)]}
,

αh,3(t, c) = Φ

(
t− c2

h2

)
. (7.20)

This translates into the J changepoint case, as shown in equation (7.21):

αh,1(t, c) = 1− Φ

(
t− c1

h1

)
,

αh,j(t, c) = min

{
Φ

(
t− cj−1

hj−1

)
,

[
1− Φ

(
t− cj
hj

)]}
for j = 2, . . . , J,

αh,J+1(t, c) = Φ

(
t− cJ
hJ

)
. (7.21)

Figure 7.16 shows two example weightings for two smooth changes at c1 = 250 and

c2 = 750 for values of h1 = h2 equal to 10 and 100.

It is noteworthy that multiple (more than two) segments may be mixed due to large

amounts of smoothing in the weighting function. This necessitates an addendum to the

definition of c that c is the the point of equal weighting between neighbouring segments,

which is not necessarily equal to 0.5. Figure 7.17 illustrates this.
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Figure 7.16: Weights for two smooth changes at c1 = 250 and c2 = 750 for (left) h1 = h2 = 10
and (right) h1 = h2 = 100.
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Figure 7.17: Weights for two smooth changes where c1 = 1000, c2 = 2000, h1 = 100 and
h2 = 1000 .

7.5.3 Illustration of Improvement of SDT over the Generic Discrete

Changepoint Model

An illustration of the improvement of SDT over the generic discrete changepoint model

can be achieved using the percentage relative improvement in RMSE over the generic

discrete changepoint model, dRMSE
i as given in equation (7.17). This will be done for

each parameter, λi, where each segment follows a Poisson distribution.



7.5. EXTENSION TO MULTIPLE CHANGEPOINTS 144

Data were simulated using m = 200 repetitions of Poisson SDT with n = 1000, c1 = 250

and c2 = 750, λ1 = 5, λ2 = 10 and λ3 = 5, whilst varying a common smoothing parameter

h over discrete values h = 0, 10, 20, . . . , 150. Example simulated samples using h = 0 and

h = 150 are shown in Figure 7.18, where h = 0 is the generic discrete changepoint case.

It can be seen that the changes are much less identifiable by eye when h = 150.
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Figure 7.18: (Top) Simulated data set using two changepoints under the generic discrete Poisson
changepoint model at τ1 = 250, τ2 = 750, λ1 = 5, λ2 = 10 and λ3 = 5. (Bottom) Simulated
data set using two smooth changes under Poisson SDT with h = 150, c1 = 250, c2 = 750,
λ1 = 5, λ2 = 10 and λ3 = 5.

Figure 7.19 shows dRMSE
i testing Poisson SDT for each parameter λi, where in this case

i = 1, 2, 3. Note λ1 = λ3 = 5 and therefore the percentage improvement relative to the

generic discrete changepoint model is similar. It can be seen that dRMSE
i increases to

some limiting factor for all i, dependent on the true value of λi, as h increases. It should

also be noted that SDT performs similarly to the generic discrete changepoint model in

this test as h→ 0.

Figure 7.20 shows the average position of τ1 and τ2 for the generic discrete Poisson change-

point model and c1 and c2 under Poisson SDT at the tested values of h. It is noteworthy

that the point estimate for τ when tested using the generic discrete changepoint model

moves away from the segment simulated from a larger parameter value in both cases as

h increases. This is also true in the case of λ1, λ3 > λ2. Therefore, it cannot be equated

to the start or end of the smooth change.

Figure 7.21 shows the percentage rejection in a hypothesis test using a null hypothesis

of a generic discrete Poisson changepoint model compared to an alternative hypothesis
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Figure 7.19: Values of dRMSE
i , i = 1, 2, 3, testing m = 200 repetitions of Poisson SDT with

c1 = 250, c2 = 750, λ1 = 5, λ2 = 10 and λ3 = 5, and varying h over discrete values h =
0, 10, 20, . . . , 150 using Poisson SDT.

of Poisson SDT, testing at a significance level of 0.05. It can be seen that the null is

rejected 100% of the time by approximately h = 40, which indicates that the model with

the highest quality in this situation is considered to be SDT.

Figure 7.20: Average estimates of τ1 and τ2 for the generic discrete multiple changepoint model
(black) and c1 and c2 for Poisson SDT (red) when simulating using Poisson SDT with c1 = 250,
c2 = 750, λ1 = 5, λ2 = 10 and λ3 = 5, and varying h over discrete values h = 0, 10, 20, . . . , 150.
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Figure 7.21: Percentage rejection of null hypothesis of a generic discrete Poisson changepoint
model when compared to an alternative hypothesis of Poisson SDT when simulating using
Poisson SDT with c1 = 250, c2 = 750, λ1 = 5, λ2 = 10 and λ3 = 5, and varying h over discrete
values h = 0, 10, 20, . . . , 150.

7.5.4 Detecting Number of Changepoints and Comparison to PELT

Automated detection of the number of changepoints or smooth changes to be analysed

is a prerequisite of any changepoint model to be used on non-simulated data where this

number is not known. Using the AIC, or some penalty function, the number of parame-

ters in the changepoints and smoothing parameters, 2× J , can be estimated.

To further illustrate the model normal SDT data with a constant known standard devi-

ation σ = 1 and varying means µi, will be used to test the choice of J . Assuming

Xt ∼



Normal (µ1, σ) w.p. φh,1 (t, c) ,

Normal (µ2, σ) w.p. φh,2 (t, c) ,
...

Normal (µJ+1, σ) w.p. φh,J+1 (t, c) ,

the likelihood is given by

L (c,h, µ1, . . . , µJ+1) =
n∏
t=1

[
J+1∑
i=1

φh,i (t, c)
1√
2π

exp

(
−(x− µi)2

2

)]
.

Taking the log of the right hand side gives the log-likelihood as shown by
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` (c,h, µ1, . . . , µJ+1) = log

{
n∏
t=1

[
J+1∑
i=1

φh,i (t, c)
1√
2π

exp

(
−(x− µi)2

2

)]}

=
n∑
t=1

log

{
J+1∑
i=1

[
φh,i (t, c)

1√
2π

exp

(
−(x− µi)2

2

)]}
.

Figure 7.22 shows a sample of normal SDT data with n = 3000, c1 = 1000, c2 = 2000,

h1 = 100, h2 = 1000, µ1 = 5, µ2 = 10, µ3 = 5 and σ = 1 for all segments. When tested

using the AIC to ascertain the value of J in m = 200 simulations the results were highly

dependent on starting value, most likely due to the optimisation routine used. However,

if reasonable starting values were supplied SDT performed well under testing using the

AIC to choose the correct J in all simulations. Note, this does not mean that it will be

correct 100% of the time. However, under a limited number of simulations it performed

admirably well.

0 500 1000 1500 2000 2500 3000

2
4

6
8

10
12

Index

x

Figure 7.22: Example simulated data following normal SDT with n = 3000, c1 = 1000, c2 =
2000, h1 = 100, h2 = 1000, µ1 = 5, µ2 = 10, µ3 = 5 and σ = 1 for all segments. Note the
weighting pattern used is the same as shown in Figure 7.17.

The introduction of differing values of hj allows the consideration that some changes

are more abrupt than others. It also incurs the benefit of understanding that multiple

changes can happen at the same time to one data set, as can be seen in Figure 7.22,

where regions experiencing smooth changes between distributions visibly overlap.

The RMSE of the various free parameters’ estimates for the simulations are given in

Table 7.1. Note the disparity in RMSE between h1 and h2. This does not translate into

inaccuracy in estimates of the mean parameters, µi. If the RMSE values are considered
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as percentage errors to the true parameter value, they are infact quite similar.

Parameter RMSE

c1 11.56

c2 12.86

h1 12.14

h2 73.50

m1 0.04

m2 0.03

m3 0.03

Table 7.1: RMSE values for m = 200 simulations of normal SDT data with n = 3000, c1 = 1000,
c2 = 2000, h1 = 100, h2 = 1000, µ1 = 5, µ2 = 10, µ3 = 5 and σ = 1 for all segments.

Interestingly, using a readily available Pruned Exact Linear Time (PELT) method to es-

timate changes in mean (Eckley et al., 2011), under both penalty regimes which count the

changepoints as parameters and those that do not, between 100-700 changepoints were

found in the simulated data sets. The inability of the PELT method to identify smooth

changes and only identify discrete steps meant a gross overestimation of the number of

changepoints. Due to this fact, direct comparison of parameter estimates is unhelpful.

This also shows that SDT has evolved to a much larger application base as its sim-

ilarities with the generic discrete changepoint model become blurred. This evolution

brings into question the basis of the model on segmentation, as it was first conceived.

The initial concept sought to account for uncertainty in parameter estimates and change-

point position by mixing segments, however, as can be seen in Figure 7.22 segments may

not be distinguishable in the typical sense. Therefore, the definition of c should solely be

the point of equal weighting between probability distribution functions of neighbouring

indices.

7.6 Conclusion

Changepoint analysis is a useful tool for detecting structural changes in the distribution

of a time series. They can model changes in mean, variance, correlation and spectral

density. In this way they can be used to model smooth changes disjointly, though this

does not allow them to smoothly model the transition of the change over time.

The methods laid out in this chapter give a framework for building changepoint models
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that consider such smooth transitions, using a weighting function to continuously model

the change in confidence of information from observations surrounding the changepoint(s).

The model can fit sudden changes and smooth changes alike, allowing it to model changes

which display either of these characteristics.

Further to modelling changepoints retrospectively, the method also allows for the estima-

tion of upcoming changes and the period of transition. Obviously, this relies on having

some prior data to test models for both the distribution of the data and the weighting

function. A Gaussian weighting function was discussed in detail, though a linear or other

curve weighting function could be used if it proves to fit the data better.

Performing a simulation study showed that the SDT method was highly advantageous

over current methods (PELT) in identifying (at least a low number) of changepoints of

this nature. The specific advantages of the model were in the estimation of number

of changepoints, where PELT estimated a much higher number of changes. When in-

terpreting such results, this would be misleading and could incorrectly identify causal

events.

7.7 Future Work

Much further simulation analysis, including the testing of several transition weighting

models, should be carried out to identify the most efficient models. The application to a

real data set would allow much clearer conclusions about the properties and benefits of

this model, possibly in which the changepoints are relatable to a known event.

The automation of multiple changepoint detection under the SDT model needs to be

perfected before it could be released as a package. This is difficult due to the nature of

the log-likelihood surface, in that it displays multiple local maxima. A different optimisa-

tion algorithm may allow a better result. Also, changes to the optimisation method could

significantly decrease the time to convergence, which is an area where current methods

are much more capable.



Chapter 8

Changes of Performance in Golf

8.1 Introduction

Due to the nature of the game, golf provides an interesting and diverse set of statistical

problems, not least of which is the effect of technology and coaching on outcome. Prize

money and a popular basis for betting ensure that there is a constant interest in factors

which may be used to predict player performance. Modern players have the ability to

choose equipment that is customised to their tastes. As technology becomes more ad-

vanced, with innovative designs and new combinations of material, the first to adopt can

often achieve an advantage over their competitors. This can be seen through the uptake

of new solid golf balls after Tiger Woods achieved great success subsequent to his replace-

ment of wound balls with a multi-core, solid design in 2001 (Masataka, 2008). Appendix

H.1 shows gives some examples of where technology might affect player performance.

Tiger’s success throughout the season was not solely a case of absolute performance,

but also one of consistency. It has been speculated that the choice of golf ball may

affect a player’s consistency throughout a tour (Johnson, 2001; Masataka, 2008). This

exploratory analysis will outline the techniques that may be used to investigate player

consistency, allowing the identification of periods of higher consistency with the aim of

identifying the cause.

Perceived changes in consistency and relative performance may also be strength in depth,

which refers to the existence of more good players in the competition. This could therefore

provide spurious results and should be considered in any conclusions.

8.2 Background

Lili (2005) analysed various statistical aspects of golf play over the last 40 years. Although

some of the methods contained in the thesis are basic, the approach was a good starting

point. Lili (2005) suggested the use of round by round scores as a fair comparison of play

150
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on that particular day. However, altering weather conditions within a tournament may

mean that difficulty changes from day to day, requiring a normalisation of each player’s

score to that of the field. This is further compounded throughout the tour, as each course

holds particular challenges that are difficult to rate with regards to their required level

of play.

A standard score (often referred to as a z-score) signifies by how many standard de-

viations a single observation at time point i, xi, in a data set is above or below the mean

value. This is done in such situations where raw score cannot be affectively utilised.

Normalisation is achieved by

zi =
xi − µ
σ

, (8.1)

where µ is the mean of the population and σ is the standard deviation of the population.

A positive z-score represents the number of standard deviations above the mean and

negative corresponds to below (Larsen and Marx, 2012).

Relatively little separates the scores of the highest ranked players in a golf tour. Be-

cause of this, in addition to overall performance, consistency allows players to dominate

the season. Consistent players will achieve their average handicap more often and there-

fore maintain their performance and position in tournaments throughout a tour. This is

increasingly important for top players, as it is common for many different players to win

each tournament. One measure of consistency is the variance of the normalised score,

where a lower variance corresponds to a more consistent performance and vice versa.

Agreement between initial analyses and the research by Lili (2005) could not be acheived,

possibly due error in the research or the abscence of the original data set that was used.

Therefore, only the consistency measure was brought forward into this analysis.

8.3 Player Consistency

Data containing player round score were initially collected for the PGA Tour, with the

aim of calculating a consistency measure based on the average variance of a player’s nor-

malised round score. The normalised round score, or ‘z-score’, may be calculated using

equation 8.1.

Normalising to each round of play for each tournament allows for course difficulty, vari-

ability of day to day weather conditions and any other factors. The limited availability of

historical data only allowed the capture of 10 years for the PGA Tour, which gave little

insight into change in player performance.
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The European Tour provided a more comprehensive data set for the years 1975 onwards.

Data has been collected from 1975-2010 for all tournaments following standard stroke

play (discounting match play tournaments etc...). After considerable reformatting of the

data using a ‘pretty print’ type program written in R, the z-scores were calculated for all

rounds over the 36 year data set. The average consistency (variance of z-scores) of the

top 50 players who competed in 5 tournaments or more can be seen in Figure 8.1.
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Figure 8.1: (left) Consistency measure of average variance of z-scores over time for both the
top 50 players according to earnings and to z-scores (averaged over tournaments played by each
player). (right) Linear regressions.

The consistency of the top 50 players were analysed using the variance of their z-scores

over all rounds (data has also been captured for the individual round variance of z-scores

for these players). The definition of the top 50 players was approached from two di-

rections, the top 50 by earnings on tour (does not include advertising etc... or other

tournament contributions) and the top 50 by z-score. Calculation of the top 50 by z-

score takes into account not all players play every tournament by using Xi, as given by

Xi =

∑
t∈Ti Zt,i

|Ti|
, (8.2)

where t ∈ Ti represents the tournaments played by player i, Zt,i is the score in each

tournament t, played by player i and |Ti| is the number of tournaments played by player

i, represented as the length of the set Ti. The results can be seen in Figure 8.1.

It was clear from initial analysis of this data set that there is a significant upward trend,
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which can also be seen in Figure 8.1. Table 8.1 shows the results of linear regressions car-

ried out on the overall consistency measure (average variance) over time for both ranking

techniques (earnings and z-score). It can be seen that the p-values for both are much less

than 0.05 and therefore, can be identified as significant trends.

Ranked By Intercept Gradient p-value

Earnings -8.28 0.00456 0.000

Z-Score -7.22 0.00402 0.000

Table 8.1: Linear regression coefficients and p-values for both European Tour average top 50
consistency measures.

To visually enhance the relationship between average player consistency and time a 5

point average can be applied. This is shown in Figure 8.2, and reveals a possible change-

point around 1988.
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Figure 8.2: Consistency measure of average variance of z-scores over time for both the top 50
players according to earnings and to z-scores (averaged over tournaments played by each player),
with 5 point average overlaid.

An important consideration was the exclusion of cut players in the calculation of z-scores.

Figure 8.3 shows the consistency measure over time when all players, the top 100 players

and the top 50 players in the tournament are used to calculate the z-score. It should

be noted that the gradient component of linear regressions carried out upon these three

results are decreasing as the number of players used to calculate the z-scores decreases

(All: 0.0046, top 100: 0.0034, top 50: 0.0018).
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Figure 8.3: Consistency measure of average variance of Z-scores over time for both the top 50
players according to earnings and to z-scores, using all players in the tournament to calculate
z-scores for each round (black), the top 50 (red) and top 100 (blue).

Another important decision relates to the variability measure of the z-score calculation.

Usually this is left as the standard deviation, however, it could be replaced with the

absolute difference between the median and either the upper or lower quartiles as can

be seen in Figure 8.4. This would allow the effect of the upper and lower tails of the

density distribution to be seen. Figure 8.5 shows a 100pt moving average of the mean and
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Figure 8.4: Consistency of average variance of z-scores over time for both the top 50 players
according to earnings and to z-scores using different variability measures on the denominator
of the z-score calculation (labelled as Q on the left plot). (right) standard deviation used (as
before) for the denominator term.

standard deviation of the round score between 1975 and 2010. Both of these statistical

measures can be seen to be decreasing. The decrease in standard deviation may point

to an increase of strength in depth of the field as more players enter tournaments. This

may thereby affect the perception of results achieved using the standard z-score method
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as shown in equation (8.1).
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Figure 8.5: (Left) 100pt moving average mean round score for all rounds from 1975 to 2010.
(Right) 100pt moving average standard deviation of round score for 1975 to 2010.

To address this issue, the variability measure, standard deviation in equation (8.1), may

be removed from the denominator and a normalisation method of z = x− µ may be em-

ployed. Figure 8.6 shows the average consistency, measured as the variance of z-score of

each player, for the top 50 players ranked by earnings using this normalisation method.

In contrast to the results shown in Figure 8.1, the average consistency of the top 50

players is now relatively constant, with a slight increase in consistency between 1975 to

2000. This supports the theory that the decrease in consistency described by Figure 8.1

is related to strength in depth.

8.4 Discussion

Strength in depth is a term that is used widely in the golf community (Golfshake, 2015;

Lindsay, 2010), and can be seen as an apparent cause of the perceived decrease in con-

sistency shown in Figure 8.1. However, it should be considered that the reduction in

standard deviation of round score between 1975 and 2010 shown in Figure 8.5 begins to

plateau in the second half. This could give support to a counter arguement that as players

become more consistent and hit the ball futher (due to improved technology and coach-

ing methods), the courses are made more difficult by increasing their length (Diaze, 2011).

As the player is playing against a course and not an opponent, as in Tennis for ex-

ample, if the course difficulty increases, the player’s relative skill decreases. This could
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Figure 8.6: Mean consistency of the top 50 players from 1975-2010 using the consistency measure
var (x− µ).

be an explanation of the plateau of both the mean and standard deviation of round scores

as seen in Figure 8.5, rather than their continued reduction - leading to the conjecture

that this effect may have been engineered by the Tour organisers and course designers.

8.5 Future Work

As discussed in Section 8.3, the availability of free historical data from the PGA Tour

was low. Future work would need to compare the results found in this analysis with those

of the PGA Tour, over a similar time period.

ShotLink allows the capture of real-time statistical data regarding the trajectory and

distance travelled by the ball for every player in the PGA Tour (ShotLink, 2015). Along-

side other data, this would allow an investigation of the hypothesis that player form and

technique have changed to reflect the increasing course length.



Chapter 9

Conclusion

This thesis has covered an analysis of home advantage and other sports data analysis:

From a basic additive model for home and away goals in association football (Clarke,

1996) to a more complex model which considered the distribution of data (Dixon and

Coles, 1997), various methods have been explored to better model the effect of home

advantage. These include considering the effect of time, within game effects (such as red

and yellow cards) and external covariates (such as distance between teams and match

attendance). Modelling extensions which sought to account for extreme goal counts were

performed, resulting in the evolution of a transition mixture model. Methods for consid-

ering smooth transitions were considered, and a changepoint model was discovered which

allows the consideration of information close to and distant from the transition. Finally,

a brief foray was made into changes in performance in professional golf.

Chapter 3 analysed home advantage at both the individual team and overall league levels.

This analysis used the additive model for goal counts in association football defined in

Clarke (1996). It was found that, under the definition of this model, home advantage

tended to increase with increasing league level. Differing from the home advantage found

in Clarke (1996), this also suggested a possible decrease in home advantage over time.

Some teams were seen to have negative home advantages in some years. This contrasts

with Pollard (1986), who suggested that all teams have a positive home advantage. There

was little conclusive evidence found to suggest that a team newly entering a league has

a higher home advantage, although some teams such as Sheffield United in 2006 and

Stoke City in 2008 did exhibit this behaviour. This could suggest that some teams have

grounds which contribute to home advantage more strongly than others.

It was concluded that a more complex modelling approach was required. That of Dixon

and Coles (1997) was chosen as a base model to work from. Under comparison with the

Clarke (1996) model, the Dixon and Coles (1997) model produced a better fit of winning

margin and provided the added benefit of modelling individual home and away team goal

counts.

157
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In Chapter 4 a bivariate Poisson model for home and away goal counts based on a

model proposed by Dixon and Coles (1997) was employed to perform further analyses

into the origins and effects of home advantage in association football. Home advantage

could be seen to reduce over time for a long term historical data set. This reduction

might be explained by the evolution of new rules and strategy. For example, the intro-

duction of three points for a win changed the way the game was played significantly at a

league level. However, under modelling more recent data, no significant change in home

advantage over time was found, suggesting that strategies and playing styles may have

stabilised to some extent.

Although home advantage was found to vary significantly over teams, the predictive

power of a model which included them was reduced. This is thought to be because of the

reduction in information used to estimate these parameters. It was also found that home

and away teams experience an advantage dependent on the number of red cards issued.

However, prediction of cards was out of scope of the analysis, and as such couldn’t be

used in a prediction model.

Chapter 5 accounted an analysis of external covariates on home advantage. Various ex-

ploratory models, including piecewise constant regression and smooth splines, were used

to understand the effect of these covariates on home advantage. Due to the possibility of

defining a closed form expression for piecewise constant home advantage with distance,

using many data from multiple leagues it was found that increasing distance seems to in-

crease home advantage considerably. This increase begins to tail off at extreme distances.

Distance has been hypothesised as a covariate of home advantage in literature (Pollard,

1986; Brown et al., 2002; Pollard, 2006), and there seems to be some evidence to indicate

that there is a relationship between them (Brown et al., 2002; Clarke and Norman, 1995).

However, previous studies are usually limited to single leagues or countries. As such, this

is a new and innovative result from this piece of research.

Other covariates were tested including match attendance, referee experience and pitch

dimensions. There was some evidence to suggest that increasing match attendance de-

creases home advantage, though a consistently performing model wasn’t found. This

could be better modelled using home and away attendance figures if they were made

available. No significant relationship between home advantage and referee experience

was found.

A significant negative trend was found between pitch length and home advantage, whilst

no such relationship was found with pitch width. This might suggest that a reduction in

the play area for the away team from that which they are more familiar makes their usual
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playing style difficult. The most statistically significant combination of covariates tested

for home advantage was found to be distance and pitch length. This could be used in a

prediction model to formulate a betting strategy that would give an edge over the market.

Over or under dispersion was tested for, to identify whether another distribution could

more effectively fit goal counts, and in any way better model the differing distributions

between home and away goals. Under testing, a negative binomial model, which could

account for increased variability of goal counts, did not more effectively model the data.

Threshold mixture models, based around the idea of censoring, were used to explore

methods of creating a better fitting model for the body and upper tails. Various com-

binations of count distributions were tested. However, a Poisson-Poisson mixture model

proved to be the best fit for the data. The parameterisation of this model suggested that

the right tail of the distribution was under dispersed. Even though the fit was better,

the predictive power was found to be lower than the model laid out in Dixon and Coles

(1997). This could be due to the limited information describing extreme value goal counts

in the data. Due to their nature, transition mixture models suffer from an inorganic step

change between the two distributions. A smooth change is desirable to describe the prob-

ability of events more naturally.

Changepoints, where an abrupt change in structure divides data into two (or more)

homogeneous sections, occur in many aspects of statistics other than threshold mixture

models, such as time series. The abruptness of such a change may not be instantaneous,

and as such a method is required to model smooth changes. Such a method was defined

as smoothly distribution transitions (SDTs), which consider the reduction in information

distant from the change, using a weighting function. These developments are entirely

original with respect to changepoints. This method can also be used to predict the final

value of a smooth change outside of the sample bounds, where the change will end and

where the change started, as well as the centre of the change. It may also regress to the

standard changepoint model, and as such can be seen as an extension or evolution into

new territory for changepoints.

The final research chapter discussed the concept of changes in performance in golf. These

changes could be due to rule changes or technological advancement. However, it was

found that, although a perceived decrease in consistency was seen, this reduction may

be due to strength in depth. Even so, this is not conclusive as the reduction in standard

deviation of round scores observed between 1975 and 2010 for the European Tour could

support a counter argument that as players become more consistent and hit the ball

further, the courses are made more difficult by increasing their length.
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Appendix A

Derivations for Clarke and Norman

(1995) Model

Clarke and Norman (1995) provided derivations for the overall home advantage, H, in-

dividual home advantage, hi, and the team ability ui as given in equation (3.1):

By considering the sum of the squared errors subject to the condition that
∑N

i=1 ui = 0,

and by use of the usual Lagrange multiplier expression, equation (A.1) must be minimised:

S =
N∑
i=1

N∑
j=1(j 6=i)

(wij − ui + uj − hi)2 + λ
N∑
i=1

ui. (A.1)

Equations (A.2) and (A.3) can now be derived by partial differentiation with respect to

uI , I = 1, . . . , N and λ:

N∑
j=1(j 6=i)

2(wIj − uI + uj − hI)(−1) +
N∑

i=1(j 6=i)

2(wiI − ui + uI − hi) + λ = 0, I = 1, . . . , N,

(A.2)
N∑

j=1(j 6=I)

2(wIj − uI + uj − hI)(−1) = 0, I = 1, . . . , N. (A.3)

Expanding equation (A.3) gives

N∑
j=1(j 6=I)

wij = (N − 1)uI + (N − 1)hI −
N∑

j=1(j 6=I)

uj,

i.e.

HGDI = NuI + (N − 1)hI +
N∑

j=1(j 6=I)

uj,

= NuI + (N − 1)hI . (A.4)
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Summing equation (A.4) over I = 1, . . . , N gives

N∑
I=1

HGDI = N

N∑
I=1

uI + (N − 1)
N∑
I=1

hI ,

HGD = (N − 1)H. (A.5)

where H =
∑N

i=1 hi is the total home advantage of all individual teams.

Substituting expression (A.3) into equation (A.2) removes the first summation term, then

−λ/2 =
N∑

i=1(i 6=I)

(wiI − ui + uI − hi)

=
N∑

i=1(i 6=I)

wiI −
N∑

i=1(i 6=I)

ui −
N∑

i=1(i 6=I)

hi + (N − 1)uI

= −AGDI + uI −H + hI + (N − 1)uI

= −AGDI −H + hI +NuI , (A.6)

so

N∑
I=1

−λ/2 =
N∑
I=1

−AGDI −NH +
N∑
I=1

hI +N
N∑
I=1

uI ,

−Nλ/2 =
N∑
I=1

HGDI − (N − 1)H + 0

= 0, (A.7)

from equation (A.3). This gives the result that λ = 0, which can be substituted into

equation (A.6) as shown by

AGDI = −H + hI +NuI . (A.8)

Subtracting equation (A.8) from equation (A.4) gives

HGDI − AGDI = NuI + (N − 1)hI +H − hI −NuI
= H + (N − 2)hI . (A.9)



BIBLIOGRAPHY 167

Finally, H can be calculated from equation (A.5), hi from equation (A.9) and ui from

equation (A.4).



Appendix B

Home Advantage and Other

Parameter Estimates

Team
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Arsenal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Aston Villa 0.73 0.59 0.50 0.67 0.53 0.63 0.69 0.98 0.81 0.62 0.67 0.51 0.67 0.58 0.45 0.43

Birmingham 0.49 0.60 0.46 0.42 0.64 0.46 0.53

Blackburn 0.70 0.61 0.71 0.37 0.76 0.84 0.69 0.61 0.51 0.65 0.65

Blackpool 0.80

Bolton 0.57 0.48 0.68 0.56 0.73 0.76 0.50 0.60 0.52 0.72 0.64

Bournemouth 0.71

Bradford 0.49

Burnley 0.52 0.40

Cardiff 0.48

Charlton 0.81 0.49 0.54 0.71 0.50 0.62 0.55

Chelsea 1.09 0.85 0.79 0.92 0.81 1.05 1.00 0.87 0.98 1.23 0.94 0.87 1.04 1.03 1.02 0.92

Coventry 0.59

Crystal Palace 0.48 0.49 0.67 0.60

Derby 0.60 0.42 0.28

Everton 0.73 0.58 0.56 0.63 0.52 0.51 0.83 0.74 0.81 0.73 0.70 0.65 0.77 0.89 0.69 0.93

Fulham 0.46 0.49 0.73 0.61 0.73 0.62 0.53 0.56 0.47 0.69 0.65 0.70 0.62

Hull 0.58 0.43 0.57 0.47

Ipswich 0.90 0.53

Leeds 1.02 0.68 0.70 0.57

Leicester 0.63 0.39 0.69 0.66 1.04

Liverpool 1.13 0.84 0.72 0.76 0.59 0.83 0.90 0.90 1.12 0.73 0.81 0.62 1.00 1.51 0.74 0.98

Man City 0.67 0.56 0.77 0.54 0.65 0.46 0.62 0.85 0.88 0.83 1.21 0.91 1.50 1.18 1.10

Man United 1.24 1.10 0.87 0.86 0.66 1.06 1.31 1.07 0.98 1.02 1.09 1.16 1.19 0.95 0.88 0.75

Middlesboro 0.57

Middlesbrough 0.70 0.44 0.62 0.62 0.73 0.71 0.59 0.42

Newcastle 0.70 0.96 0.75 0.71 0.55 0.70 0.61 0.63 0.60 0.79 0.76 0.64 0.65 0.58 0.69

Norwich 0.51 0.70 0.58 0.42 0.61

Portsmouth 0.66 0.50 0.56 0.72 0.65 0.57 0.42

QPR 0.58 0.43 0.62

Reading 0.84 0.57 0.62

Sheffield United 0.52

Southampton 0.64 0.59 0.50 0.61 0.54 0.69 0.80 0.76 0.91

Stoke 0.57 0.41 0.63 0.48 0.47 0.67 0.69 0.64

Sunderland 0.73 0.37 0.25 0.40 0.50 0.50 0.58 0.64 0.60 0.57 0.61 0.44 0.75

Swansea 0.59 0.67 0.82 0.66 0.65

Tottenham 0.77 0.62 0.61 0.65 0.54 0.78 0.92 0.92 0.66 0.80 0.77 0.88 0.91 0.83 0.83 1.06

Watford 0.47 0.62

West Brom 0.35 0.43 0.47 0.54 0.79 0.60 0.74 0.65 0.54 0.53

West Ham 0.72 0.62 0.50 0.78 0.57 0.57 0.62 0.58 0.61 0.64 0.59 0.63 1.02

Wigan 0.68 0.60 0.47 0.50 0.46 0.57 0.57 0.67

Wolves 0.55 0.39 0.65 0.56

Table B.1: Estimates of α parameters for the seasons 2000/2001 - 2015/2016, under the model
defined in equation (4.4) (optimising over indendence function alongside other parameters).
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Team
Year

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Arsenal 1.04 1.33 1.68 0.87 1.43 0.97 1.02 1.02 1.26 1.35 1.30 1.59 1.17 1.21 1.19 1.08

Aston Villa 1.16 1.73 1.77 1.44 2.01 1.68 1.17 1.69 1.60 1.24 1.72 1.69 2.14 1.73 1.81 2.19

Birmingham 1.86 1.56 1.76 1.51 1.99 1.48 1.69

Blackburn 1.88 1.66 1.86 1.62 1.30 1.56 1.55 1.99 1.75 1.74 2.47

Blackpool 2.32

Bolton 2.26 1.93 1.81 1.68 1.27 1.49 1.72 1.75 2.12 1.66 2.45

Bournemouth 1.97

Bradford 1.86

Burnley 2.58 1.67

Cardiff 2.10

Charlton 1.54 1.76 2.14 1.63 2.23 1.68 1.70

Chelsea 1.24 1.44 1.46 0.97 0.59 0.70 0.70 0.84 0.81 1.07 0.99 1.50 1.24 0.79 1.06 1.58

Coventry 1.68

Crystal Palace 2.38 1.39 1.63 1.49

Derby 1.57 2.23 2.78

Everton 1.59 2.08 1.87 1.85 1.74 1.50 1.04 1.07 1.23 1.58 1.33 1.25 1.26 1.13 1.61 1.65

Fulham 1.60 1.90 1.53 2.32 1.79 1.71 1.91 1.12 1.46 1.28 1.61 1.86 2.47

Hull 2.08 2.37 1.52 1.61

Ipswich 1.14 2.32

Leeds 1.18 1.36 2.20 2.54

Leicester 1.37 2.30 2.12 1.77 1.08

Liverpool 1.08 1.09 1.59 1.21 1.58 0.78 0.78 0.93 0.93 1.14 1.29 1.28 1.38 1.54 1.55 1.49

Man City 1.74 2.06 1.78 1.50 1.47 1.24 1.70 1.66 1.48 0.98 0.95 1.08 1.11 1.28 1.25

Man United 0.86 1.69 1.35 1.14 1.02 1.07 0.81 0.72 0.80 0.92 1.13 1.07 1.37 1.25 1.20 1.03

Middlesboro 1.68

Middlesbrough 1.19 1.67 1.68 1.78 1.79 1.40 1.69 1.85

Newcastle 1.35 1.93 1.89 1.31 2.21 1.29 1.34 2.09 1.95 1.69 1.63 2.10 1.71 2.02 1.91

Norwich 2.96 2.11 1.80 1.75 1.95

Portsmouth 1.74 2.25 1.90 1.20 1.29 1.88 2.08

QPR 2.05 1.84 2.33

Reading 1.36 2.11 2.27

Sheffield United 1.55

Southampton 1.28 1.95 1.75 1.47 2.56 1.87 1.35 1.07 1.22

Stoke 1.79 1.50 1.41 1.65 1.38 1.48 1.46 1.60

Sunderland 1.10 1.80 2.42 2.08 1.86 1.76 1.77 1.64 1.46 1.66 1.73 1.66 1.83

Swansea 1.62 1.61 1.57 1.58 1.52

Tottenham 1.47 1.91 2.38 1.84 1.57 1.18 1.57 2.00 1.48 1.33 1.37 1.33 1.44 1.50 1.72 1.06

Watford 1.66 1.46

West Brom 2.44 2.34 1.75 2.19 2.10 1.63 1.78 1.70 1.63 1.39

West Ham 1.34 2.05 2.25 1.70 1.67 1.59 1.48 2.11 2.06 1.65 1.43 1.50 1.53

Wigan 1.61 1.68 1.61 1.46 2.48 1.77 1.95 2.25

Wolves 2.48 1.75 1.91 2.60

Table B.2: Estimates of β parameters for the seasons 2000/2001 - 2015/2016, under the model
defined in equation (4.4) (optimising over indendence function alongside other parameters).

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

γ̂ 1.45 1.25 1.32 1.30 1.41 1.42 1.46 1.38 1.30 1.58 1.39 1.31 1.26 1.31 1.35 1.23

Table B.3: Estimates of γ parameters for the seasons 2000/2001 - 2015/2016 under the model
defined in equation (4.4).
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Year ρ̂ Deviance p-value

2000 -0.05 0.51 0.48

2001 -0.11 2.41 0.12

2002 0.11 2.12 0.15

2003 -0.14 4.22 0.04

2004 -0.07 0.97 0.32

2005 0.04 0.26 0.61

2006 0.00 0.00 0.98

2007 -0.07 1.00 0.32

2008 -0.12 2.18 0.14

2009 -0.08 1.14 0.29

2010 -0.13 3.27 0.07

2011 -0.13 3.26 0.07

2012 -0.11 2.71 0.10

2013 0.14 3.82 0.05

2014 0.06 0.70 0.40

2015 -0.06 0.84 0.36

Table B.4: Estimates of ρ parameters for the seasons 2000/2001 - 2015/2016, along with the
associated deviance and p-values from a hypothesis test between a null hypothesis of ρ = 0 and
an alternative hypothesis of ρ 6= 0 , under the model defined in equation (4.4).

Team γ̂i

Arsenal 1.37

Aston Villa 1.16

Barnsley 2.09

Birmingham City 1.46

Blackburn Rovers 1.42

Blackpool 1.20

Bolton Wanderers 1.25

Bradford City 2.10

Burnley 1.48

Cardiff City 1.66

Charlton Athletic 1.37

Chelsea 1.41

Coventry City 1.39

Crystal Palace 0.96

Derby County 1.38

Everton 1.43

Fulham 1.58

Hull City 1.18

Ipswich Town 1.09

Leeds United 1.14

Leicester City 1.09

Liverpool 1.38

Manchester City 1.38

Manchester United 1.27

Middlesbrough 1.52

Newcastle United 1.49

Norwich City 1.52

Nottingham Forest 1.15

Portsmouth 1.68

Queens Park Rangers 1.28

Reading 1.10

Sheffield United 3.02

Sheffield Wednesday 1.23

Southampton 1.51

Stoke City 1.81

Sunderland 1.26

Swansea City 1.55

Tottenham Hotspur 1.44

Watford 2.06

West Bromwich Albion 1.33

West Ham United 1.66

Wigan Athletic 1.15

Wimbledon 1.26

Wolverhampton Wanderers 1.20

Table B.5: Team home advantage parameter estimates for teams present in the Premiership
between 1995/1996 - 2013/2014



BIBLIOGRAPHY 171

Team
Year

σ2

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Arsenal 1.60 1.38 1.72 1.37 1.35 2.50 1.14 1.24 1.21 1.59 2.42 2.16 1.00 0.84 1.38 0.85 1.11 1.89 1.13 0.48

Aston Villa 1.61 1.36 1.13 1.81 0.99 1.43 0.91 1.46 1.00 1.35 0.91 0.86 0.92 1.01 1.25 1.18 1.16 0.96 1.29 0.26

Barnsley - - 2.10 - - - - - - - - - - - - - - - - NA

Birmingham City - - - - - - - 1.57 1.51 1.53 2.10 - 1.87 - 1.01 1.06 - - - 0.39

Blackburn Rovers 2.60 1.98 2.34 1.25 - - 1.50 0.86 0.96 1.53 1.56 1.47 1.07 1.22 2.14 0.92 1.17 - - 0.54

Blackpool - - - - - - - - - - - - - - - 1.20 - - - NA

Bolton Wanderers 0.70 - 1.57 - - - 0.83 1.92 1.00 1.08 1.45 1.24 1.78 1.06 1.62 1.91 1.01 - - 0.41

Bradford City - - - - 2.20 1.98 - - - - - - - - - - - - - 0.15

Burnley - - - - - - - - - - - - - - 1.48 - - - - NA

Cardiff City - - - - - - - - - - - - - - - - - - 1.66 NA

Charlton Athletic - - - 0.95 - 1.61 1.52 1.37 1.31 2.01 1.15 1.26 - - - - - - - 0.32

Chelsea 1.89 1.32 1.09 1.03 1.96 1.83 1.85 1.52 1.03 1.00 1.90 1.37 1.25 0.95 1.94 1.30 1.70 1.20 1.54 0.36

Coventry City 1.00 1.01 1.30 2.00 4.17 0.65 - - - - - - - - - - - - - 1.30

Crystal Palace - - 0.68 - - - - - - 1.09 - - - - - - - - 1.20 0.27

Derby County - 1.24 1.74 1.23 0.99 1.63 1.54 - - - - - 1.51 - - - - - - 0.27

Everton 1.21 1.19 1.55 1.11 1.57 1.83 1.37 1.41 1.49 1.04 1.82 1.74 1.63 1.29 1.40 1.56 1.26 1.49 1.65 0.23

Fulham - - - - - - 1.40 1.71 1.25 1.31 1.83 0.89 1.36 2.53 2.23 1.58 3.00 1.27 1.50 0.59

Hull City - - - - - - - - - - - - - 0.86 1.83 - - - 1.12 0.50

Ipswich Town - - - - - 1.19 0.95 - - - - - - - - - - - - 0.17

Leeds United 1.09 1.16 1.19 1.07 0.99 1.29 1.40 0.75 1.68 - - - - - - - - - - 0.26

Leicester City - 0.91 0.71 1.67 1.28 2.57 1.01 - 0.66 - - - - - - - - - - 0.67

Liverpool 1.94 1.60 1.61 1.83 1.22 1.29 0.97 0.98 1.11 1.54 1.28 2.18 1.78 1.14 2.39 1.68 1.05 0.87 1.10 0.43

Manchester City 1.76 - - - - 0.94 - 1.47 1.30 0.88 1.53 0.53 1.66 2.23 1.27 1.31 1.46 1.63 1.61 0.42

Manchester United 0.97 1.00 1.35 1.28 1.55 1.63 0.84 1.32 1.39 1.21 1.06 1.24 1.43 1.72 1.53 1.68 1.41 1.10 0.82 0.27

Middlesbrough 3.37 1.99 - 1.09 1.01 0.69 1.93 3.04 1.31 1.11 1.41 2.35 1.68 1.56 - - - - - 0.80

Newcastle United 1.36 2.82 1.70 1.18 1.98 1.44 1.17 1.34 1.74 1.17 1.48 1.55 1.26 1.51 - 2.75 1.08 1.13 1.16 0.51

Norwich City - - - - - - - - - 2.00 - - - - - - 1.17 1.58 1.55 0.34

Nottingham Forest 1.40 0.94 - 1.05 - - - - - - - - - - - - - - - 0.24

Portsmouth - - - - - - - - 2.92 2.13 0.86 1.64 1.00 2.13 2.39 - - - - 0.75

Queens Park Rangers 1.95 - - - - - - - - - - - - - - - 1.28 0.77 - 0.59

Reading - - - - - - - - - - - 1.26 0.86 - - - - 1.18 - 0.21

Sheffield United - - - - - - - - - - - 3.03 - - - - - - - NA

Sheffield Wednesday 1.68 1.01 1.39 0.96 1.24 - - - - - - - - - - - - - - 0.29

Southampton 1.64 1.78 1.28 3.63 1.36 2.08 1.00 1.40 1.20 1.96 - - - - - - - 1.13 1.45 0.70

Stoke City - - - - - - - - - - - - - 1.37 2.38 2.06 2.29 1.63 1.52 0.42

Sunderland - 1.34 - - 0.97 1.10 1.64 1.09 - - 0.85 - 1.77 1.61 2.03 1.25 1.37 0.95 1.04 0.36

Swansea City - - - - - - - - - - - - - - - - 1.59 1.48 1.58 0.06

Tottenham Hotspur 1.07 0.76 1.10 1.47 2.36 1.95 1.90 1.44 2.36 2.96 1.42 1.48 2.30 0.88 1.48 1.21 1.44 0.78 1.20 0.60

Watford - - - - 2.21 - - - - - - 1.90 - - - - - - - 0.22

West Bromwich Albion - - - - - - - 1.43 - 1.05 2.09 - - 2.58 - 1.16 0.88 1.52 1.26 0.57

West Ham United 1.39 2.24 2.51 2.26 1.61 1.14 2.00 1.00 - - 1.37 2.18 1.34 1.21 1.76 1.27 - 3.09 1.66 0.58

Wigan Athletic - - - - - - - - - - 1.14 0.95 1.63 1.00 1.06 1.22 1.10 1.24 - 0.21

Wimbledon 0.96 1.33 1.11 1.22 1.86 - - - - - - - - - - - - - - 0.34

Wolverhampton Wanderers - - - - - - - - 1.52 - - - - - 0.69 1.88 0.90 - - 0.55

Table B.6: Seasonally varying, team dependent home advantage MLEs, γ̂i, for each season
between 1995/1996 and 2013/2014.



Appendix C

ATASS Dataset Description

League Start Year End Year

Australian A-League 2001 2012

Australian Bundesliga 2001 2012

Belgian Pro League 2001 2012

Brazilian Compeonato Serie A 2002 2012

Brazilian Serie B 2007 2012

English Premier League 2006 2012

English Championship 2001 2012

English League 1 2001 2012

English League 2 2001 2012

English Conference 2001 2012

French Ligue 1 2001 2012

French Ligue 2 2001 2012

German Bundesliga 2001 2012

German 2. Bundesliga 2001 2012

German 3. Liga 2008 2012

German 2001 2012

German Regionalliga Nord 2008 2012

German Regionalliga South 2008 2012

German Regionalliga West 2008 2012

Irish Premiership 2004 2012

Irish Cup 2001 2012

Italian Serie A 2001 2012

Mexican Liga MX 2001 2012

Scottish Premiership 2001 2012

Scottish Championship 2001 2012

Scottish League 1 2001 2012

Scottish League 2 2001 2012

Spanish La Liga 2001 2012

Spanish Copa del Rey 2001 2012

Swedish Allsvenskan 2002 2012

Swedish Superetan 2009 2012

Table C.1: Usable leagues from ATASS data set, with first season start year and last season
end year. Note some seasons missing or incomplete.
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Appendix D

Distance as a Covariate of Home

Advantage

Figure D.1: Ligue 1 (France), 2003/2004 - 2011/2012: Penalised spline smooth curves describing
the relationship of home advantage with distance, with high (Ψ = 10) and low (Ψ = 1) penalties,
compared to a piecewise constant regression.
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Figure D.2: Serie A (Italy), 2004/2005 - 2011/2012: Penalised spline smooth curves describing
the relationship of home advantage with distance, with high (Ψ = 10) and low (Ψ = 1) penalties,
compared to a piecewise constant regression.
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a0 a1 a2 a3

Log-Linear 3.11× 10−1 1.08× 10−4 NA NA

Log-Quadratic 2.40× 10−1 4.68× 10−4 -3.61× 10−7 NA

Log-Cubic 2.39× 10−1 4.68× 10−4 -3.82× 10−7 3.03× 10−11

Table D.1: Ligue 1 (France) 2003/2004- 2011/2012: Parameter values for first, second and third
order polynomial regressions relating a regressor of distance between teams to home advantage.

a0 a1 a2 a3

Log-Linear 2.91× 10−1 8.02× 10−5 NA NA

Log-Quadratic 2.74× 10−1 1.80× 10−4 -9.75× 10−8 NA

Log-Cubic 2.93× 10−1 -3.26× 10−5 4.33× 10−7 -3.52× 10−10

Table D.2: Serie A (Italy) 2004/2005 - 2011/2012: Parameter values for first, second and third
order polynomial regressions relating a regressor of distance between teams to home advantage.

a0 a1 a2 a3

Log-Linear 2.94× 10−1 1.05× 10−4 NA NA

Log-Quadratic 2.67× 10−1 3.00× 10−4 -2.18× 10−7 NA

Log-Cubic 2.68× 10−1 2.36× 10−4 -2.50× 10−8 -1.41× 10−10

Table D.3: Combined data from Premier League (England), Ligue 1 (France) and Serie A
(Italy): Parameter values for first, second and third order polynomial regressions relating a
regressor of distance between teams to home advantage.
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Figure D.3: Ligue 1 (France), 2003/2004 - 2011/2012: Comparison of first to third order poly-
nomial regression models for distance as a regressor for home advantage.
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Figure D.4: Serie A (Italy), 2004/2005 - 2011/2012: Comparison of first to third order polyno-
mial regression models for distance as a regressor for home advantage.
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Figure D.5: Combined data from Premier League (England), Ligue 1 (France) and Serie A
(Italy): Comparison of first to third order polynomial regression models for distance as a re-
gressor for home advantage.



Appendix E

Relative Attendance as a Covariate

of Home Advantage

Figure E.1: Championship, 2004/2005 - 2013/2014: Penalised spline smooth curves describing
the relationship of home advantage with relative attendance, with high (Ψ = 10) and low
(Ψ = 1) penalties, compared to a piecewise constant regression.
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Figure E.2: League 1, 2004/2005 - 2013/2014:Penalised spline smooth curves describing the
relationship of home advantage with relative attendance, with high (Ψ = 10) and low (Ψ = 1)
penalties, compared to a piecewise constant regression
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Figure E.3: League 2, 2004/2005 - 2013/2014: Penalised spline smooth curves describing the
relationship of home advantage with relative attendance, with high (Ψ = 10) and low (Ψ = 1)
penalties, compared to a piecewise constant regression
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a0 a1 a2 a3

Log-Linear 2.57× 10−1 1.89× 10−3 NA NA

Log-Quadratic 2.99× 10−1 -5.82× 10−2 1.59× 10−2 NA

Log-Cubic 1.29× 10−1 3.01× 10−1 -1.82× 10−1 2.93× 10−2

Table E.1: Championship 2004/2005 - 2013/2014: Parameter values for first, second and third
order polynomial regressions relating a regressor of Aij/Aji to home advantage.

a0 a1 a2 a3

Log-Linear 2.61× 10−1 -3.60× 10−2 NA NA

Log-Quadratic 2.83× 10−1 -6.43× 10−2 6.02× 10−3 NA

Log-Cubic 3.35× 10−1 -1.62× 10−1 4.95× 10−2 -4.78× 10−3

Table E.2: League 2 2004/2005 - 2013/2014: Parameter values for first, second and third order
polynomial regressions relating a regressor of Aij/Aji to home advantage.

a0 a1 a2 a3

Log-Linear 2.66× 10−1 -2.53× 10−2 NA NA

Log-Quadratic 3.06× 10−1 -7.53× 10−2 1.02× 10−2 NA

Log-Cubic 3.06× 10−1 -7.53× 10−2 1.02× 10−2 3.01× 10−8

Table E.3: League 1 2004/2005 - 2031/2014: Parameter values for first, second and third order
polynomial regressions relating a regressor of Aij/Aji to home advantage.
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Figure E.4: Championship, 2004/2005 - 2013/2014: Comparison of first to third order polyno-
mial regression models for Ai,j/Aj,i as a regressor for home advantage.
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Figure E.5: League 1, 2004/2005 - 2013/2014: Comparison of first to third order polynomial
regression models for Ai,j/Aj,i as a regressor for home advantage.
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Figure E.6: League 2, 2004/2005 - 2013/2014: Comparison of first to third order polynomial
regression models for Ai,j/Aj,i as a regressor for home advantage.



Appendix F

Referee Experience as a Covariate of

Home Advantage

Figure F.1: Championship, 2004/2005 - 2013/2014: Penalised spline smooth curves describing
the relationship of home advantage with referee experience, with high (Ψ = 10) and low (Ψ = 1)
penalties, compared to a piecewise constant regression.
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Figure F.2: League 1, 2004/2005 - 2013/2014:Penalised spline smooth curves describing the
relationship of home advantage with referee experience, with high (Ψ = 10) and low (Ψ = 1)
penalties, compared to a piecewise constant regression
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Figure F.3: League 2, 2004/2005 - 2013/2014: Penalised spline smooth curves describing the
relationship of home advantage with referee experience, with high (Ψ = 10) and low (Ψ = 1)
penalties, compared to a piecewise constant regression
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a0 a1 a2 a3

Log-Linear 2.93× 10−1 −3.25× 10−3 NA NA

Log-Quadratic 3.14× 10−1 −9.98× 10−3 3.64× 10−4 NA

Log-Cubic 3.45× 10−1 2.52× 10−2 1.99× 10−3 −4.32× 10−5

Table F.1: Championship 2000/2001 - 2011/2012: Parameter values for first, second and third
order polynomial regressions relating a regressor of referee experience to home advantage.

a0 a1 a2 a3

Log-Linear 2.86× 10−1 −3.48× 10−3 NA NA

Log-Quadratic 2.97× 10−1 −7.52× 10−3 2.01× 10−4 NA

Log-Cubic 2.87× 10−1 −7.80× 10−4 −5.30× 10−4 1.76× 10−5

Table F.2: League 2 2000/2001 - 2011/2012: Parameter values for first, second and third order
polynomial regressions relating a regressor of referee experience to home advantage.

a0 a1 a2 a3

Log-Linear 2.88× 10−1 −3.80× 10−3 NA NA

Log-Quadratic 2.96× 10−1 −7.00× 10−3 1.50× 10−4 NA

Log-Cubic 2.84× 10−1 2.41× 10−3 −9.10× 10−4 2.43× 10−5

Table F.3: League 1 2000/2001 - 2011/2012: Parameter values for first, second and third order
polynomial regressions relating a regressor of referee experience to home advantage.
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Figure F.4: Championship, 2004/2005 - 2013/2014: Comparison of first to third order polyno-
mial regression models for referee experience as a regressor for home advantage.
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Figure F.5: League 1, 2004/2005 - 2013/2014: Comparison of first to third order polynomial
regression models for referee experience as a regressor for home advantage.
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Figure F.6: League 2, 2004/2005 - 2013/2014: Comparison of first to third order polynomial
regression models for referee experience as a regressor for home advantage.



Appendix G

Autotuning

G.1 Auto-tuning the Smoothing Parameter

Testing using this auto-tuning routine has shown it to be ineffectively slow. Therefore it

is included only to show the methodology under testing and for completeness.

The Gaussian weighting function may be represented as in equation (G.1), where h > 0

represents the smoothing parameter.

φh (t, c) = 1− Φ

(
t− c
h

)
. (G.1)

Selection of h may be achieved using cross validation techniques. The degenerate case

of k-fold cross validation is referred to as ‘leave one out’ cross validation. This process

removes one data point from the data set and maximises the likelihood over the remain-

ing data. Some measure of fit of the resulting estimated model may then be carried out

on the data point which has been removed to assertain the predictive capabilities of the

model. The measure of fit which has been chosen is the mean square error (MSE).

The derivation of the expected value for Xt under the model is given by

E (Xt) =

∫ ∞
0

xtf (xt,λ1,λ2, c, h) dxt

=

∫ ∞
0

xt [φh (t, c) f (xt,λ1) + (1− φh (t, c)) f (xt,λ2)] dxt

= gt(λ, c, h), (G.2)

where λ = (λ1,λ2) are the parameters of the respective distributions.

For a given h, the likelihood L(−t) (c,λ) (obtained by leaving out the data point at

index position t from the likelihood given by equation (7.5)) is maxmised over c and λ

with MLEs equal to ĉ(−t) and λ̂
(−t)

respectively. The estimated expected value at index
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position t may then be calculated using the MLEs as gt

(
λ̂

(−t)
, ĉ(−t), h

)
. This process

is repeated for t = 1, . . . , n, allowing the calculation of MSE of the estimated expected

value for each value of t. The optimal value of h may then be found by minimising the

sum of the MSEs, as given by

arg min
h

n∑
t=1

[
xt − gt

(
λ̂

(−t)
, ĉ(−t), h

)]2

= hopt. (G.3)

G.2 Implications of Zero Bound on Smoothing Parameter on

Model Comparison

When considering a two-sided hypothesis

H0 : θ = θ0 versus H1 : θ 6= θ0

where θ0 is the true value of parameter θ, the p-value is defined as the probability, under

the assumption of the null hypothesis, of obtaining a result equal to or more extreme

than that which was actually observed.

Considering the distribution of parameter estimator θ̂ to be asymptotically normally

distributed about the true value, θ0, with standard deviation σ0, a Pearson’s chi-squared

test (asymptotically equivalent to a likelihood ratio test) may be employed to evaluate

how likely it is that any observed difference between θ̂ and the sample estimate θ̂obs oc-

cured due to chance. The p-value can be calculated as

p = P

( θ̂ − θ0

σ0

)2

>

(
θ̂obs − θ0

σ0

)2
 = 2

{
1− Φ

(∣∣∣∣∣ θ̂obs − θ0

σ0

∣∣∣∣∣
)}

(G.4)

where Φ() is a standard normal cumulative distribution function.

If the estimator θ̂ has a lower bound of zero the restricted MLE is given by θ̂+ =

max
{
θ̂, 0
}

. As a result, θ̂+ coincides with θ̂ if θ̂ ≥ 0. However, a point mass at zero

replaces the left tail of the distribution of θ̂ below zero. The size of the point mass on

zero can be calculated as

q0 = P (θ̂+ = 0) = P (θ̂ ≤ 0) = Φ(−θ0/σ0).

The p-value relating to the restricted maximum likelihood estimate of an observed value,

θ̂+
obs may then be given by
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p = P

( θ̂+ − θ0

σ0

)2

>

(
θ̂+
obs − θ0

σ0

)2


= P

(
θ̂+ − θ0

σ0

< −

∣∣∣∣∣ θ̂+
obs − θ0

σ0

∣∣∣∣∣
)

+ P

(
θ̂+ − θ0

σ0

>

∣∣∣∣∣ θ̂+
obs − θ0

σ0

∣∣∣∣∣
)

= max

{
0,Φ

(
−

∣∣∣∣∣ θ̂+
obs − θ0

σ0

∣∣∣∣∣
)
− Φ

(
− θ0

σ0

)}
+ 1− Φ

(∣∣∣∣∣ θ̂+
obs − θ0

σ0

∣∣∣∣∣
)

If θ0 is the bound of the parameter space, i.e. θ0 = 0, the distribution of possible esti-

mates is altered to reflect the implications of the bound as given above and the cumulative

distribution function (cdf) of the sampling distribution for θ̂+ takes the form shown in

Figure G.1 below.

θ

Figure G.1: Cumulative distribution function (cdf) of the sampling distribution relating to θ̂+.

In the case of the null hypothesis, where θ0 = 0, the zero bounded p-value, pb becomes

pb = 1− Φ

(
− θ̂

+
obs

σ0

)
(G.5)

Now the significance level test has rejection region θ̂+
obs > 0 and its actual error rate

is smaller than that experienced when using the standard test as given by equation

(G.4). Comparing equations describing the p-values of the bounded and unbounded case

(equations (G.4) and (G.5) respectively) it is clear that a 0.05 significance level (p = 0.05)

in the unbounded case becomes a 0.025 significance level (pb = 0.025) in the bounded

case.



Appendix H

Evolving Technologies in Golf

H.1 Introduction

The effect of technology on sporting performance is a wide and varied field of research.

Many sports use some level of technology that impacts upon output. Some sports display

the effect more than others, cycling for example uses a relatively high level of technology

and engineering that can be manipulated to decrease track times (Bassett et al., 1999;

Lukes, 2006; Haake, 2009). However, technology has only limited impact on some sports.

Running categories feel little effect from technological input, the greatest of which was

the introduction of starting blocks in 1948 (Haake, 2009).

Sports which have a greater public interest and (in most cases) greater attraction for

investment, supply attractive research opportunities to the academic and industry sec-

tors. Golf is one such sport, which utilises a host of patented technological devices (Yes!

, 2012). The introduction of new materials and technologies has allowed all aspects of

the game to be affected in some way, especially in ball and putter design.

The structure of professional golf tournaments incites a ‘winner takes all’ attitude to

the sport. This commands a substantial motivation for players to perform to their best

ability (Watkins, 2008). Technology can be thought of as an aid to the physical skill of a

golfer. The margin of difference between the top and the bottom players that make the

cut is generally relatively small. For example, the Open Championship 2012 at Royal

Lytham and St. Annes resulted in a difference in total score of just 25, between Ernie Els

at 273 and Andrés Romero at 298, a difference of just 8%. Els received £900,000 at the

end of the four day stint, compared to £10,200 for Romero (GOLF Today, 2012). Money

is the driving force behind the game (at a professional level), and the scale of investment

into new technology that may increase player performance, even by a small amount, is

increasingly large.
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H.2 Literature Review

H.2.1 Putters

Putting accounts for approximately 40% of the strokes played in a game of professional

golf and therefore, 40% of points (Brouillette, 2010). As putting performance relies on

a single club, it is obvious that any technogical aid that can be brought to a player’s

putting stroke would be greatly beneficial. Putter design has attracted a considerable

amount of attention from manufacturers over the last decade after the introduction of

the Odyssey 2-Ball putter in 2001, which achieved a remarkable market share in the US

of nearly 50% by 2003 (Callaway Golf Company, 2003). This led the way for a trend to

more creative putter designs, giving professional golfers the possibility of achieving an

advantage over their opponents.

Putter head design focusses on the alignment and weighting, varying the ‘sweet spot’

on the putter face (Gwyn et al., 1996). Material choice and cavity inserts can vary the

‘feel’ of the putter, distinctly changing the vibrations which travel up the shaft. The

design of a putter head mainly focusses on the positioning and size of the sweet spot.

Nilsson and Karlsen (2006) designed an experiment to test the effect of miss hits using

a trio of putters. It was found that a wing shaped putter performed best in terms of

distance and direction on miss hits, over blade and mallet types. This is shown in Figure

H.1, which shows both the roll distance and impact point.

Figure H.1: (a) The relationship between roll distance (0% represents roll distance at impact
point 0) and horizontal impact point deviation for three different putters. (b) The relationship
between relative medio-lateral deviation as a percentage of roll distance after ball impact and
horizontal impact point deviation for three different putters. Note, on both plots the sweet spot
is identified as impact point = 0 and each data point represents the mean of 10 ball impacts
(Nilsson and Karlsen, 2006).

Putter length has also been under investigation, although it is unclear to what extent,

if any, the effect of increasing the shaft size has: Gwyn and Patch (1993) found little

difference between performance whilst using long and standard putters, however, Pelz
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(1990) showed long putters to be advantageous in putts under 0.9 m and worse on putts

longer than 6.1 m.

Tierney and Coop (1998) used data from senior PGA Tour players to design and manu-

facture a “world class” putter. A comparison was drawn between their dataset and data

from the ten best performing putters taking part in the 2009 PGA Tour and also from

controlled tests on various putts at a practice green by elite Norwegian players (Karlsen,

2003). This is shown in Table H.1.

Distance PGA Tour top
10 putters

“World class
model”

Norwegian
elite players

1 meter 93.10% 92.00% 89.70%

2 meter 64.20% 65.00% 56.90%

3 meter 43.90% 45.30% 37.30%

4 meter 30.70% 31.50% 25.10%

5 meter 22.60% 22.40% 11.50%

Table H.1: Putting test carried out by Karlsen (2003), regarding the percentage of succesful
short putts by PGA Tour professionals, “World class model” (Tierney and Coop, 1998) and by
Norwegien elite players.

The “world class model” compared well with the other groups tested for short putt dis-

tances. Tierney and Coop (1998) also estimated the percentage of successful putts for

longer distances, the percentage of 3-putts and the expected number of putts per hole for

a world class player. This is shown in Figure H.2.

Figure H.2: 1-putt and 3-putt probabilities and expected numbers of putts taken from different
distances by a world class player using the “world class putter”.

Some research has been carried out using exact position and thus direction of shot in

addition to distance from the target hole. Tierney and Coop (1998) analysed the devi-

ation and estimated that a world-class player in tournament conditions would deviate
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on average by 6.5◦ and 1.3% of the total putting distance. Karlsen (2003) found similar

measurements using players with a handicap of +1.5 on a flat indoor green.

Club face grooves may have some effect on the roll of the ball during putting. YesTM,

a major manufacturer of putters, uses a type of groove referred to as C-GroovesTM. It

is claimed that these grooves solve problems with unwanted side or back spin and ball

skidding due to loft (Yes! , 2012). Their website states that: “Upon contact, these edges

grip the ball surface and apply physical forces that simultaneously lift the ball out of its

resting position and impart an over-the-top rolling motion”.

H.2.2 Golf Ball Design

Wound gold balls, in which rubber thread is wound around two kinds of core (a liquid

filled centre or a solid rubber core) and then wrapped in a balata or surlyn cover, were

originally used by most tour players, for their spin and feel (see Figure H.3 (a)). Solid

balls were more commonly used by amateurs because they travelled farther.

Solid core golf balls have now replaced wound balls, with many multilayer designs which

offer different properties. One-piece balls (Figure H.3 (b)) are made of synthetic rubber.

They are durable, but deform by a large amount upon impact, making them suitable

for driving range use. Two piece solid balls (Figure H.3 (c)) are dual structured, with a

high restitution core wrapped in a cover. These balls generate excellent distance as they

allow a more efficient transfer of energy. Three and four piece multilayer balls (Figure

H.3 (d)) wrap the core material in multiple covers, resulting in the ability to customise

hardness, specific gravity, feel and other properties. This allows for compensation of a

miss hit stroke (Masataka, 2008).

Figure H.3: Cross-sections of the most common golf ball designs (Masataka, 2008).

Nick Price won the British Open and the PGA Tour using solid golf balls in 1993 and

1994. This led to his success as the worlds number one player. Figure H.4 shows the

transition from wound to solid balls during the 2001 season (Masataka, 2008). It can be

seen that by the year of 2006, all PGA Tour players had made the switch to a version

of the multi-piece golf ball. One possible driving factor for tour-wide change could have

been Tiger Woods’s choice of golf ball - changing from wound balls to solid core balls
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made by Nike (Johnson, 2001).

Figure H.4: Transition of golf balls on tour (Darrell Research, 2012).

The consistency of solid golf balls improved due to new production technologies and

therefore their quality and properties have been widely noted as giving good distance,

feel and spin (Masataka, 2008). Wound balls have the property of a reduction in initial

velocity with decrease in temperature. Figure H.5 shows (a) the temperature dependence

and (b) the amount of ball compression experienced by wound and solid balls. A typical

wound ball will compress in a much more uneven and unpredictable nature than a solid

core urethane ball.

Figure H.5: (a) Temperature dependence and (b) compresion dispersion of wound and solid
urethane core balls (Masataka, 2008).

Ball design is not limited solely to internal construction, the outside of the ball affects the

way a ball travels through the air. During travel, particles of fluid move in the boundary
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layer close to a balls surface. Dimples increase the amount of linear momentum and

energy that those particles experience. Any solid body that is in relative motion with a

surrounding fluid will experience this boundary layer activity due to the peculiar nature

of fluid friction near the body’s surface (Munson et al., 2006). Dimples on a golf ball trip

close-moving air particles, causing them to be disturbed and vibrate sideways whilst pro-

gressing with forward velocity, instead of maintaining parallel lanes of traffic, as generally

experienced in laminar flow. This vibration causes particles in adjacent lanes to make

contact with each other and causes a transference of linear momentum from one particle

to the next. Fast moving particles will be slowed and slow moving particles will increase

in velocity increasing the kinetic energy and linear momentum within the boundary layer.

When the particles bump together vigorously, the airflow becomes turbulent instead

of laminar, the former having the greater energy and linear momentum. This results in

the ability to resist adverse pressures over larger distances along the surface of a golf

ball. Eventually, particles will be forced out of the boundary layer due to adverse pres-

sure ceasing forward motion of boundary particles, this is called the point of separation.

Downstream and upstream of the point of separation, pressures that act on the ball are

different, this difference being referred to as pressure drag or form drag (Blevins, 1992).

As shown in Figure H.6 the point of separation is located closer to the rear of the ball

with respect to direction of travel than laminar flow. This creates a smaller pressure drag

when the boundary is turbulent, thereby increasing travel distance.

Figure H.6: Viscous wake and delayed separation (Aero Space Web, 2006).


