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Abstract

The T2K near detector, ND280, is used to compare electron and

muon neutrino interaction cross sections by measuring the ratio of

the Charged-Current Quasi-Elastic (CCQE or CC0π) to the total

Charged-Current (CC) interaction cross section for both flavours. The

double ratio of these is taken to study the differences between electron

and muon neutrino interactions. A charged-current interaction with

no final state pions is also studied in place of the CCQE topology to

provide a less model dependent result. In either case, no significant

deviation from the NEUT and GENIE Monte Carlo generators was

found showing that the current models accurately predict the relative

amount of CCQE and CC0π to CC interactions for electron and muon

neutrinos.

A series of studies are presented regarding the ND280 ECals. An

energy-equalisation calibration is applied to bars in the ECals and

found to considerably improve the consistency of the detector. In

addition, the rate of degradation of the ECal scintillator bars was

found to be well modelled by an exponential decay with a ≈ 3% loss

of energy recorded per year. The systematic uncertainties associated

with matching tracks between a TPC and an ECal are calculated and

found to be ≈ 1%.
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1.1 Current Status of Neutrino Physics

1.1 Current Status of Neutrino Physics

1.1.1 Neutrino Oscillations

The phenomenom of neutrino oscillations was first proposed to reconcile puzzling

features in data from several experiments. The first of these was the Homestake

Experiment which observed a deficit in the flux of electron neutrinos originating

from the Sun [1]. This result was later confirmed by other experiments includ-

ing the Kamiokande experiment [2]. Other strange results followed, including

a deficit in the ratio of muon neutrino to electron neutrino flux from neutrinos

created in the Earth’s atmosphere observed by the Kamiokande experiment [3].

The interpretation of these results as neutrino oscillations was proposed in [4].

Shortly after, several experiments confirmed the hypothesis including the SNO

experiment which published results giving strong evidence of flavour change in

neutrinos [5] showing that the Homestake result could be explained in this con-

text. The Super Kamiokande experiment provided precise measurements of the

atmospheric oscillations [6] to confirm the results of its predecessor experiment

as being consistent with neutrino oscillations.

The mathematical formalism that describes such oscillations was laid out by Maki,

Nakagawa, and Sakata in 1962 [7]. This is parameterised by three mixing angles,

θ12, θ23, and θ13; and two mass splittings ∆m2
21 and ∆m2

32. The Particle Data

Group [8] has the most up to date values of these parameters by combining results

from many experiments. The most notable of these are the Super Kamiokande

experiment [9], the SNO experiment [10], the KamLAND experiment [11], the

IceCube experiment [12], the Daya Bay experiment [13], and the RENO experi-

ment [14]. The measurement of these parameters is affected by the hierarchy of

the neutrino mass eigenstates. It is unknown whether m3 > m2 > m1, known as

normal hierarchy, or m2 > m1 > m3, known as inverted hierarchy. This can be

seen in Fig 1.1.1.
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1.1 Current Status of Neutrino Physics

Figure 1.1.1: A diagram showing the different possible mass hierarchies for the
neutrino mass eignenstates. The left shows normal mass heirarchies and the right
shows inverted hierachy [15].

A summary of the value of the oscillation parameters is shown in Tab 1.1.1. The

angle θ12 is pertinent for solar neutrinos, θ23 has been measured using neutrinos

created in the upper atmosphere, and θ13 is best measured using nuclear reactors.

Parameter Value
sin2(θ12) 0.304± 0.014
sin2(θ23) 0.514+0.055

−0.056
sin2(θ13) (2.19± 0.12)× 10−2

∆m2
21 (7.53± 0.18)× 10−5 eV2

∆m2
32 (2.44± 0.06)× 10−3 eV2

Table 1.1.1: The current best knowledge of neutrino oscillation parameters (as-
suming normal hierarchy) taken from the Particle Data Group [8]

A global review of neutrino oscillation data can be found in [16].
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1.1.2 Neutrino Interactions

Uncertainties on neutrino interaction cross sections play a large role in studying

neutrino oscillations, often being the dominant uncertainty on the results. To

combat this, many experiments have made measurements of these cross sections.

Of particular interest here are muon and electron neutrinos interacting with a

carbon target. The T2K experiment recently published a series of papers mea-

suring these cross sections, such as those in Figs 1.1.2 1.1.3 1.1.4. These show

the muon neutrino charged current quasi-elastic interaction cross section [17],

the electron neutrino total charged current interaction cross section [18], and the

muon neutrino total charged current interaction cross section respectively [19].

Figure 1.1.2: The muon neutrino charged current quasi-elastic interaction cross
section per target neutron on carbon [17]

Other experiments have published measurements of interaction cross sections.

Of particular note are the MiniBooNE, MINERνA, NOMAD and MINOS exper-

iments which have provided measurements on a variety of targets.
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Figure 1.1.3: The electron neutrino total charged current interaction cross section
on carbon [18]

Figure 1.1.4: The muon neutrino total charged current interaction cross section
on carbon [19]
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1.2 The Analysis

1.2 The Analysis

The main focus of this thesis is an analysis to compare νe and νµ interaction

cross sections on carbon as a target. Two interaction cross sections are stud-

ied; the total Charged Current interaction cross section (CC), and the Charged

Current Quasi-Elastic (CCQE) cross section. Since most previous cross section

measurements have large uncertainties assoicated with them, the ratios of cross

sections are used instead in the hopes that there will be some cancellation of the

uncertainties.

In practice, it is difficult to determine whether an event is truly a CCQE inter-

action or a non CCQE interaction with nuclear processes causing particles other

than the lepton to not leave the nucleus. Extracting a CCQE cross section then

requires these processes to be well understood. To combat this, the ratios are cal-

culated for a CCQE signal and an interaction with only the lepton and no mesons

exiting the nucleus (ν` +12 C → ` + 0π) to give a result without needing these

models. In either case, the selection criteria are the same, only the signal changes.

The ratios studied are CCQE/CC for νe and νµ and the double ratio of the two to

give a νe/νµ comparison, these are detailed in Eqs 1.2.1a - 1.2.1c. This allows for a

measurement of how likely a neutrino will undergo a CCQE interaction relative to

the total CC interaction probability, and the difference between this quantity for

νe and νµ. The interactions shown in these equations are on a Carbon as the tar-

get for neutrino interactions used for this analysis is comprised mostly of Carbon.

Re =
σ(νe +12 C → e+ 0π)

σ(νe +12 C → e+X)
(1.2.1a)

Rµ =
σ(νµ +12 C → µ+ 0π)

σ(νµ +12 C → µ+X)
(1.2.1b)

DR =
Re

Rµ

(1.2.1c)
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1.3 Motivation

The results are parameterised in terms of several kinematical variables such as

lepton momentum, lepton angle, neutrino energy, and the four-momentum trans-

fered in the interaction. Reconstructed variables such as outgoing lepton momen-

tum and angle, are studied to try to make a model independent measurement.

Model dependent variables like neutrino energy or four-momentum transferred are

also studied as they are more intrinsic to the cross section and can be compared

directly to Monte Carlo (MC) predictions and theoretical models.

1.3 Motivation

The previous interaction cross section results published by the T2K collaboration

[17] [18] [19] have systematic uncertainties associated with them O(20%). Some

of these results are described and shown in Sec 1.1.2. The large uncertainties in

these previous results have meant that it has not been possible to extract differ-

ences in νe and νµ interactions. By taking the ratios of cross sections, some of

the systematic uncertainties partially cancel out. This provides better informa-

tion on neutrino interaction differences between flavours, and could therefore be

used to test or refute different theoretical models. Other reasons why these ratios

are interesting include using them as a tool to reduce uncertainties on oscillation

measurements and providing a test of lepton universality. These are detailed in

the following sections.

1.3.1 Reducing Uncertainties in Oscillation Experiments

The interaction cross sections play a vital role in neutrino oscillation experiments.

Many of the experiments that study neutrino oscillations, such as the T2K ex-

periment, use a near detector to sample the neutrino beam and a far detector to

study the oscillated beam. For a beam of muon neutrinos, Eq 1.3.1 shows the

expected number of reconstructed νe events at a far detector, Ne, that have oscil-

lated from νµ (with probability Pνµ→νe). ϕµ is the flux of νµ as measured in the
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1.3 Motivation

near detector, LFar is the distance to the far detector from the beam production

point, σe is the νe cross section and εe is the efficiency for reconstructing νe events

in the far detector. The uncertainties on both the flux and the interaction cross

section are large, meaning that the prediction of Ne has large uncertainties.

Ne =
ϕµ
L2
Far

Pνµ→νeσeεe (1.3.1)

Alternatively, the flux as measured in the near detector can be written down as

in Eq 1.3.2, which depends on the νµ interaction cross section. The number of νµ

events in the near detector is given by Nµ, σµ is the νµ interaction cross section,

and εµ is the efficiency for reconstructing νµ events in the near detector.

ϕµ = Nµ

L2

Near
σµεµ

(1.3.2)

This results in an expression for the predicted number of νe events in the far

detector, Eq 1.3.3, that does not rely on the flux model, but instead has the

ratios of the νe and νµ cross sections.

Ne = Nµ
L2
Near

L2
Far

σe
σµ

εe
εµ
Pνµ→νe (1.3.3)

Understanding this well could help reduce uncertainties on measurements of the

oscillation probability and the CP violating phase.

1.3.2 Tests of Lepton Universality

Measuring the ratios of νe and νµ interaction cross sections could provide a useful

test of lepton universality. Once kinematic differences and differences due to

nuclear effects have been taken into account, the cross sections are expected to

be the same for all three species of neutrino. Any significant differences not due

to these effects would be indicative of New Physics [20].
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1.4 Summary of My Work

Possible new Physics differences in νe and νµ cross sections are Second Class

Current (SCCs) described in Sec 2.1.7.3, radiative corrections described in Sec

2.1.7.1 or extensions to the Standard Model that add extra gauge bosons, de-

scribed in Sec 2.1.7.4.

1.4 Summary of My Work

The work I have performed for the T2K experiment falls into two categories; the

analysis of interaction cross section ratios, and the service work involving the

ND280 Electromagnetic Calorimeters (ECal).

The service work involved calibration of the ECals to ensure a universal response

of the detector, described in Sec 3.1. It also entailed a study of the degrada-

tion of the scintillator bars in the ECal with time and calculating corrections

for this effect as well as extrapolating this to the future. This work is described

in Sec 3.2. I also performed studies on the systematic uncertainty associated

with matching a reconstructed object in the ECal with an object in one of the

Time Projection Chambers (TPC). These uncertainties are propagated through

the selections used in the cross section ratio work and used in several other T2K

analyses. This work is described in Sec 3.3. Lastly, I was an onsite expert for

the ECal during my long term attachement in Tokai. The work associated with

this is not included here.

The cross section ratio analysis involved brief studies on optimising the νe se-

lection that are not included here as it was superseded by work performed by

other collaborators. Performing the analysis involved using both the selections

for νe and νµ CC and CCQE interactions in ND280 and creating a framework to

calculate the ratios for a variety of reconstructed variables and to unfold to other

variables that are difficult to reconstruct. This is detailed in Sec 4.6. The main

body of the work was calculating the cancellation of the systematic uncertainties,

detailed in Sec 4.7.
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Chapter 2

Theory and the T2K Experiment
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2.1 Theory

2.1 Theory

2.1.1 Overview

The Standard Model of Particle Physics (SM) describes all known elementary

particles, such as quarks and leptons, and the fundamental forces that govern

how they behave [21] [22]. The Standard Model is a Quantum Field Theory

(QFT) with internal symmetries described by Eq 2.1.1.

SU(3)c ⊗ SU(2)L ⊗ U(1)Y (2.1.1)

Each group in Eq 2.1.1 represents a force with the indices c, L, and Y , repre-

senting the quantity the force couples to. SU(3)c represents the strong nuclear

force coupling to colour, SU(2)L represents the weak nuclear force coupling to

left-handed particles and U(1)Y represents the Electromagnetic force coupling to

Hypercharge. A chart of the particles included in the SM is given in Fig 2.1.1.

The normal procedure for working with these fields and particles is to define a

Lagrangian density for the field, L, a quantity that determines how the system

evolves. For any system, the Lagrangian is simply the kinetic energy of the sys-

tem, T , minus the potential energy of the system, V , and the Lagrangian is the

integral of the Lagrangian density over all space-time. These relations are shown

in Eqs 2.1.2 2.1.3 [23].

L(xµ, ∂µx) = T − V (2.1.2)

L =

∫
d4xL[φ, ∂µφ] (2.1.3)

In this formulism, xµ are the coordinates describing a point in the system, φ

is a field, and µ is a Lorentz index running over the three dimensions of space
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2.1 Theory

Figure 2.1.1: A table of Standard Model particles, broken down into the quarks,
leptons, gauge bosons and the Higgs boson. The mass, spin and electric charge of
each particle is also shown. [8]
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2.1 Theory

and one dimension of time. Essentially meaning that the Lagrangian density is

a quantity that depends only on the field and its space-time derivatives. From

the Lagrangian, it is possible to derive the Feynman rules and determine the

interaction properties of neutrinos.

2.1.2 Neutrinos in the Standard Model

Left-handed neutrinos form part of an SU(2) doublet with their corresponding

charged lepton. Only the particles with left-handed chirality form part of the

doublet, as the weak force does not couple to right-handed particles. Conversely,

the weak force only couples to right-handed anti-particles. The particles that do

not interact via the weak interaction form singlet states, a summary of these are

shown in Eq 2.1.4 [24].

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

(e)R (µ)R (τ)R (2.1.4)

This is built into the standard model as suggested by experimental results rather

than a deeper theory.

2.1.3 The Weak Interaction

The electroweak Lagrangian, LEW, contains interaction terms for particles that al-

low them to couple to various fields. Shown in Eqs 2.1.5 2.1.6 2.1.7 are the parts of

the electroweak Lagrangian describing Electromagnetic interactions (EM), Neu-

tral Current interactions (NC), and Charged Current interactions (CC) respec-

tively for electron and neutrino scattering [25].

LEM = q(ēγµe)A
µ (2.1.5)
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2.1 Theory

LNC = − g

2 cos(θW )

[
ν̄γµ

1

2
(1− γ5)ν − ēγµ

1

2
(1− γ5)e+ 2 sin2(θW )ēγµe

]
Zµ (2.1.6)

LCC = − g√
2

[
ν̄γµ

1

2
(1− γ5)eW+µ + ēγµ

1

2
(1− γ5)νW−µ

]
(2.1.7)

Where Aµ, Zµ, W+µ and W−µ are fields. The excitations of these fields corre-

spond to the photon, the Z0 boson, and the W± bosons respectively. Terms with

these fields describe interactions between the spinors ν, ν̄, e and ē, which describe

neutrinos and leptons. The quantities g, θW , and q are related to the coupling

strength between particles. The spinors that describe neutrinos do not appear in

the electromagnetic component of the electroweak Lagrangian. The interactions

discussed in this thesis are all charged current interactions, so this is the part of

the Lagrangian of interest when discussing interaction cross sections. The only

bosonic fields in LCC are the W+ and W−, this is representative of the fact that

a neutrino charged current interaction must exchange charge. An Feynman dia-

gram of such a process is shown in Fig 2.1.3.

The fields that describe the weak interaction act as a linear combination of vec-

tor and axial-vector fields, taking the form V − A. Consequently, the currents

describing the W and Z bosons, JWµ and JZµ , take the forms shown in Eq 2.1.8

and 2.1.9 respectively. Here, the spinors u and ū correspond to the particles

the boson couples to. Due to its V − A nature, the weak interaction can violate

parity. This was first shown in [26] by studying the β decay of Cobalt nuclei.

JWµ =
−igW
2
√

(2)
ū(γµ − γµγ5)u (2.1.8)

JZµ =
−igZ

2
ū(gV γ

µ − gAγµγ5)u (2.1.9)
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2.1 Theory

To calculate a cross section for a weak interaction process, a term describing the

propagator in the Feynman diagram is needed. This is done most simply using

the Feynman rules [27]. For a particle of mass M, the propagator term is given by

Eq 2.1.10. At energies similar to that of the T2K neutrino beam, it is reasonable

to make the approximation that q2 � M2 and the propagator term reduces to

Eq 2.1.11.

− i
gµν − qµqν

M2

q2 −M2
(2.1.10)

− i gµν
M2

(2.1.11)

Using the matrix element and the propagator term, the coupling strength of the

boson can be related to the Fermi constant, GF , and the mass of the boson as in

Eq 2.1.12.

GF =
g2

4
√

2M2
W

(2.1.12)

This shows why the weak interaction couples so weakly, the large mass of the W

and Z bosons suppresses the interactions by a factor of approximately M2
W .

2.1.4 Neutrino Oscillations

Neutrino oscillations are a purely quantum mechanical effect caused by neutri-

nos having mass. Specifically, the neutrino mass eignestates are non-zero, non-

degenerate and not aligned with the weak (flavour) eigenstates. The differences

in the mass eigenstates are the fundamental cause of neutrino oscillations because

a phase difference occurs from wavepackets within a flavour eigenstate propagrat-

ing at different speeds due to their different masses. The relationship between

the mass and flavour eigenstates is shown in Eq 2.1.13. The matrix, UPMNS, that

relates these states is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
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2.1 Theory

matrix, based on the work in [7]. Each set of flavour and mass eigenstates is

orthonormal and so the transformation that relates them must be unitary. Thus,

the PMNS matrix takes the form of three rotation matrices that include a com-

plex phase. The most common parameterisation of this is shown in Eq 2.1.14.

ν1,2,3 are the mass eigenstates and νe,µ,τ are the flavour eigenstates. The fact that

neutrinos can change flavour was the first evidence that neutrinos have mass.

νeνµ
ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

ν1ν2
ν3

 (2.1.13)

UPMNS =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


(2.1.14)

In Eq 2.1.14, the terms sij and cij are shorthands for sin θij and cos θij. The angles

θij quantify mixing between the ijth mass eigenstates, and δCP is the CP violating

phase, which determines the asymmetry between matter and anti-matter neutrino

oscillations.

The neutrino mass eigenstates ν1, ν2, ν3 propagate according to the Dirac equation

with solutions that describe plane-waves. The probability for oscillation from

state α to state β is then given by the square of the wavefunction as shown in

Eq 2.1.15 for distance travelled from the production of the neutrino, L.

P (να → νβ) = | 〈νβ(L)|να(0)〉 |2 (2.1.15)

The oscillation probabilities can be calculated as in Eq 2.1.16, this shows the

probability of a neutrino of flavour α oscillating to flavour β.
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P (να → νβ) = δαβ −4
∑
i>j

R(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

4E

)

+2
∑
i>j

I(U∗αiUβiUαjU
∗
βj) sin

(
∆m2

ijL

2E

)
(2.1.16)

The mixing angles relate to the amplitude of the oscillations whilst the differences

in the masses squared relate to the frequency. These parameters can be measured

by experiments but do not give any information on the absolute value of the

neutrino masses, these have yet to be measured.

2.1.5 Interaction Types

Using the weak interaction Lagrangian described in Sec 2.1.3 the properties of

the interactions can be modelled. In practice, a neutrino can scatter off an atomic

electron, a group of nucleons, a single nucleon, or a single quark. The types of

interaction a neutrino can undergo can be broken down into four distinct cate-

gories, leading to a large variety of possible final states:

• Elastic scattering: A neutrino scatters off a nucleon, either a proton or a

neutron, via a Z0 boson (neutral current). A Feynman diagram showing an

example of this process is shown in Fig 2.1.2. This can result in the ejection

of the target nucleon from the nucleus. Neutral current elastic scattering

can occur at any neutrino energy with a peak in the interaction cross section

at roughly 1 GeV.

• Quasi-elastic scattering: A neutrino scatters off a nucleon via a W+ boson

(charged current) producing the associated lepton. This can result in the

ejection of the target nucleon from the nucleus. In the case of neutrino

(not anti-neutrino) scattering, the nucleon must be a neutron in order to

conserve electric charge. A Feynman diagram showing a Charged-Current
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2.1 Theory

Figure 2.1.2: A Feynman digram showing an elastic scattering interaction be-
tween a muon neutrino and a neutron.

Quasi-Elastic interaction is given in Fig 2.1.3. Quasi-elastic scattering is

the dominant process below about 1 GeV in neutrino energy.

Figure 2.1.3: A Feynman digram showing a Charged-Current Quasi-Elastic
(CCQE) interaction between a muon neutrino and a neutron producing a muon
and a proton.

• Resonance production: A neutrino excites a target nucleon to a higher

mass resonance state (p→ ∆, n→ N∗). This then decays back to a proton

or neutron producing additional mesons. A Feynman diagram showing an

example of this process is shown in Fig 2.1.4. These processes are dominant

in the energy range of 1 GeV - 5 GeV. Calculations of resonance production

cross sections were recently improved in [28].
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Figure 2.1.4: A Feynman digram showing resonance pion production by the decay
of an excited state into a neutron and a charged pion.

• Deep Inelastic Scattering: At high enough energies, the de Broglie wave-

length of the neutrino is of a similar size to an individual quark in a nu-

cleon. The neutrino can then scatter off the quarks producing hadrons.

Deep inelastic scattering becomes the dominant interaction over resonance

at energies above about 5 GeV, as shown in Fig 2.1.5.

The interaction cross sections for the individual components described above are

shown in Fig 2.1.5 with the total charged current cross section overlaid. This

shows at which energies the different processes dominate and will be useful when

considering the ratios of cross sections. The CCQE cross section as measured by

the MiniBooNE [29] and NOMAD [30] experiments is shown in Fig 2.1.6 [31].

The total charged current cross section is very difficult to model on its own. In-

stead, the individual different components are modelled and the total charged

current cross section calculated as the incoherent sum of them. These individ-

ual components are CCQE, resonance production, and deep inelastic scattering.

The resulting expression for the total Charged Current cross section is shown

in Eq 2.1.17 with σRES and σDIS being the cross sections for a neutrino charged

current resonance and deep inelastic scattering processes respectively.

σCC = σCCQE + σRES + σDIS (2.1.17)
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2.1 Theory

Figure 2.1.5: The contributions of the different interaction types to the total
charged current cross section. The data are from several different experiments
with the plot taken from [32].

Figure 2.1.6: The νµ CCQE interaction cross section measured by the Mini-
BooNE [29] and NOMAD [30] experiments with predictions based on a Relativistic
Fermi Gas (RFG) model and SusperScaling Approximations (SuSA) laid on top
[31].
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Consequently, the CC inclusive cross section is difficult to quantify. Instead,

Monte Carlo generators will be used to form predictions for the cross sections

and the ratios of cross sections. Details on this will be given in Sec 4.3.

2.1.6 Cross Sections

A cross section is a quantity that describes how likely a particle is to interact.

The interaction cross section depends on the energy of the neutrino and what the

neutrino is interacting with.

To study neutrino cross sections from a theoretical perspective, it is much sim-

plier to separate the problem into different energy ranges as different processes

dominate. For instance, at energies below the mass of the lepton corresponding

to the neutrino, only neutral current processes are possible. In principle, one

could simply use the electroweak Lagrangian to get a formula for the cross sec-

tion across all energy ranges. However, initial conditions, final state interactions

and nuclear corrections make this calculation very difficult [32].

In general, the cross section between an incoming neutrino and a stationary lepton

in terms of the 4-momentum transfer, q2, is given by Eq 2.1.18 [33]. M is the

matrix element describing the interaction type and the particles involved. It is

determined from the interaction Lagrangian. The rest of the terms are kinematic;

s and u are Mandelstam variables given in Eqs 2.1.19 2.1.20 which encode the

kinematics of scattering between two particles with initial momenta p1 and p2,

and final momenta p3 and p4. m` and mν are the masses of the lepton and

neutrino respectively.

dσ

dq2
=

1

16π

|M|2

(s− (m` +mν)2)(s− (m` −mν)2)
(2.1.18)

s = (p1 + p2)
2 = (p3 + p4)

2 (2.1.19)
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u = (p1 − p4)2 = (p2 − p3)2 (2.1.20)

The neutral current and charged current Lagrangians used to calculate the matrix

elements, M, are shown in Eq 2.1.6 and Eq 2.1.7 respectively. The resulting

matrix elements are shown in Eq 2.1.21 and Eq 2.1.22 [32]. For simplification,

these equations use the assumption that the 4-momentum of the interaction boson

is much smaller than its mass (q2 �M2) and so can be neglected.

MCC = −GF√
2
{[¯̀γµ(1− γ5)ν`][ν̄eγµ(1− γ5e)]} (2.1.21)

MNC = −
√

2GF{[ν̄`γµ(gνV − gνAγ5)ν`][ēγµ(gfV − g
f
Aγ

5)e]} (2.1.22)

The gV and gA terms are vector and axial-vector coupling constants respectively.

The same formulation can be used to describe neutrino-quark interactions.

As with neutrino-lepton scattering, a complete formula can be found to de-

scribe neutrino-quark interactions. However, quarks are only seen in bound states

(hadrons) and so modelling these interactions becomes much more difficult. For

extended objects like these, the neutrino-nucleon interaction depends largely on

the wavelength of the interacting boson, which is dependant on the 4-momentum

transfered, Q2 = −q2. This results in Eq 2.1.23 for CCQE scattering, which was

written down by Llewellyn-Smith in [27].

dσ

dQ2
=
G2
FM

2|Vud|2

8πE2
ν

(
A± (s− u)

M2
B +

(s− u)2

M4
C

)
(2.1.23)

In Eq 2.1.23, M is the nucleon mass, Eν is the neutrino energy, and A, B and C

are functions of Q2 and the nucleon form factors given by Eq 2.1.24 2.1.25 2.1.26.

For brevity, ζ = Q2/4M2. The ± sign in Eq 2.1.23 is (−) for antineutrino-quark

scattering and (+) for neutrino-quark scattering. The situation is further compli-

cated when considering the practical situation of neutrino-nucleus scattering due

to the energy and momentum distributions of the nucleons inside the nucleus not
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being well understood. The most common description uses a Fermi gas model,

with the formalism being laid out in [67].

A =
(m2 +Q2)

M2

[
(1 + ζ)F 2

A − (1− ζ)F 2
1 + ζ(1− ζ)F 2

2 + 4ζF1F2

− m2

4M2

(
(F1 + F2)

2 + (FA + 2FP )2 −
(
Q2

M2
+ 4

)
F 2
P

)]
(2.1.24)

B =
Q2

M2
FA(F1 + F2) (2.1.25)

C =
1

4
(F 2

A + F 2
1 + ζF 2

2 ) (2.1.26)

The functions F1, F2, FA and FP are form factors that determine the properties

of the interaction. F1 and F2 are the Dirac and Pauli electromagnetic vector

form factors of the first class current that describe the distributions of the elec-

tric charge inside the nucleon at a given four-momentum transfer. They can be

accurately measured using charged lepton scattering as in [34]. FA and FP are

the axial and pseudo-scalar form factors for the first class currents. FA is not

well known as previous experiments have found inconsistent results. FP can be

measured in pion electroproduction studies as in [35].

2.1.7 Ratios of Interaction Cross Sections

It is important to understand the cross sections described in Sec 2.1.6 for electron

and muon neutrinos in order to interpret the results of the cross section ratios.

In principle, it is possible to write out very long formulae for the cross section

ratios but these are very complicated and difficult to extract any information

from. However, kinematic arguments can be used to predict a general trend for

each of the ratios whilst Monte Carlo (MC) generators can be used to generate

more quantitative predictions, as in Sec 4.3. The possible causes of differences
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between νe and νµ interactions are also discussed here.

As shown in Eq 2.1.17, the CCQE cross section is, by definition, smaller than

the CC inclusive cross section for both νe and νµ. Therefore, the CCQE to CC

MC ratio must be less than or equal to 1. The threshold neutrino energy required

to undergo a CCQE interaction is the mass of the produced lepton. Since there

is not enough energy to produce additional particles at energies just above the

lepton mass, the cross section ratio will be 1. At higher energies, extra particles

can be produced and the ratio decreases. As the phase space for producing these

extra particles increases, the CCQE process becomes subdominant and the ratio

continues to get smaller with higher energies.

The double ratio, given in Eq 2.1.27, involves comparing the differences in the

CCQE to CC ratio for νe and νµ. These should follow a similar pattern with the

drop from 1 coming slighly later for the νµ ratio. Consequently, the double ratio

should be 1 at the point where there is not enough energy for either νe or νµ to

undergo a reaction other than CCQE. The double ratio should then drop at the

point where a νe can produce additional particles and the νµ cannot. Above this

point, the double ratio should level out at 1 again once the difference in lepton

masses becomes small compared to the neutrino energy.

DR =

σ(νe CCQE)
σ(νe CC)

σ(νµ CCQE)
σ(νµ CC)

(2.1.27)

The shapes of these ratios can be seen in Fig 2.1.7. This shows calculations of

the cross section ratios on Carbon (C12) performed by the GENIE Monte Carlo

generator. More detail on these calculations is given in Sec 4.3.

It is important to quantify any possible sources of difference betweem νe and νµ

cross sections to identify the causes of any deviations from the expectations when

taking the ratios. The possible sources are differences in final state lepton mass,
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Figure 2.1.7: Calculations of the five cross section ratios performed by the GENIE
Monte Carlo generator.
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radiative corrections to the tree level process, uncertainties in the nucleon form

factors, second class currents, and low mass W bosons. See [38] for a review of

these for CCQE processes.

2.1.7.1 Radiative Corrections

The Feynman diagrams shown in Sec 2.1.5 show first order scattering processes.

Radiative corrections are higher-order contributions to the tree-level process that

involve the emission of photons. These can either be reabsorbed and so only

affect the size of the cross section or end up in the final state and so change

the topology of the event. These are shown as diagrams that contain loops or

Bremsstrahlung photons. Fig 2.1.8 shows the possible processes that involve

radiation of photons and Fig 2.1.9 shows the fractional difference in cross section

due to these. The first and fourth processes (the two leftmost) can only go via the

neutral current interaction as charge would not be conserved. The others can go

by either the charged or neutral current process. The effects of these corrections

could show up as about a 10% difference between the νe and νµ cross sections [39]

and enhance the CCQE to CC ratio by increasing the CCQE interaction cross

section. Radiative corrections to neutrino-lepton processes have been calculated

in [40], [41], [42] and [43] for neutrino-nucleon scattering.

2.1.7.2 Uncertainties in the Nucleon Form Factors

The form factor FA can cause differences in νe and νµ cross sections via a change

in the effective axial mass of a nucleon, mA. The nucleon axial mass is a quantity

that describes the charge radius of a nucleon and affects neutrino-nucleon cross-

sections considerably. F1 and F2 affect the axial mass but these are too well

measured at the relevant values of Q2 to result in a significant difference [34]. On

the other hand, FA is poorly measured. Fig 2.1.10 shows the difference in νe

and νµ cross section due to various changes in mA, within the experimental limits

compared with a nominal value of axial mass, mA, = 1.1 GeV. The variation

allowed is small, at about 1% at low energies and drops at increasing energies
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Figure 2.1.8: Feynman diagrams showing possible radiative corrections to the
tree level diagrams [39].

Figure 2.1.9: The fractional difference in cross section due to radiative correc-
tions as a function of neutrino energy and lepton angle [39]. The z-axis shows the
fractional difference between the CCQE cross section with radiative corrections
and the cross section for CCQE interactions only.
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[38]. These possible differences are significantly smaller than those associated

with radiative corrections.

Figure 2.1.10: The size of the predicted change in the difference of νe and νµ
cross section due to changes in mA [38].

2.1.7.3 Second Class Currents

The currents that describe the W and Z bosons are given in Eq 2.1.8 and Eq 2.1.9.

These can be split into two types, depending on their G-Parity. First class cur-

rents have quantum numbers, JPG = 1+−, 1−+ and second class currents have

JPG = 1++, 1−− [44] [45]. The CCQE cross section shown in Eq 2.1.23 depends

on the second-class current form factors, F3A , and F3V , through the parameters

B and C. Eqs 2.1.25 2.1.26 do not include this as second class currents would

violate charge or time symmetry and so are assumed to not exist. The full equa-

tions are shown in Eq 2.1.28 and Eq 2.1.29 with second class currents having

the most impact through B.

B(Q2) =
Q2

M2
FA(F1+F2)−

m2

M2

[
(F1 − ζF2)F3V −

(
FA −

Q2FP
2M2

)
F3A

]
(2.1.28)
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C(Q2) =
1

4

(
F 2
A + F 2

1 + ζF 2
2 + 4ζF 2

3A

)
(2.1.29)

By studying β decays it is possible to determine both F3A and F3V . F3A is mea-

sured in [36] and a limit on F3V is calculated in [37].

The F3V term always enters the cross section formula suppressed by terms in

m/M (lepton mass over nucleon mass) and so only play a significant role in νµ

scattering. It is difficult to constrain F3V experimentally [37], and so there is

room for big differences in the νe / νµ cross section ratio due to this. On the

other hand, F3A , is well constrained [46] and consistent with zero and so cannot

affect the cross sections significantly. These terms can change the interaction

cross sections via altering the effective axial mass of the neutrino. Fig 2.1.11

shows the predicted effect of including second class currents with the maximally

allowed value of F3V as constrained by experiments [37].

Figure 2.1.11: The size of the predicted change in the difference of νe and νµ
cross section due to second class currents with F3V (Q2) = 4.4F1(Q

2) [38].
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2.1.7.4 Low Mass Ws

There are several extensions to the Standard Model, such as the little Higgs model

[47], that include a second SU(2) group which would mix with the standard SU(2)

group. This would mean there exist additional bosons, W ′ and Z ′, as well as the

standard W s and Z, enhancing both the νe and νµ cross sections. The effect

would be bigger for the νe cross section due to the larger phase space to produce

an electron. Therefore, such an extension could increase the νe / νµ cross section

ratios.

Although several potential causes of difference from what may be expected in

these ratios are discussed. In practice, it could be difficult to determine which of

these (if any) is responsible.

30



2.2 The T2K Experiment

2.2 The T2K Experiment

2.2.1 Overview

The T2K experiment makes use of a neutrino beam produced at the J-PARC facil-

ity in Tokai-Mura, on the east coast of Japan. The beam is sent through a suite of

near detectors located at J-PARC towards the Super Kamiokande detector (SK)

295 km from the beam production point. The neutrino flux is measured at both

the near detector suite, before the neutrinos in the beam have had a chance to

oscillate, and at SK. Comparisons of these measurements allows for calculations

of several of the parameters involved in neutrino oscillations. A schematic of this

arrangement is shown in Fig 2.2.1.

Figure 2.2.1: The layout of the T2K experiment. The neutrino beam is sent from
J-PARC, across Japan, to the Super Kamiokande far detector. [48]

The near detector suite consists of two main detectors; INGRID and ND280. IN-

GRID is an on-axis detector, used to measure the beam profile. It is described
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2.2 The T2K Experiment

in more detail in Sec 2.2.14. ND280 and SK are both off-axis detectors, and are

described in Sec 2.2.5 and Sec 2.2.15 respectively. The analyses presented in this

thesis were performed with the ND280 detector, and so it is given more focus here.

2.2.2 The J-PARC accelerator

The neutrino beam used by T2K is created at the J-PARC facility (Japanese

Proton Accelerator Research Complex) by firing a proton beam into a graphite

target. The proton beam is created by first accelerating a H− beam to 400 MeV

in a LINAC. This beam is then stripped of electrons to create a H+ beam before

being sent through a rapid-cycling synchotron (RCS) which accelerates it up to

3 GeV. The proton beam is then injected into the main ring and accelerated up to

30 GeV before being fired at the target to create the neutrino beam. A diagram

of this layout is shown in Fig 2.2.2. The proton beam is delivered to the target

in spills, one spill contains eight bunches of protons in the main ring.

Figure 2.2.2: The J-PARC facility, with the main components to accelerate the
proton beam up to 30 GeV labelled. [49]
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2.2.3 The T2K Neutrino Beam

The proton is fired into a graphite target to create a secondary beam composed

of pions and kaons. Magnetic horns then focus either the positively or negatively

charged pions and kaons to point 2.5 ◦ away from the Super Kamiokande far

detector. The pions travel through a 96 m long decay volume where they decay

into muons and muon neutrinos, with a small contamination from electrons and

electron neutrinos. For a neutrino beam, the magnetic horns focus the positively

charged particles, whilst for an anti-neutrino beam the negatively charged parti-

cles are focused. The electrons and muons created in these decays are sent into a

beam dump to stop them reaching the near detector complex [48]. A schematic

of this layout is shown in Fig 2.2.3.

Figure 2.2.3: A schematic of the target station, decay volume, beam dump and
near detector suite. The process of creating a neutrino beam from a proton beam
is illustrated. [50]

The neutrino beam energy was carefully chosen such that SK lies at the oscilla-

tion maximum for νµ → νe. To achieve this for a 295 km baseline, a 600 MeV

beam is needed. A neutrino beam with peak energy around 1 GeV is produced

but is pointed slightly off-axis (2.5 ◦) from ND280 and SK. This has the effect of

narrowing the beam energy spectrum and lowering the peak energy at the detec-

tors to 600 MeV, at the cost of reducing the flux of neutrinos. A plot showing

how the beam energy changes with off-axis angle is shown in Fig 2.2.4.

The energy of a neutrino from the decay of a pion to a muon and muon neutrino

as a function of the angle of the outgoing neutrino with respect to the muon (θ)
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Figure 2.2.4: A plot showing how the T2K neutrino beam energy spectrum at
the far detector changes with off-axis angle. ND280 and Super-Kamiokande are
located 2.5 ◦ off-axis and have a peak neutrino energy at 600 MeV [51]. The y-axis
shows the flux of neutrinos, ϕ, in arbritary units at the far detector.

and pion energy (Eπ) is described by Eq 2.2.1.

Eν =
m2
π −m2

µ

2(Eπ − pπ cos θ)
(2.2.1)

The resulting beam consists of mainly muon neutrinos with a 1% contamination

of electron neutrinos [52]. Fig 2.2.5 shows the energy spectra for electron and

muon neutrinos broken down into the different parent particle of the neutrinos.

The electron neutrinos peak at a higher energy than the muon neutrinos, as a

large fraction of the electron neutrinos come from kaon decays, whereas most

muon neutrinos come from the less massive pion decay.
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Figure 2.2.5: The energy spectrum of the νe and νµ of the beam, broken down
into the particle type that decayed to produce the neutrinos.

2.2.4 T2K Data

The data taking for the T2K experiment is split into seven distinct runs. The

first four runs took data in neutrino mode only. Runs 5, 6 and 7 took data in

a mixture of neutrino mode and anti-neutrino mode. The Protons On Target

(POT) and beam power during these periods are shown in Fig 2.2.6. The long

time period between run 2 and run 3 was due to the 2012 earthquake which struck

Japan, the gap between run 4 and run 5 was due to an accident in the hadron

facility.

2.2.5 The ND280

The ND280 off-axis detector is composed of a suite of smaller subdetectors work-

ing together to optimise the reconstruction of neutrino interactions. It is located

280 m from the target in order to study the unoscillated neutrino beam. A

schematic of the layout of the ND280 detector is shown in Fig 2.2.7.

For most analyses, two Fine Grained Detectors (FGDs) act as target mass for the

incident neutrino beam. The two FGDs are sandwiched between a total of three

Time Projection Chambers (TPCs) that are designed for studying the kinematics

35



2.2 The T2K Experiment

22 March 2016
POT total: 1.2837×1021

      nu-mode POT: 7.124×1020 (55.5%)
      nubar-mode POT: 5.713×1020 (44.5%)

Figure 2.2.6: The accumulated POT for the T2K experiment as a function of
time. The red points show the power of the beam for data taken in neutrino mode,
the purple points are for anti-neutrino mode.
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Figure 2.2.7: An exploded schematic of the ND280 off-axis detector [53]
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of charged particles. Further upstream of the FGDs and TPCs is the Pi Zero de-

tector (PØD). This was designed to study events containing a π0 and to measure

neutrino interaction cross sections on water. The FGDs, TPCs and the PØD

are almost completely surrounded by a series of Electromagnetic Calorimeters

(ECals). The goal of the ECals is to compliment the particle identication proce-

dures from the other detectors with a particular focus on detecting and measuring

the properties of photons.

The collection of FGDs, TPCs and ECals is known as the tracker region of the

ND280. In order to aid the tracker in determination of the momenta and identity

of charged particles, a 0.2 T magnet surrounds the tracker. Finally, a Side Muon

Range Detector (SMRD) is built into the magnet. This acts as a veto on cosmic

rays and particles entering the detector due to neutrino interactions in the sur-

rounding rock whilst also recording tracks leaving the detector at high angles.

2.2.6 ND280 Electronics

Most of the subdetectors in the ND280 complex make significant use of scintilla-

tor and wavelength shifting fibre technologies. Excitation photons from charged

particles passing through a scintillator bar are captured by wavelength shifting

fibres running through the centre of each bar. The scintillation photons are then

recorded by multi pixel photon counters (MPPCs). The light collection efficiency

of the MPPCs peaks at a wavelength of 440 nm [54]. The fibres shift the fre-

quency of the light passing to 510 nm to be closer to the peak collection efficiency.

More detail on the MPPCs can be found in [55].

INGRID, the P0D, the SMRD and the ECals all use identical electronics to read

out the MPPC information. The signals from 64 MPPCs are sent to a Trip-T

Front end Board (TFB), which integrates the recorded charge from each MPPC

and sends the information along to a Readout Merger Module (RMM). As many

as 48 TFBs are read by an RMM (although the number varies). The RMMs send
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trigger signals to the TFBs and receives the data back. The RMM then sends

the data to a computer that collects and processes it.

A Master Clock Module (MCM) is used to receive signals from the accelera-

tor when a neutrino spill will arrive in order to synchronise the electronics. The

MCM is also connected to cosmic trigger modules (CTMs) which receive signals

from the TFBs (or crate master boards for the FGD [56]) and determines whether

a cosmic event has occured in the detector and triggers the readout.

2.2.7 ND280 Software and Data Processing

The information recorded by the ND280 during data taking is processed by several

software packages before it is used by analysers. The three main steps taken, in

order, are calibration, reconstruction and then reduction.

1. Calibration - When electric charge is deposited at a scintillator bar or TPC

node, it is called a hit. The energy deposited by a particle is calculated based

on the measured deposited charge. For each bar or node, calibrations are

applied to every hit to offset the differences in performance of the bars, the

readout and the electronics. Information on how one is these calibrations,

the energy equalisation calibration for the ECals, is performed is given in

Sec 3.1.

2. Reconstruction - All the hits from within a beam window are then processed

by reconstruction software. Tracks and showers from particles, and vertices

from neutrino interactions or secondary processes are formed for each subde-

tector based on the pattern of hits. These are locally reconstructed objects.

Lastly, the information from all the subdetectors is combined to fully recon-

struct the interactions within the ND280. This creates global tracks that

may cross multiple subdetectors.

3. Reduction - The output files from the reconstruction are huge as they con-

tain all the hit information. Consequently, they are processed through a
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final software package to reduce the information to a smaller, and more

useable format. These are the files used in the cross section ratio analysis.

For Monte Carlo (MC) simulated data, additional steps are required. The neu-

trino beam and detector response are simulated with custom packages, with the

neutrino interactions in the detector handled by either NEUT or GENIE Monte

Carlo generators. An illustration of the software chain that processes data and

Monte Carlo is given in Fig 2.2.8.

Figure 2.2.8: An illustration showing how the main software packages process
data and Monte Carlo. For greater detail on these packages, see [53]

Lastly, the Monte Carlo simulated data can have weights applied to the properties

of events based on a random number generator to create so-called toy experiments.

For instance, the reconstructed energy can be weighted for many toys to calculate

the effect it has on a particular type of event. This is done many times when

evaluating systematic uncertainties.
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2.2.8 ND280 Magnet

The ND280 off-axis detector is encased in the recycled UA1/NOMAD magnet

from CERN. This provides a 0.2 T dipole manetic field in order to curve the

trajectories of charged particles travelling through the ND280 detector, allowing

for measurement of the momenta and charge with good resolution. The two half

yokes of the magnet consist of eight C-shaped elements designed, when combined,

to provide a fairly uniform magnetic field across the detector. The magnetic flux

density for a weaker field of 0.07 T in the TPC region is shown in Fig 2.2.9 which

scales linearly to 0.2 T [53]. This shows a roughly homogenous field near the

centre of the TPC with slightly larger deviations nearer the edges.
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Figure 2.2.9: The mapped magnetic field of the central basket region of the TPC.
The colours shown represent the strength of the magnetic field, with values given on
the z-axis in units of Gauss. The neutrino beam enters the TPC from the negative
z-direction [53]. These measurements were taken with a magnetic field strength
of 0.07 T compared to 0.2 T during data taking. The shape of the magnetic field
distribution remains the same at higher values. For reference, the TPCs are 2.4 m
long in the y-direction and 1.0 m in the z-direction.
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2.2.9 Fine Grained Detectors

The ND280 off-axis detector has two fine grained detectors (FGDs) that act as

target mass for incoming neutrinos, as well as the tracking of charged parti-

cles coming from neutrino interactions. The FGDs consist of layers of extruded

polystyrene scintillator (doped with 1 % PPO and 0.03 % POPOP [56]) oriented

perpendicular to the beam direction. The layers alternate between bars oriented

in the x and y directions, to facilitate the tracking of charged particles. When

a charged particle passes through a scintillator bar, it excites the molecules and

de-excitation photons are emitted. These photons are captured by wavelength

shifting fibres that run down the centre of each bar. One end of these fibres is

mirrored and the other leads to a MPPC, which records the signal produced from

scintillation in the bar and sends the information along to the read-out electronics.

Both FGDs are 1.1 tonnes of effective neutrino target and have dimensions

2.300 m × 2.400 m × 0.365 m (width × height × depth in the beam direc-

tion) [56]. The most upstream FGD (FGD1) has 30 layers of bars totalling 5,760

scintillator bars whilst the second FGD (FGD2) only has 14 layers. FGD2 is the

same overall size as FGD1 but with water in between each layer of scintillator,

with half as many layers as FGD1. The water will also act as a target for neutrino

interactions. A subtraction of measured interaction cross sections on FGD2 and

FGD1 allows for measurements of interaction cross sections on carbon and on

water. An image of an FGD is shown in Fig 2.2.10.

2.2.10 Time Projection Chamber

The two FGDs are separated by a time projection chamber (TPC), with an ad-

ditional TPC before and after the FGDs to make a total of three. These were

conceived to have multiple functions; determining the number and orientation of

charged particles traversing the detector, measuring the momentum and charge

of the particles, and as a means of identifying the types of the particles.
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Figure 2.2.10: View of an FGD without the cover. Running perpendicular to the
beam direction are the scintillator modules (green) [53]

The TPCs use argon gas that acts as a drift gas. This is stored in an inner

box, insulated by an outer box filled with carbon dioxide gas. A central cathode

panel creates a uniform electric field across the drift volume of the TPC that

is roughly aligned with the field produced by the magnet [57]. The argon gas

produces ionisation electrons when a charged particle passes through. Due to the

electric field from the central cathode, these electrons drift through the gas away

from the cathode towards one of the readout planes. The drift electrons are then

sampled and multiplied with micromegas detectors [58]. The micromegas detec-

tors are grouped into 72 modules, with the central cathode placed after the first

36 modules. A schematic of a TPC is shown in Fig 2.2.11, the outer dimensions

are 2.3 m × 2.4 m × 1.0 m.

The pattern and timing of the signals is used to form a 3D image of the charged

particle crossing the detector. The curvature of the trajectory in the magnetic

field is used to establish the charge of the particle that created it and calculate its

momentum. In addition to this, the number of electrons recorded at each module

can be used to calculate the rate of energy loss of the particle. Combining all this
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Figure 2.2.11: Drawing showing a simplified layout of a TPC [53]

information means that the TPCs prove very powerful at identifying the particles

that travel through them.

2.2.11 Electromagnetic Calorimeters

The description of the electromagnetic calorimeters is more detailed than the

other subdetectors to accomodate the calibration work described in Sec 3.1 and

Sec 3.2.

The electromagnetic calorimeters (ECals) surround the FGDs, TPCs and the

PØD. Like the FGDs, the ECal uses plastic scintillator bars. The primary goal

of the ECal is to identify photons and to measure their direction and energy as

they leave the tracker area of the detector. This is particularly useful for the de-

tection of π0 → γγ, since the TPCs are insensitive to neutrally charged particles.

A secondary function of the ECals is to compliment the particle identification

performed by the TPCs, the most improvement being found at energies where

certain particles have similar rates of energy loss (i.e. muons and pions or elec-
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trons and protons). The combination of all ECal modules provides near complete

coverage of particles leaving the inner detectors.

Figure 2.2.12: An external view of an ECal module. The scintillator bars are
alligned in the horizonal direction [53]

The ECal can be broken down into three different types: the Barrel ECal con-

taining six modules with 31 layers of scintillator bars, the PØD ECal containing

six modules with 6 scintillator layers, and the downstream ECal (DS ECal) con-

sisting of one module with 34 scintillator layers. One of these modules is shown in

Fig 2.2.12. The bars in the ECal modules are mixtures of double and single-ended

bars [54]. The double-ended bars have a readout MPPC at both ends of the bar,

the single-ended bars are mirrored at one end and are read out by an MPPC at

the other end.

The Barrel ECal modules use bars in the x, y, and, z directions to surround the

tracker on the sides parallel to the beam to catch particles escaping perpendicular

to the beam direction. The bars in the z direction are 3.84 m long and use a

double-ended readout. The bars in the x and y directions are 1.52 m and 2.36 m

long respectively, and both utilise a single-ended readout.

The DS ECal uses only double-ended bars that have alternate layers in the x and

y directions. The bars run perpendicular to the beam direction in order to catch
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particles escaping downstream of the tracker. All the bars in the DS ECal are

2.04 m long.

The PØD ECal modules use single-ended readout bars only, which are arranged

parallel to the beam (z) direction. These surround the PØD instead of the tracker

and are 2.34 m long.

2.2.12 Pi Zero Detector

The Pi Zero Detector (PØD) was designed with the aim of helping to understand

one of the largest backgrounds at the Super Kamiokande detector; neutral current

events that produce a π0 i.e. νµ+N → νµ+N +π0. To achieve that understand-

ing, a water target was needed for the PØD, the same as in SK. The PØD uses

planes of scintillator bars in the x and y directions. In between these layers are

fillable water bags and lead and brass sheets that act as targets [59]. This allows

for a subtraction method between water-in and water-out to determine the cross

sections on water. The scintillator bars, like the FGDs, are read out at one end

using wavelength shifting fibres.

The PØD has a total of 40 layers with 134 bars running in the y direction and

126 in the x direction. This arrangement has a fine enough segmentation to re-

construct charged particle tracks, and electromagnetic showers due to π0 → γγ.

The active region of the PØD has dimensions 2.1 m × 2.2 m × 2.4 m and is

located upstream of the FGDs and TPCs.

2.2.13 Side Muon Range Detector

The Side Muon Range Detector (SMRD) is built into the magnet of the ND280

detector, and so surrounds the ECals and the tracking detectors. The SMRD has

three primary functions: record and measure the momenta of muons exiting the
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inner detectors, trigger cosmic rays entering the ND280, and identify tracks en-

tering the ND280 from beam neutrinos interacting in other materials surrounding

the ND280 [60].

The SMRD uses 440 scintillator modules inserted in the air gaps between the

steel plates of the magnet flux return yokes. There are 16 of these flux return

yokes and they form a ring that surrounds the inner detectors on four sides.

As with the other ND280 subdetectors, the SMRD scintillators are read out us-

ing wavelength shifting fibres attached to Multi Pixle Photon Counters (MPPCs).

2.2.14 INGRID

The INGRID detector (Interactive Neutrino GRID), is an on-axis detector de-

signed to monitor the beam centre and intensity. At nominal beam intensity,

this is acheived daily using high-statistics samples of neutrino interactions on the

iron in INGRID. The measurement of the beam centre is achieved at 0.4 mrad

precision at the near detector pit 280 m downstream of the beam production

point. Unlike the other detectors in the near detector complex, INGRID is not

magnetised, meaning that charge discrimination is not possible.

INGRID is made up of 14 identical modules arranged in a cross shape along the x

and y directions, with two additional modules located away from the beam center,

as shown in Fig 2.2.13. These two additional modules check the axial symmetry

of the beam. All 16 modules use alternating layers of tracking scintillator planes

and iron plates, surrounded by veto scintillator plates to reject interactions from

outside the detector. The total mass of each module is 7.1 tonnes, allowing for

the high-statistics samples needed to achieve INGRID’s Physics goals.
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Figure 2.2.13: A schematic of the INGRID on-axis detector [53]

2.2.15 Super Kamiokande

The T2K far detector, Super Kamiokande (SK), is located 295 km away from the

beam production point, 1,000 m below ground, in a mine under Mount Kamioka.

Being so far underground means that the flux of cosmic rays entering the detector

is reduced significantly. SK uses Cherenkov radiation to detect charged particles

created by neutrino interactions on water within the detector. A schematic of

the detector is shown in Fig 2.2.14.

The SK detector contains 50,000 tonnes of ultra pure water housed in a large

cylindrical vessel, which acts as target for neutrino interactions. The detector is

made of two parts; an inner and outer detector, divided by a cylindrical support

structure. The inner detector holds 36,000 tonnes of ultra pure water and has

11,146 inward facing Photo Multiplier Tubes (PMTs) [61]. The outer part acts

as a veto on incoming charged particles and has 1885 outward facing PMTs.

When a charged particle travels through the water in SK faster than the speed of
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Figure 2.2.14: A schematic of the Super Kamiokande experiment [53]
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2.2 The T2K Experiment

light in water, it produces Cherenkov radiation in a cone centred on the direction

of the charged particle. This cone of light can be detected by the PMTs, creating

a ring image for contained events. The properties of each ring can be used to

determine the type of particle that produced it, and the energy and direction

of the particle. Fig 2.2.15 shows the differences between muon-like rings (left)

and electron-like rings (right). As the electrons are more likely to scatter in the

detector, they produce more diffuse rings, whereas the rings produced by muons

are clearer. This can be used to distinguish between the two particles, whilst the

amount of light emitted can be used to calculate the energy of the particle.
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Figure 2.2.15: A muon-like event (left) and an electron-like event (right) in the
Super Kamiokande detector. The electron-like ring is fuzzier than the muon-like
ring due to electrons having a shorter mean free path than muons [53]

The SK detector has other goals beyond T2K, such as searches for proton decay,

studying solar and atmospheric neutrinos, and supernovae relic neutrinos.
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Chapter 3

Studies with Electromagnetic

Calorimeter
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3.1 ECal Calibration

3.1 ECal Calibration

3.1.1 Overview

All the subdetectors in the ND280 detector require calibrating to ensure that

each bar or node in the subdetector performs consistently with the others. The

focus here will be the energy equilisation calibration of the ND280 ECals. For

the relevant detail on the detector, refer to Sec 2.2.11.

The purpose of this calibration is to ensure that all the scintillator bars in the

ECals record the same amount of energy for a particle passing through. This

is necessary as slight differences in each bar could result in different amounts of

energy recorded, which in turn could affect the measurements performed by the

ND280.

3.1.2 Data Sample

To measure the differences between each bar, a well understood control sample

with high statistics is needed. Cosmic muons are ideal for this as they are abun-

dant and act like MIPs (Minimum Ionising Particle), meaning that they deposit

a roughly equal amount of energy in each bar as they pass through. To select

MIP-like tracks, only cosmic tracks that go all the way through an ECal are used.

A schematic showing a charged particle passing through multiple bars is shown

in Fig 3.1.1.

The energy recorded for each hit needs two corrections applied to it; one for the

angle from perpendicular of the track passing through the bar and the other for

the distance the hit was from the MPPC at the end of the bar. The correction

for track angle is necessary as a particle that travels through the bar at a high

angle will have a longer path in the scintillator and so will deposit more energy.

The correction is calculated by determining the path length of the particle inside

the bar. The correction for the distance the hit was from the sensor is required as
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Figure 3.1.1: A schematic showing a charged particle traversing an ECal.

the light travelling down the fibre in the bar attenuates and so hits further from

the sensor will have a lower recorded energy. The average energy recorded in bins

of distance from the sensor is plotted and fitted with a double exponential [54].

The fit equation is shown in Eq 3.1.1 for current recorded by an MPPC, IMPPC,

due to a hit x m from the sensor. The other parameters are free parameters used

in the fits and are used to calculate the correction.

IMPPC = A

(
1

(1 +R)
e−x/λ1 +

R

(1 +R)
e−x/λ2

)
+B (3.1.1)

The method for the energy equalisation calibration was inherited from the ND280

calibration group who also performed this calibration for T2K runs 1-3.

3.1.3 Procedure

The energy spectrum for each bar is plotted by recording the energy of all hits

(corrected for path and attenuation) originating from cosmic muons. An exmple
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3.1 ECal Calibration

of this is shown in Fig 3.1.2 for a bar in the DS ECal. The energy of a hit in

these plots is given in Photon Equilivent Units (PEU), which is related to the

number of photons recorded by the MPPCs. The energy spectrum for each bar

is fitted with a Landau-Gaussian distribution and the most probable value of the

fit is used as a measure of the response (the average energy recorded) of that bar,

E. This quantity can be calculated for a single bar, or groups of bars. A Landau-

Gaussian is used to take into account both the energy spectrum of cosmic muons,

described by a Landau distribution, and the response of the bar, described by a

Gaussian distribution.
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Figure 3.1.2: The energy spectrum for cosmic muons shown in the blue histogram
as measured by a bar in the ECal. The red curve is a fitted Landau-Gaussian
distribution, the parameters of which determine the response of the bar.

The equation for the probability density function, p(x), for a Gaussian distri-

bution and Landau distribution are given in Eq 3.1.2 and Eq 3.1.3 respectively.

The fit to the energy spectrum is the convoluted sum of these two distributions.

The parameters µ and σ are the mean and standard deviation of the Gaussian

distribution.
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3.1 ECal Calibration

p(x) =
1

2πσ2
e−

(x−µ)2

2σ2 (3.1.2)

p(x) =
1

π

∫ ∞
0

e−t log t−xt sin(πt)dt (3.1.3)

For each bar, i, a fractional correction, ci, is calculated by finding the average

energy recorded by that bar, Ei and dividing by the average energy recorded for

all the bars of the same orientation and module, ET , as shown in Eq 3.1.4.

ci =
Ei

ET
(3.1.4)

These calibration constants are calculated using through-going cosmic muons and

applied to beam data on a hit-by-hit basis.

3.1.4 Energy Equalisation

As a check of the procedure, the calculated constants are applied back to the

energy spectra for each bar, as in Eq 3.1.5.

E ′ =
E

ci
(3.1.5)

The response of all the bars should be much more uniform with these applied.

The results of this are shown in Fig 3.1.3 for T2K runs 5 and 6. The green points

represent the spread in response for different bars in the ECals before the bar

equalistaion calibration is applied. The blue points show the spread after the cal-

ibration is applied. The horizontal blocks in channel ID correspond to different

RMMs while the two different groupings in bar response correspond to double or

single-ended bars. The two missing RMMs correspond to the P0D ECal RMMs

that are not calibrated with this method.
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Figure 3.1.3: The average energy recorded for each bar (shown as channel ID) is
shown as a scatter in green. The blue points show the same distributions with the
calibration constants applied. The top plot was created using run 5 data whilst the
bottom plot was made using run 6 data. The blocks in channel ID correspond to
the different RMMs (RMM 2 and 7 are missing as these are for the P0D ECal). The
RMMs with two areas of response are those that contain a mixture of double and
single-ended bars, with the single-ended bars collecting more energy on average.
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A more robust test of the energy equalisation calibration is to apply them at the

hit level instead of to the whole distribution. The constants are applied back to

a statistically independent sample of cosmic muons as a better cross check. Ad-

ditional corrections are also applied to take into account the differences between

double and single-ended bars and the differences in the modules. Each module is

scaled to have the same average response as the DS ECal as it has been the most

stable during running. The distribution shown in Fig 3.1.4 shows the spread in

uncalibrated responses and Fig 3.1.5 shows the calibrated responses, verifying the

procedure.
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Figure 3.1.4: The average response for all the bars with no calibrations applied.
The two different peaks correspond to bars with single and double-ended readouts.

A final check of the stability of the calibration constants is performed by compar-

ing one set of constants with another. This is shown in Fig 3.1.6. The red and

blue histograms show the 1 - run 5 and 1 - run 6 calibration constants respectively

for all the bars in the barrel ECal and DS ECal. These are the constants that

are applied to the data. The black histogram shows the difference between the

run 5 and run 6 constants (normalised to the run 5 constants). The narrow peak
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Figure 3.1.5: The average response for all the bars with the bar equalisation
calibration applied and additional calibrations to equalise the different modules
and bar types.

for the difference in these constants shows the stability of these constants across

different runs.
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Figure 3.1.6: The run 5 calibration constants (blue) compared with the calibra-
tion constants for run 6 (red). The black histogram shows the calculation of (run
5 - run 6)/run 5 calibration constants.
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3.2 ECal Scintillation Degradation

3.2.1 Overview

The ECal scintillator bars were made at FNAL from extruded polystyrene doped

with organic fluors at concentrations of 1% PPO and 0.03% POPOP [54]. The

performance of these bars is expected to gradually decrease with use and time.

This effect needs to be parameterised to correct for reduced amounts of energy

recorded per hit in later T2K runs. The different modules have bars constructed

to have varying lengths, with some modules having double ended readout and

others having single ended readout. For this reason, and the fact that the de-

gredation of the bars is heavily dependent on the temperature, the different bar

types are treated separately in this study. More detail on the bars can be found

in the ECal JINST paper [54].

The degredation of the bars can be attributed to several effects [62]:

1. Thermo-oxidative chemical reactions resulting in the creation of perox-

ides which absorb scintillating radiation, essentially making the bars more

opaque.

2. Mechanical degradation due to chemical stress which can cause surface

cracks that disrupt light transmission.

3. Diffusion of low molecular components of the formulation which can cause

both surface and internal defects. This can cause yellowing of the scin-

tillator increasing opacity. Cracking can also arise that may disrupt light

transmission.

More information on the processes behind the ageing can be found in [63]. Which

of these cause the degradation in the ND280 ECal bars is not discussed here. In-

stead a parameterisation is given such that the effects can be extrapolated to the

future and a correction can be applied to any data taken to normalise to a chosen
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date. The temperature dependance of the scintillator ageing is discussed in [62].

Scintillator bars were held at a constant temperature for an extended period to

test the ageing as a function of temperature. This was done for 45 ◦C, 65 ◦C and

85 ◦C with a significantly higher rate of light loss recorded at 85 ◦C.

A similar study has already been performed by the MINOS collaboration which

uses the same scintillator technology as the ND280 detector. They report a 3.5%

loss of light yield per year in the near detector and 3.0% in the far detector over a

seven year period with the two detectors running at different temperatures. The

loss of light yield follows an exponential form and the temperature dependence

was found to be 0.2 ± 0.06 %/ ◦C in the near detector and 0.4 ± 0.07 %/ ◦C in

the far detector [64].

3.2.2 Procedure

The sample used for studying the ageing of the scintillator bars is the same as is

used for the energy equalisation. This sample was described in Sec 3.1.2.

After being corrected for the path and attenuation of the track, the recorded

charge of all hits for a particular bar type is plotted. This distribution is then fit-

ted with a Landau-Gaussian function, the MPV (Most Probable Value) of which

gives the average recorded charge by that bar type in Photo-Equivilent Units

(PEU). An example of the charge distribution and the fitted Landau-Gaussian

function is shown in Fig 3.2.1.

This procedure is repeated for different time periods and the Laundau Gaussian

fit parameters are studied for each period to test for variations with time. The

MPV and width of the distribution are of particular interest to describe the rate

of degredation and the affects this has on the data. The uncertainty on the MPV

is calculated by dividing the fit width, w, by the square root of the total number

of hits, as shown in Eq 3.2.1. The average charge recorded as a function of T2K
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Figure 3.2.1: The recorded charge distribution for run 1 cosmic muons for all
bars in the DS ECal, fitted with a Landau-Gaussian. The MPV of the fit is used
as a measure of the average charge recorded. This spectrum can in principle be
found for a single bar or group of bars.

run is shown in Fig 3.2.2.

σ =
w√
N

(3.2.1)

The procedure is then repeated for bins of hit time since the T2K runs do not

correspond to actual times.

3.2.3 Results

To get a clear picture of the characteristics of the ECal scintillator bar degrada-

tion, examine the parameters of the fits to the charge distributions for different

bins of time. Fig 3.2.3 shows the average response of the ECal modules as a

function of time. Each time bin corresponds to roughly one month.

It is possible to see by eye that the response gradually decreases with time, as

would be expected. To quantify this, the plots are fitted with a line (as shown in
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Figure 3.2.2: The average recorded charge per T2K run, calculated by finding
the MPV of a Landau-Gaussian fit to the charge distribution for each run. Note
that the Barrel ECal modules were not in place during run 1.
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Figure 3.2.3: The average recorded charge for different time periods. Each data
point corresponds to roughly a month. The bars are grouped by module and
orientation.
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Fig 3.2.4) and an exponential (shown in Fig 3.2.5). These fit parameters can be

used to estimate the ECal response in the future or to apply a hit-level correction

to the recorded charge. The fitted equations are shown in Eq 3.2.2 and Eq 3.2.3

(where Q̄ is the average charge recorded and t is the number of years from 2010)

with fit parameters and their uncertainties shown in Tab 3.2.1 and Tab 3.2.2 for

the straight line fits and exponential fits respectively.

Q̄lin = A+Bt (3.2.2)

Q̄exp = A+Bekt (3.2.3)
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Figure 3.2.4: The average recorded charge for different time periods. Fitted with
a straight line to parameterise the rate of degredation.

There should be a small amount of correlation between the data points since the

temperature the ND280 operates at changes over the course of a year, which af-

fects the rate of degradation. This analysis does not take these correlations into

account when fitting the light yields as a function of time. This will result in the

χ2 of the fits slightly smaller than they would be otherwise.
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Figure 3.2.5: The average recorded charge for different time periods. Fitted with
an exponential to parameterise the rate of degredation.

Module A B χ2/NDF

DS ECal 27.72 ± 0.38 -0.70 ± 0.11 0.2

BrECal X 22.34 ± 0.27 -0.71 ± 0.08 1.1

BrECal Y 21.51 ± 0.27 -0.38 ± 0.08 0.3

BrECal Z 25.25 ± 0.40 -0.64 ± 0.11 0.2

Table 3.2.1: The fitted parameters to the average charge distributions for the
straight line fits. The parameters A and B are explained in Eq 3.2.2
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Module A B k χ2/NDF

DS ECal 23.29 ± 2.30 5.53 ± 1.63 -0.31 ± 0.24 0.1

BrECal X 17.90 ± 1.70 5.92 ± 1.22 -0.34 ± 0.15 0.8

BrECal Y 2.77 ± 1.78 18.80 ± 12.18 -0.02 ± 0.004 0.3

BrECal Z 21.57 ± 1.12 5.29 ± 0.93 -0.40 ± 0.28 0.1

Table 3.2.2: The fitted parameters to the average charge distributions for the
exponential fits. The parameters A, B and k are explained in Eq 3.2.3

Over the plotted time period, it is difficult to fully distinguish the linear and

exponential hypothesis. However, a previous study with similar bars recorded an

exponential loss in light yield in time [62], and so this is expected to also be the

case for the ECal scintillator.

Using these fit parameters it is possible to calculate the percentage drop in re-

sponse from to 2010 to 2015 for both the line and exponential hypotheses and

also estimate the drop in response in future years simply using the fit equation.

However, this method will not take into account the large correlation between

fit parameters and so will lead to very large uncertainties. Instead, it is better

to use these fits to extrapolate to the future simply by extending the fit range

and calculating the confidence intervals to give an estimate of the uncertainty on

the future response. This is shown in Fig 3.2.6 and Fig 3.2.7 for the linear and

exponential fits respectively. This method has the advantage that it will take

the parameter correlations into account and the numeric values can be extracted

from the fits and limits. The results of this are summarised in Tab 3.2.3.

The other fit parameter of interest is the width of the Landau-Gaussian distribu-

tion. This can be informative as to whether the shape of the charge distribution

is changing with time. Fig 3.2.8 shows the width against time and Fig 3.2.9 shows

the MPV divided by width. There are greater fluctuations in these plots com-

pared to the MPV plots as these variables are less immediately affected by the

ageing. This means that for some of the modules, the fits are not good represen-

66



3.2 ECal Scintillation Degradation

Year (from 2010)

0 2 4 6 8 10 12 14 16 18

C
ha

rg
e 

M
P

V
 (

P
E

U
)

0

5

10

15

20

25

30

/NDF = 1.22χy = -0.7x + 22.29   

Barrel ECal X

Year (from 2010)

0 2 4 6 8 10 12 14 16 18

C
ha

rg
e 

M
P

V
 (

P
E

U
)

0

5

10

15

20

25

30

/NDF = 0.42χy = -0.36x + 21.43   

Barrel ECal Y

Year (from 2010)

0 2 4 6 8 10 12 14 16 18

C
ha

rg
e 

M
P

V
 (

P
E

U
)

0

5

10

15

20

25

30

/NDF = 0.32χy = -0.68x + 25.38   

Barrel ECal Z

Year (from 2010)

0 2 4 6 8 10 12 14 16 18

C
ha

rg
e 

M
P

V
 (

P
E

U
)

0

5

10

15

20

25

30

/NDF = 0.32χy = -0.69x + 27.7   

DS ECal

Figure 3.2.6: The linear fits for the ageing extrapolated up to 2028. The blue
band shows a 95% confidence interval on this extrapolation and the green band
shows a 68% confidence interval.
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Figure 3.2.7: The exponential fits for the ageing extrapolated up to 2028. The
blue band shows a 95% confidence interval on this extrapolation and the green
band shows a 68% confidence interval.
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3.2 ECal Scintillation Degradation

Module Q̄ 2010 Q̄ 2015
(% drop)

Q̄ 2020
(% drop)

Q̄ 2025
(% drop)

Linear Fit

DS ECal 27.7 ± 0.2 24.2 ± 0.1
(87%)

20.7 ± 0.4
(75%)

17.3 ±0.7
(62%)

BrECal X 22.3 ± 0.3 18.8 ± 0.2
(84%)

15.3 ± 0.6
(69%)

11.8 ± 1.0
(53%)

BrECal Y 21.4 ± 0.2 19.6 ± 0.1
(92%)

17.8 ± 0.4
(83%)

16.0 ± 0.6
(75%)

BrECal Z 25.3 ± 0.2 22.0 ± 0.1
(87%)

18.6 ± 0.4
(74%)

15.2 ± 0.7
(60%)

Exponential Fit

DS ECal 28.5 ± 0.4 24.4 ± 0.1
(86%)

23.4 ± 0.6
(82%)

23.2 ± 0.9
(81%)

BrECal X 23.2 ± 0.8 19.0 ± 0.2
(82%)

17.8 ± 1.0
(77%)

17.5 ± 1.5
(75%)

BrECal Y 21.5 ± 0.2 19.6 ± 0.1
(91%)

18.1 ± 0.3
(84%)

16.9 ± 0.4
(79%)

BrECal Z 27.0 ± 0.4 22.3 ± 0.1
(83%)

21.7 ± 0.3
(80%)

21.7 ± 0.4
(80%)

Table 3.2.3: The average charge recorded at different times in Photon Equivalent
Units (PEU) for the different bar types in the ECal using a linear fit and an
exponential fit. The values for 2020 and 2025 are calculated by extrapolating the
fit range to later times. The percentage response compared to 2010 (roughly when
T2K started taking data) is also given.
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3.2 ECal Scintillation Degradation

tations of the data. However, there is still a reasonably clear downward trend in

the fitted widths, corresponding to the charge distribution narrowing with time.

Looking at Fig 3.2.9 it seems that this is roughly at the same rate as the MPV

is decreasing, shown by the relative flatness of the fits.
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Figure 3.2.8: The width of the Landau-Gaussian fit to the recorded charge dis-
tribution for different time periods. Fitted with a straight line to parameterise the
rate of degredation. The general downward trend in the data shows that the charge
spectrum recorded by the scintillator bars is narrowing as they age.

3.2.4 Summary of Ageing Study

The scintillator ageing can be clearly parameterised by both a linear and an

exponential fit. The exponential fit seems to model the data more closely with a

lower fit χ2 and is the model predicted by the literature [62] and previous results

[64]. The fit parameters can be used to correct for the affects of the ageing

in T2K data by scaling to a particular date. This correction is not currently

implemented in T2K analyses but will be in the near future. Additionally, the

fits can be used to predict the effectiveness of the ECal modules in the future

which can help determine whether they can be reused in future experiments. On
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Figure 3.2.9: The MPV divided by width of the Landau-Gaussian fit to the
recorded charge distribution for different time periods. Fitted with an straight line
to parameterise the rate of degredation. The relative flatness of the fits shows that
the MPV of the charge distribution is decreasing at a similar rate to the width.

the time scale of the Hyper-Kamiokande Experiment, the scintillator bars, for all

types, are only expected to have roughly 30% loss of light collection efficiency

assuming the exponential model. This is significant, but well understood, so it

should be possible to properly take this into account and reuse the ECals in the

future [65]. As T2K continues to take data, the fits should improve, allowing for

a better parameterisation of the scintillator ageing.
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3.3 TPC to ECal track matching Uncertainties

3.3 TPC to ECal track matching Uncertainties

3.3.1 Introduction

If there is a difference in efficiency between data and Monte Carlo for matching

components of a track between a TPC and an ECal, then the number of events

in a selection using a TPC object that appears to enter an ECal will be different

for data and Monte Carlo. This could mean counting extra or missing events in

several T2K selections. This would have an impact on many T2K analyses. To

take this into account, a systematic uncertainty is calculated for tracks entering

the barrel ECal or the downstream ECal from a TPC.

The topology of interest is shown in Fig 3.3.1. This is a schematic of the ND280

detector with a muon neutrino interacting in FGD1, producing a muon that enters

TPC2 and then the Barrel ECal.

3.3.2 Procedure

The fractional systematic uncertainty, σ, is calculated by taking the difference

in track matching efficiency across the TPC and ECal for data and Monte Carlo

simulation. This is combined with the uncertainties on the calculated efficiencies,

as shown in Eq 3.3.1, ε is the measured efficiency whilst δε is the statistical

uncertainty on the efficiency. This basic procedure was first outlined in [52] and

improved upon in this analysis by combining neutrino and anti-neutrino data, and

by studying the systematic uncertainties in terms of two variables simultaneously.

The samples used in this study are as follows: neutrino data with Protons On

Target (POT) = 5.5× 1020, neutrino NEUT MC fake data with 4.5× 1021 POT,

anti-neutrino data with 2.9 × 1019 POT and the anti-neutrino NEUT MC fake

data with 1.0× 1021 POT. The normalisations of these samples does not matter

when calculating the efficiencies, but the MC samples having greater statistics

will mean a smaller value of δε2MC compared to δε2data.
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3.3 TPC to ECal track matching Uncertainties

Figure 3.3.1: A schematic of the ND280 with a simulated neutrino interaction
producing a track that travels through TPC1 and into the Barrel ECal. The
neutrino enters from the left, travels through the PØD and TPC1 and then interacts
in FGD1.
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3.3 TPC to ECal track matching Uncertainties

σ =
√

(εdata − εMC)2 + δε2data + δε2MC (3.3.1)

The efficiencies for both data and Monte Carlo are calculated using tracks that

appear to enter an ECal from a TPC based on an event selection described

in Sec 3.3.3. These events are used as a signal event, whilst any global track

with both a TPC segment and an ECal segment is considered as passing the

cuts. As discussed in Sec 2.2.7, a global track is a reconstructed track that uses

information from multiple subdetectors. Eq 3.3.2 gives the calculation of the

efficiency whilst Eq 3.3.3 is the formula that describes the calculated statistical

error on the efficiencies based on binomial statistics. n is the number of tracks

that reconstructed with matched TPC and ECal segments. The true matching

efficiency is not used as it would not be possible to calculate this for data.

ε =
Global track has TPC and ECal segments and passes cuts

Global track has TPC and ECal segments
(3.3.2)

δε =

√
ε(1− ε)

n
(3.3.3)

A large statistical uncertainty on the efficiencies would also mean a large sys-

tematic uncertainty (see Eq 3.3.1). In order to minimise this, neutrino data

is combined with anti-neutrino data into a single sample; and likewise for the

Monte Carlo. Due to the differences in cross section between neutrinos and anti-

neutrinos, the samples cannot simply be added. Instead, a weight is applied to

the anti-neutrino events before they are combined, as shown in Eq 3.3.4.

Total = n(ν) + w × n(ν̄) (3.3.4)

The event weights are calculated by taking the ratio of anti-neutrino mode data

events to neutrino mode events that pass the event selections described in Sec 3.3.3

after the samples have been scaled to the same number of protons on target. The
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3.3 TPC to ECal track matching Uncertainties

same procedure is also applied to the Monte Carlo samples. The calculation of

the event weights is shown in Eq 3.3.5.

w =
ν̄(POT)

ν(POT)
× ν(Events)

ν̄(Events)
(3.3.5)

The uncertainties on the event weights are calculated using the square root of the

number of events and propagated through to the uncertainties on the efficiencies

and subsequently contributing to the systematic uncertainty. This increase is not

as large as the decrease associated with the reduced statistical uncertainty, as

shown in Sec 3.3.4.

3.3.3 Event selection

The event selection is split into two cases; either the track appears to enter the

barrel ECal or the downstream ECal. The selection is applied to any TPC track,

whilst further requirements can be added to assess the systematic uncertainty

for different particle types. The cuts were first detailed in [52], with the slight

difference that there is no momentum requirement on the tracks entering the ECal

in order to study the systematic uncertainty as a function of track momentum.

The cuts are as follows:

1. Good data quality - All the ND280 subdetectors, beam monitors and mag-

netic horns must be working correctly during the beam spill. The interac-

tion must occur within the timing window for beam events.

2. Track Quality - The track is required to have at least 18 hits in a TPC.

This is to ensure that the track is reconstructed well enough for the particle

identification to work.

3. FGD vertex - An interaction vertex reconstructed within the FGD1 fidu-

cial volume. At least one track from this vertex must be reconstructed as

entering a TPC.

The following cuts are applied to select tracks entering the downstream ECal:
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3.3 TPC to ECal track matching Uncertainties

4. The position of the track as it exits the most downstream TPC satisfies:

• -920 < x < 920 mm.

• -910 < y < 930 mm. The requirements on the x and y position mean

that the track is in the centre of the TPC. The z direction is the beam

direction. 0 mm is the centre of the TPC, which is 2.3 m wide in x

and 2.4 m in y.

• z > 2665 mm so the track ends near the back of TPC3. The DS ECal

starts at z = 2855 mm. This is so the track is heading towards the DS

ECal as it exits the TPC.

5. The angle as the track exits the most downstream TPC is less than 40o

from the z-axis.

The following cuts are applied to select tracks entering the barrel ECal:

6. The position of the track as it exits the most downstream TPC satisfies:

• Outside -890 < x < 890 mm or 920 < y < 1085 mm. So that the TPC

track end is near the barrel ECal.

• Inside 600 < z < 2600 mm. The barrel ECal starts at z = -663.97 mm

and ends at z = 3216 mm.

7. The angle as the track exits the most downstream TPC is greater than 35o

from the z-axis.

8. The absolute value of the azimuthal angle as the track exits the most down-

stream TPC is less than 160o.

The events that pass these selections are classified as events that appear to enter

an ECal. The results of these selections are shown in Figs 3.3.2 and 3.3.3.

To calculate the systematic uncertainty for different particles, the track must be

compatible with that particle type in the most downstream TPC. P(particle) is

an identification variable known as pull, defined in Eq 3.3.6. The pulls are based

75



3.3 TPC to ECal track matching Uncertainties

Track Momentum (GeV/c)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
ou

nt
s/

B
in

0

2000

4000

6000

8000

10000

12000
Data
mu-
e-
pi-
mu+
e+
pi+
p
other

cosine(Track Angle)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ou

nt
s/

B
in

0

1000

2000

3000

4000

5000

6000

7000

Figure 3.3.2: Events that appear to enter the barrel ECal. The Monte Carlo
sample is normalised to the data POT. Both samples are for neutrino mode. Tracks
that enter the barrel ECal from an FGD and through a TPC tend to enter at high
angles and have low track momentum, as they have to bend in the magnetic field.
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Figure 3.3.3: Events that appear to enter the downstream ECal. The Monte
Carlo sample is normalised to the data POT. Both samples are for neutrino mode.
Tracks originating from an FGD that enter the DS ECal are very forward going
and cannot be bent significantly by the magnetic field, meaning they tend to have
higher momentum than tracks entering the barrel ECal.
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on the rate of energy loss of the track, dE/dx, as measured in a TPC and the

expected value based on the measured momentum of the track and an assump-

tion of the particle type. This leads to different values of P for different particle

hypotheses which can discriminate between particle types. For a track created by

an electron, P for the electron hypothesis should be close to 0. The uncertainty

on dE/dx is given by σdE/dx.

P =
(dE/dx)meas − (dE/dx)exp

σdE/dx
(3.3.6)

For electron-like tracks, the track must satisfy cuts on the TPC pull:

• -1 < P(e) < 2

• | P(µ) | > 2.5

• | P(π) | > 2

For muon-like tracks, the track must be compatible with the muon hypothesis in

the most downstream TPC:

• -2 < P(µ) < 2

• P(e) > 2 or P(e) < -1

The events that pass the selection criteria and are electron-like are shown in Figs

3.3.4 and 3.3.5 whilst muon-like tracks that pass the selection criteria are shown

in Figs 3.3.6 and 3.3.7.

The same selections can be applied to the anti-neutrino data and Monte Carlo

samples. Since there is no charge discrimination in the selections, similar distribu-

tions are expected for neutrino data and Monte Carlo compared to anti-neutrino

data and Monte Carlo. These checks are done in order to ascertain the validity

of combining the samples. The data plotted against the Monte Carlo for anti-

neutrino running is shown in Fig 3.3.8 to show that there are no large differences
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Figure 3.3.4: Electron-like events that appear to enter the barrel ECal. The
Monte Carlo sample is normalised to the data POT. Both samples are for neutrino
mode.
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Figure 3.3.5: Electron-like events that appear to enter the downstream ECal.
The Monte Carlo sample is normalised to the data POT. Both samples are for
neutrino mode. The peak at around 1 GeV track momentum is due to protons
that have similar rate of energy loss as electrons of the same momentum.
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Figure 3.3.6: Muon-like events that appear to enter the barrel ECal. Both
samples are for neutrino mode.
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Figure 3.3.7: Muon-like events that appear to enter the downstream ECal. Both
samples are for neutrino mode.

in shape between the two. The normalisations of the samples is less important,

as this will cancel out when calculating the efficiencies. The selections shown are

for all types of particle, with no requirements to distinguish between electrons

and muons.
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Figure 3.3.8: The selections applied to the anti-neutrino samples. The left plot
shows tracks appearing to enter the barrel ECal whilst the right plot shows tracks
appearing to enter the downstream ECal. The plots are normalised to have the
same POT.

Finally, the neutrino data is plotted against anti-neutrino data in Fig 3.3.9 and

the neutrino Monte Carlo is plotted against the anti-neutrino Monte Carlo in

Fig 3.3.10. These plots are area normalised due to the differences in cross sec-

tions between the two samples and serve to demonstrate that the shapes of the

distributions are similar. These plots are also shown for all types of particles
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with no extra cuts applied. The similarities in the shape of these distributions,

with statistical fluctuations, confirms the validity of combining the neutrino and

anti-neutrino samples.
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Figure 3.3.9: A comparison between neutrino data (histogram) and anti-neutrino
data (points). The distributions are normalised to have the same area due to the
differences in cross sections between neutrinos and anti-neutrinos. The plot on the
left is for events that appear to enter the barrel ECal whilst the plot on the right
is for events that appear to enter the downstream ECal.
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Figure 3.3.10: A comparison between neutrino Monte Carlo (histogram) and anti-
neutrino Monte Carlo (points). The distributions are normalised to have the same
area due to the differences in cross sections between neutrinos and anti-neutrinos.
The plot on the left is for events that appear to enter the barrel ECal whilst the
plot on the right is for events that appear to enter the downstream ECal.
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3.3.4 Systematic Uncertainties

The event weights calculated for adding the anti-neutrino samples to the neutrino

samples are shown in Fig 3.3.11. These weights are the ratio of the number of

neutrino events divided by the number of anti-neutrino events after scaling to

the same POT. The weights are expected to be a little under 3, due to the fact

that there is an exact ratio of three for charged-current quasi-elastic interactions

between neutrino and anti-neutrinos. Including all interaction types reduces the

expected weights, particularly at higher neutrino energies. The plots show that

the event weights are as expected. The discrepancies between data and Monte

Carlo for the event weights are attributed to a convolution of several possible

effects; such as mismodelling of background events or a poor understanding of

the flux or cross section. For the purpose of the event weights, it is more im-

portant that the distributions of events for neutrino Monte Carlo compared with

anti-neutrino Monte Carlo and neutrino data compared with anti-neutrino data

are consistent, as shown in Figs 3.3.9 3.3.10.
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Figure 3.3.11: The event weights used to combine the neutrino and anti-neutrino
samples. The left plot shows the weights for events that appear to enter the barrel
ECal, the right plot shows events that appear to enter the downstream ECal. The
red points are for data and the black points are for Monte Carlo.

Using the event selections described in Sec 3.3.3 and Eq 3.3.2 the track matching

efficiencies can be calculated. Fig 3.3.12 shows the efficiency as a function of

track momentum in the TPC (left) and as a function of track angle as it exits

the TPC (right) for the downstream ECal. Whilst Fig 3.3.13 shows the same
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for the Barrel ECal whilst both figures are for all particles types. The errors on

these efficiencies are calculated using Eq 3.3.3.
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Figure 3.3.12: The efficiency of sucessfully matching a track that has passed
through a TPC and entered the downstream ECal.
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Figure 3.3.13: The efficiency of sucessfully matching a track that has passed
through a TPC and entered the barrel ECal.

As a final check on the validity of combining samples, the track matching effi-

ciency for neutrino and anti-neutrino mode are compared. This is shown in Fig

3.3.14. The results for all four samples appear similar, within the statistical er-

rors. The dip in efficiency at low track momentum is due to particles that leave

only a very small amount of activity in the ECal or are stopped by the TPC

casing and so cannot be reconstructed. For the barrel ECal, the efficiency tends

to be lower as the tracks tend to enter at a steeper angle and so are more difficult
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to reconstruct correctly.
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Figure 3.3.14: The efficiency of track matching for all four samples, neutrino
data, anti-neutrino data, neutrino Monte Carlo and anti-neutrino Monte Carlo.
Left shows the efficiency of matching a TPC track to an object in the barrel ECal,
right shows for the downstream ECal.

The corresponding systematic uncertainties for the barrel ECal and downstream

ECal are shown in Figs 3.3.15 and 3.3.16 respectively. The systematic uncer-

tainty is calculated using Eq 3.3.1 and using events from the neutrino and anti-

neutrino samples. The black points show the calculated systematic uncertainty

using only neutrino mode, whilst the red points show the systematic uncertainty

calculated from the combined samples. This includes the uncertainty on the event

weights, which are propagated through and combined into the total systematic

uncertainty. The distributions are characterised by considering both the differ-

ence in efficiency between data and Monte Carlo and the uncertainties on the

efficiencies. The bins with the largest systematic uncertainty are those where the

data and Monte Carlo do not agree or where the number of selected events are

low. The added statistics gained by including the anti-neutrino samples is enough

to reduce the systematic uncertainty despite the uncertainty on the event weights.

The efficiencies and systematic uncertainties can also be presented in two dimen-

sions. This allows for a full understanding of the uncertainty with respect to all

track dynamics. The efficiency for the combined neutrino and anti-neutrion sam-

ples as functions of track angle as it exits the TPC and the measured momentum
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Figure 3.3.15: The systematic uncertainty associated with matching tracks that
have passed through a TPC and entered the barrel ECal.
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Figure 3.3.16: The systematic uncertainty associated with matching tracks that
have passed through a TPC and entered the downstream ECal.
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are shown in Fig 3.3.17 for tracks entering the barrel ECal and Fig 3.3.18 for

tracks entering the downstream ECal. The corresponding systematic uncertainty

is presented in Fig 3.3.19. As would be expected, the track matching efficiency

improves with higher momentum tracks and tracks that hit the ECal straight on.

The systematic uncertainties increase with two dimensional binning, due to the

decreased statistics in each bin.
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Figure 3.3.17: The efficiency of matching a track from a TPC to the barrel
ECal. The left plot shows ND280 neutrino mode data and anti-neutrino mode
data combined whilst the right plot shows neutrino mode Monte Carlo and anti-
neutrino mode Monte Carlo combined.
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Figure 3.3.18: The efficiency of matching a track from a TPC to the downstream
ECal. The left plot shows ND280 neutrino mode data and anti-neutrino mode data
combined whilst the right plot shows neutrino mode Monte Carlo and anti-neutrino
mode Monte Carlo combined.

Finally, the efficiencies and systematic uncertainties are presented for electron-like

and muon-like tracks. These plots are not broken down into the two dimensional
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Figure 3.3.19: The systematic uncertainty of matching a track from a TPC to the
downstream ECal based on the efficiencies shown in Figs 3.3.17 and Figs 3.3.18.
The left plot shows the results for the Barrel ECal whilst the right plot shows for
the downstream ECal.

cases as the extra requirements needed to select these tracks further limit the

statistics, reducing the usefulness of these plots. Fig 3.3.20 shows the track

matching efficiency from a TPC to the barrel ECal and the downstream ECal

for electron-like tracks with the corresponding systematic uncertainties presented

in Fig 3.3.21. The same plots are shown for muon-like tracks in Figs 3.3.22

and 3.3.23. All these plots are created using the combined neutrino mode and

anti-neutrino mode, for data and Monte Carlo. The statistical uncertainties on

the efficiencies are included in the systematic uncertainties, and so these plots

are shown without error bars.

There is some significant bin-to-bin fluctuations in Figs 3.3.21 and 3.3.23. This

is mostly due to small differences between data and Monte Carlo having a signif-

icant effect on the systematic uncertainty. Consequently, statistical fluctuations

on the efficiencies create the fluctuations seen. This effect should be minimised

in future as T2K continues to take data.

The efficiencies, their statistical uncertainties and the associated systematic un-

certainties for each selection are summarised in Tab 3.3.1 with no binning applied.

The values for the efficiencies and systematic uncertainties for specfic momentum

and angle ranges are shown in Tab 3.3.2 for the barrel ECal and Tab 3.3.3 for the
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Figure 3.3.20: The efficiency of matching a track from a TPC to an ECal for
electron-like tracks. The left plot shows for the downstream ECal whilst the right
plot shows for the barrel ECal.
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Figure 3.3.21: The systematic uncertainty associated with matching electron-like
tracks from a TPC to an ECal. Left shows for the downstream ECal, right shows
for the barrel ECal.
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Figure 3.3.22: The efficiency of matching a track from a TPC to an ECal for
muon-like tracks. The left plot shows for the downstream ECal whilst the right
plot shows for the barrel ECal.
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Figure 3.3.23: The systematic uncertainty associated with matching muon-like
tracks from a TPC to an ECal. Left shows for the downstream ECal, right shows
for the barrel ECal.

downstream ECal. These numbers are for events with no requirements to select

particular particles.

Particle Detector Data Eff Data Err MC Eff MC Err Systematic
(%)

All Barrel 0.456 0.003 0.446 0.001 1.0%

DS 0.774 0.002 0.779 0.001 0.6%

Ele Barrel 0.223 0.006 0.223 0.002 0.7%

DS 0.713 0.007 0.711 0.002 0.7%

Muon Barrel 0.771 0.005 0.766 0.002 0.7%

DS 0.923 0.002 0.940 0.001 1.7%

Table 3.3.1: The efficiencies of matching a track between a TPC and an ECal
for data and Monte Carlo, their errors and the associated systematic uncertainties
broken down into different types of particle and all particle types. No binning is
applied.
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Momentum (GeV/c) Data Eff Data Err MC Eff MC Err Systematic
(%)

0 - 0.4 0.351 0.004 0.322 0.001 3%

0.4 - 0.8 0.552 0.006 0.535 0.002 1.8%

0.8 - 1.2 0.618 0.011 0.629 0.004 1.6%

1.2 - 2.5 0.605 0.015 0.629 0.006 2.8%

2.5 - 5 0.554 0.030 0.505 0.014 5.9%

Angle (2π rad)

0 - 0.2 0.378 0.011 0.345 0.004 3.5%

0.2 - 0.4 0.466 0.009 0.436 0.003 3.1%

0.4 - 0.6 0.538 0.006 0.504 0.002 3.5%

0.6 - 1.0 0.464 0.005 0.444 0.002 2.1%

Table 3.3.2: The efficiencies of matching a track between a TPC and the barrel
ECal for data and Monte Carlo, their errors and the associated systematic un-
certainties. No requirements are added to the tracks to select different types of
particle.
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Momentum (GeV/c) Data Eff Data Err MC Eff MC Err Systematic
(%)

0 - 0.4 0.544 0.005 0.532 0.002 1.3%

0.4 - 0.8 0.733 0.004 0.728 0.001 0.7%

0.8 - 1.2 0.879 0.004 0.883 0.001 0.6%

1.2 - 2.5 0.904 0.003 0.905 0.001 0.4%

2.5 - 5 0.936 0.004 0.951 0.001 1.6%

Angle (2π rad)

0.70 - 0.85 0.645 0.006 0.635 0.002 1.3%

0.850 - 0.950 0.751 0.004 0.743 0.001 0.8%

0.95 - 1.00 0.827 0.003 0.830 0.001 0.4%

Table 3.3.3: The efficiencies of matching a track between a TPC and the down-
stream ECal for data and Monte Carlo, their errors and the associated systematic
uncertainties. No requirements are added to the tracks to select different types of
particle.

90



3.3 TPC to ECal track matching Uncertainties

3.3.5 Summary

The matching uncertainty for the barrel ECal as a whole is 1.0% and 0.6% for

the downstream ECal. The numbers separated into particle type are shown in

Tab 3.3.1 and for different momentum or angle bins are shown in Tabs 3.3.2 for

the barrel ECal and 3.3.3 for the downstream ECal. Figs 3.3.15 and 3.3.16

show that including the anti-neutrino samples does reduce the systematic uncer-

tainties but not by much. However, the tools now exist so that further running

in anti-neutrino mode should provide a more significant gain by including these

samples. With more data, the systematic uncertainties can be reduced further

or additional studies can be carried out to look at into systematic uncertainty in

terms of other quantities.
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Chapter 4

Differences in νe and νµ

Interactions
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4.1 Motivation

It is important to understand the differences in νe and νµ interactions for a variety

of reasons. Firstly, a precise knowledge of the ratio of νe to νµ cross sections can

be used as a means of reducing the uncertainties and biases on future oscillation

measurements. This knowledge could also improve the prediction of the number

of neutrino appearance events in future experiments. Also, a difference in νe and

νµ cross sections not due to different lepton masses, would be indicative of New

Physics and could also provide a test of lepton universality. More details on these

ideas are presented in Sec 1.3.1 and Sec 1.3.2.

Comparing the measured cross section ratios with the predictions given in Sec 4.3

would also provide a good test of the models. This would compliment the normal

method of testing the models which is to compare the measured cross sections

directly with the predictions. With the systematic uncertainties partially can-

celling in the ratios, the ratios could actually provide a more accurate test.

Lastly, there are currently no published measurements of any neutrino interaction

cross section ratios for νe and νµ. The MINERvA collaboration is working towards

a comparison of νe and νµ CCQE cross sections [66]. Any of the other ratios

presented in this thesis would be the worlds first measurement of the neutrino

cross section ratios.

4.2 Signal Definition

With four separate selections used it is important to clearly distinguish the dif-

ferent signals. In principle, it would be best to use CCQE and CC interactions

for studying the differences in νe and νµ interactions. However, due to secondary

interactions inside the nucleus and the limits of detectors to fully reconstruct

neutrino interactions, it is difficult to determine experimentally whether an event

is a true CCQE interaction. A further problem is that to determine the num-

ber of CCQE interactions nuclear models have to be used. To deal with this, a
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CCQE signal is used as well as a second signal for interactions that appear to

be CCQE interactions, i.e. an interaction with only the lepton and no mesons

leaving the nucleus. This topology is referred to as CC0π interactions. The focus

of this thesis will be the ratios using the CC0π topology. It is also important

to consistently define the signals between the νe and νµ selections and to ensure

that the CCQE and CC0π events are a subset of the CC inclusive events.

The signal definitions for the four selections are as follows:

• νe CC - Any νe charged current interaction within the FGD1 fiducial volume.

• νe CCQE - Any νe charged-current quasi-elastic interaction within the

FGD1 fiducial volume.

• νe CC0π - A νe charged current interaction within the FGD1 fiducial volume

where one track exiting the nucleus must be an electron with no mesons

exiting the nucleus.

• νµ CC - Any νµ charged current interaction within the FGD1 fiducial vol-

ume.

• νµ CCQE - Any νµ charged-current quasi-elastic interaction within the

FGD1 fiducial volume.

• νµ CC0π - A νµ charged current interaction within the FGD1 fiducial volume

where one track exiting the nucleus must be a muon with no mesons exiting

the nucleus.

The difference between the CCQE and CC0π signals will change the analysis

when dealing with background events and missed events, and when generating

the response matrix for unfolding. All the other steps will remain unchanged.

The affects of this change in signal should be small, as most CC0π events will be

CCQE interactions.
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4.3 Monte Carlo Predictions

The predictions for the cross sections and ratios are calculated using NEUT (5.3.3)

and GENIE (2.8.0) Monte Carlo generators. Both generators can explicitly cal-

culate neutrino cross sections as a function of energy for different targets and

different neutrino flavours. Four selections are used in the analysis, so four cross

sections can be calculated. The cross section is calculated for a neutrino interact-

ing with a Carbon (12C) target since the FGD1 is composed mostly of Carbon.

Calculations of the cross section ratios on other nuclear targets produced identi-

cal results as Carbon, making them independent of target. This may not be true

for data.

Both NEUT and GENIE model the nucleus as a Relativistic Fermi Gas (RFG)

with each nucleon being a spin-half fermion (see [67] for the specific model used

by NEUT and [68] for the GENIE model). The generators both make use of the

Llewellyn-Smith model [27], as discussed in Sec 2.1.6, to calculate the neutrino-

nucleon CCQE cross section. Other models are used to calculate different inter-

action modes [69] [70]. The RFG model is then used to calculate the cross section

for the nucleus as a whole for any specified target. The computed cross sections

can be used when generating simulated data.

For more information on these two generators see [69] and [70] for NEUT and

GENIE respectively with comparisons between the generators discussed in [71].

The main difference between the generators that will affect the cross section pre-

dictions is a different value of axial mass (effective charge radius of a nucleon),

MA, used. For instance, when generating CCQE interactions NEUT uses a value

of MA = 1.2 GeV whereas GENIE uses MA = 0.99 GeV. Other differences include

the RFG model used for the nucleus and the approximations used in the models.

As mentioned previously, a CC0π topology is also used as a signal to search for

interactions that look like CCQE interactions. The generators do not calculate

the cross sections in terms of final state topologies and so the predictions are cal-

culated only in terms of the CCQE cross sections. The interaction cross sections
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for the four signals are shown in Fig 4.3.1 with NEUT shown in red and GENIE

shown in blue. The total charged current cross sections increase almost linearly

with increasing neutrino energy at the relevant energies for this analysis. The

CCQE cross section increases with energy up to ≈ 0.5 GeV then levels out as

other processes become dominant.
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Figure 4.3.1: The cross sections for νe and νµ CCQE and CC interactions calcu-
lated by the NEUT (red) and GENIE (blue) Monte Carlo generators as a function
of neutrino energy.

The predictions are calculated for specific energies. To generate the predictions

for the ratios, a simple division is used on the values of the predictions for the

individual cross sections. The results of this is shown in Fig 4.3.2. For an inter-

pretation of the shape of these predictions, refer back to the kinematic arguements

given in Sec 2.1.7. The agreement between the NEUT and GENIE calculations

is good, with the threshold for producing charged-current interactions other than
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CCQE being the same for both generators. The slight differences are attributed

to the different values of MA used.
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Figure 4.3.2: The cross section ratios as calculated by the NEUT (red) and
GENIE (blue) Monte Carlo generators in terms of interaction type and reaction
topology as a function of neutrino energy.

4.4 Data Samples

Three types of data set are used for this analysis; real data taken with the ND280,

and simulated neutrino interactions within the ND280 from the NEUT and GE-

NIE Monte Carlo generators. Each of the samples was processed with production

6B of the ND280 software [48].
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The NEUT Monte Carlo sample is used as a training sample for selecting νe and

νµ interactions and for determining the number of background events and missed

events. The GENIE sample is used as a control sample for unfolding. The Monte

Carlo samples can also be used for testing the analysis method by extracting the

cross sections and cross section ratios from an independent sample and comparing

with the calculated values. A good agreement is indicative of a valid methodol-

ogy. Lastly, the real data is used to extract a real measurement of the neutrino

interaction cross section ratios. This can be compared to the Monte Carlo results

and predictions.

The Monte Carlo events simulated by NEUT and GENIE as well as the data

samples used for this analysis and the total Protons On Target (POT) for each

are summarised in Tab 4.4.1. The difference between the water and air samples

is whether water bags in the PØD were filled or not. With water in the PØD

acting as extra target material, the rate of background interactions coming from

the PØD will be higher. For this reason, the samples are kept separate.

Sample Data POT NEUT MC POT GENIE MC POT

run2 air 2.08 × 1019 9.14 × 1020 5.76 × 1020

run2 water 2.89 × 1019 1.15 × 1021 1.28 × 1021

run3c air 1.56 × 1020 9.98 × 1020 2.87 × 1020

run4 air 1.76 × 1020 3.49 × 1021 3.57 × 1020

run4 water 1.63 × 1020 3.32 × 1021 1.09 × 1021

Total 5.45 × 1020 9.87 × 1021 3.60 × 1021

Table 4.4.1: A summary of the Protons on Target (POT) for each of the data
and Monte Carlo fake data samples used.
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4.5 Event Selections

The event selections used to calculate the cross section ratios were inherited from

the ND280 νe and νµ analyses. The samples were developed for the oscillation

analyses and have also been used for cross section analyses. The cuts are detailed

extensively in [52] for the νe selections and [72] for the νµ selections.

The basis of the two selections are similar; both search for an interaction in FGD1

with the lepton leaving a track in TPC2. Many of the additional criteria are sim-

ilar between the selections, this helps with the cancellation of the systematic

uncertainties. More details on the selections are given in the following sections.

One of the most powerful particle identification (PID) tools available is the rate

of energy loss of the track (dE/dx) as measured by a TPC. A pull variable, P,

is constructed based on the expected rate of energy loss (exp) for a particle hy-

pothesis calculated using the Bethe-Bloch formula and measuring the momentum

of the track. The pull is then the expected dE/dx minus the measured dE/dx,

normalised to the energy resolution of the TPCs for the particle hypothesis, σ,

as shown in Eq 4.5.1.

P =
(dE/dx)meas − (dE/dx)exp

σ
(4.5.1)

This is used heavily in both the νe and νµ selections.

4.5.1 Selecting νe Events

The criteria for the νe CC selection are as follows.

1. Good data quality - All the ND280 subdetectors, beam monitors and mag-

netic horns must be working correctly during the beam spill. The interac-

tion must occur within the timing window for beam events.
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2. FGD vertex - An interaction vertex reconstructed within the FGD1 fidu-

cial volume. At least one track from this vertex must be reconstructed as

entering TPC1.

3. Negatively charged track - The highest momentum track associated with

the vertex must be reconstructed as being negatively charged. This is the

candidate lepton track. The probability of a track being reconstructed

with the incorrect charge is low, and the uncertainty on this discussed in

Sec 4.7.4.

4. Track Quality - If the candidate lepton track enters an ECal, then it is

required to have at least 18 hits in a TPC. If the lepton candidate does

not enter an ECal, then the requirement is at least 36 hits in a TPC. This

is to ensure that the track is reconstructed well enough for the particle

identification to work.

5. High Momentum - The momentum of the candidate track must be at least

200 MeV. Without this cut, a large background is introduced due to photons

pair producing an electron and positron in the FGD. If the positron track

is missed or reconstructed as a proton, then this will mimick the signal.

6. Electron PID - A complicated series of cuts are applied to the track on

the pull given different particle hypotheses in order to select electron-like

tracks. These are detailed in Eqs 4.5.2 - 4.5.4 in the case where the track

doesn’t enter an ECal. The results of these cuts are shown in Fig 4.5.1.

− 1 > P(e) or P(e) > 2 (4.5.2)

− 2.5 < P(µ) < 2.5 (4.5.3)

− 2.5 < P(π) < 2.5 (4.5.4)

If the track enters an ECal, these conditions are relaxed slightly to the

condition given in Eq 4.5.5 and further criteria are applied using ECal

variables. The results of the relaxed TPC criteria are shown in Fig 4.5.2.
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Figure 4.5.1: The results of the pull cuts on the selection of events after the first
five cuts have been applied. These cuts are only applied to tracks that do not enter
an ECal. The green histograms show electron tracks in the Monte Carlo. The red
arrows point towards the events that are kept after the cuts are applied. For the
plot showing the muon pull cut, the events shown have had the electron pull cuts
already applied. Likewise, for the plot showing the pion pull cut, the electron and
muon pull cuts have already been applied.

101



4.5 Event Selections

The two ECal variables used for particle identificaiton are the energy de-

posited in the ECal, and a log-likelihood variable, L, for determining tracks

from showers. The power of these variables depends on the momentum of

the track and whether the ECal object is contained or not. For tracks enter-

ing an ECal, require that L > 0 (i.e. the object is shower-like) if the track

momentum as it exits the TPC is less than 1000 MeV or the ECal object

is not contained. For contained ECal objects with momentum greater than

1000 MeV, require that the energy deposited is greater than 1100 MeV. The

results of these cuts are shown in Fig 4.5.3.

− 2 > P(e) or P(e) > 2.5 (4.5.5)
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Figure 4.5.2: The results of the pull cuts applied for tracks that enter an ECal.
The red arrows point to events that are kept by the cuts. The green histograms
show electron tracks in the Monte Carlo.

7. 2nd PID - If the track enters a second TPC, further requirements on the

pull as calculated by the second TPC are implemented to reject muons.

These are detailed in Eq 4.5.6
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ECal Shower Likelihood
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Figure 4.5.3: The criteria applied to tracks that use the ECals. The events shown
already have the pull cuts in Eq 4.5.5 applied. The left plot shows events which
are not contained or have track momentum less than 1000 MeV as the track exits
the TPC. A cut on the likelihood variable that discriminates tracks and showers is
applied to these events to select electron tracks. The right plot shows events that
are contained in the ECal and have track momentum greater than 1000 MeV. A
cut is applied to these events on the energy deposited in the ECal. The red arrows
point towards events that are kept after the cuts are applied.

− 2.5 < P(µ) < 2.5 (4.5.6)

8. TPC veto - If a track is reconstructed in TPC1 and the end position is

within 10 cm of the candidate lepton track then the event is rejected. This

is to throw away events where the electron in FGD1 is not created by a

neutrino interacting in FGD1.

9. Invariant mass - If there is an additional track exiting the interaction that

is reconstructed as being positively charged and electron-like (based on pull

cuts), then the invariant mass of the pair is calculated. If this is less than

100 MeV then the event is rejected. This is a further cut designed to

remove events where the electron was not created in a neutrino interaction

but instead by a secondary photon pair producing.

10. PØD veto - Reject any event if a track is reconstructed in the PØD or PØD

ECal. Most of the background events caused by photon pair production in

the FGD originate from the PØD and PØD ECal. This cut is implemented

to try and reduce this background.
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11. ECal veto - If there is an ECal object upstream of the candidate lepton

track, then the event is rejected if the ECal object either starts or ends

within 10 cm of the candidate track start. This cuts helps reject backwards

going tracks mimicking the signal.

Additional requirements are made to select νe CC0π interactions. This means

that the events that pass the νe CC0π selection are a subset of the events that

pass the νe CC selection, which will mean there should be a significant amount

of cancellation of the systematic uncertainties in the CC0π / CC ratio. These

additional requirements are detailed below.

12. No Michel electron - The candidate lepton track cannot appear to decay

into an electron. This is based on a time delay for a stopping muon to decay

and by looking for kinks in the candidate lepton track where a muon may

have decayed into an electron.

13. One proton track - In the case of only one track associated with the vertex,

the track must be the candidate lepton track. If there are two tracks asso-

ciated with the vertex then the second highest momentum track must be

consistent with a proton based on pull cuts. The cuts to select proton-like

tracks are detailed in Eqs 4.5.7 - 4.5.9.

− 0.5 < P(µ) < 2 (4.5.7)

− 1.5 < P(π) < 2.5 (4.5.8)

− 1.5 > P(p) or P(p) > 10 (4.5.9)

4.5.2 Selecting νµ Events

The criteria for the νµ CC selection are significantly simpler than those for the

νe selections due to the greater flux of νµ in the beam meaning there is relatively

a smaller background. The requirements are as follows.

1. Good data quality - As described for the νe selection.
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2. FGD/TPC track - At least one track reconstructed in a TPC comming from

a vertex in FGD1 is required. The highest momentum negatively charged

track is selected as the candidate lepton track.

3. Veto track - If the highest momentum TPC track that isn’t the candidate

lepton track starts within 15 cm upstream of the candidate track, then

the event is rejected. This is to reduce backgrounds caused by neutrino

interactions upsteam of FGD1.

4. Isolated FGD veto - Reject the event if there is an isolated object in FGD1

that is not associated with the candidate neutrino interaction vertex.

5. Muon PID - To select muon-like tracks a likelihood variable is calculated

based on the track pull. Cuts are then applied to this based on the re-

constructed momentum of the candidate track. This provides excellent

separating power between muon tracks and electron, pion or proton tracks.

The likelihood variable, `, is calculated by comparing the computed pull for

a particular hypothesis and the sum of all the calculated pulls (for electron,

muon, pion and proton). This is shown in Eq 4.5.10. An additional like-

lihood variable, `MIP, to distinguish pions from muons is calculated using

the values of ` for different particle types. This is given in Eq 4.5.11.

` =
e−P

2∑
i e
−P2

i

(4.5.10)

`MIP =
`µ + `π
1− `p

(4.5.11)

The cuts to select muon tracks are based on the likelihood variable as cal-

culated for the four different particle hypotheses. An event will pass the

selection if `µ > 0.05 and either the reconstructed momentum is greater than

500 MeV or `MIP > 0.8. The results of these cuts are given in Fig 4.5.4 and

Fig 4.5.5 showing good separation of muon tracks with other particles.
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Figure 4.5.4: The distribution of events in terms of the muon likelihood variable
for the highest momentum track, which must enter a TPC, originating from a
vertex reconstructed within FGD1. The red line points towards events that are
kept after the cut at `µ > 0.05 to select muon tracks.
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Figure 4.5.5: The distribution of events that pass the cut on `µ > 0.05 in terms
of track momentum and `MIP. These tracks must have either reconstructed mo-
mentum greater than 0.5 GeV/c or `MIP > 0.8. The red arrows show the events
that are kept by these cuts.
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As with the νe selections, the CC0π selection is an extension to the CC selection

and so these events are a subset. The additional cuts to select CC0π are detailed

below.

6. One negative track - Reject any event with more than one negative track

associated with the candidate vertex.

7. No Michel electron - Reject any event with a Michel electron reconstructed

inside the FGD1 fiducial volume. The Michel electron does not have to

be associated with the candidate vertex or the candidate lepton i.e. if an

electron is identified in the FGD1 ≈ 2 µs after the beam spill, the event

is rejected. This is to remove background events caused by a neutrino

interaction upstream of the FGD.

8. ECal π0 veto - To reduce the CCπ0 background, remove any event with an

isolated ECal object that is shower-like (due to a photon).

9. Proton cut - Several different topologies are searched for regarding protons

leaving the candidate vertex. Firstly, the candidate lepton track must start

in FGD1 and enter TPC1. The four possibilities for protons are listed

below.

• No reconstructed proton tracks, the candidate muon track is the only

track associated with the candidate vertex.

• A single isolated proton-like track in FGD1. The track must stop in

FGD1 and apart from the candidate lepton track there must be no

other tracks associated with the candidate vertex.

• A single proton-like track in FGD1 that enters TPC1. Apart from the

proton track and the candidate lepton track there must be no other

tracks associated with the candidate vertex.

• A single proton-like track in TPC1 with no proton tracks in FGD1.

This is to select events where the proton is missed in the FGD.
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4.5.3 Event Distributions

The backgrounds to the selections are broken down into five categories. These

are detailed below.

• NC - A neutral current interaction of a neutrino of any flavour interacting

within the FGD1 fiducial volume. NC interactions cannot produce the

charged lepton that is required by the selections, so this background is

relatively small for the νµ selection but has a larger contribution to the νe

selection, as it is more likely to produce secondary electrons than muons.

• νµ/νe - A neutrino of the wrong flavour undergoing a charged current inter-

action within the FGD1 fiducial volume. For the νµ selections, this back-

ground is very low as there are far more νµ than νe in the beam. On the

other hand, there is a significant contribution to the νe selections from νµ

for the same reason.

• OOFV - A neutrino interaction outside of the fiducial volume (OOFV) of

the FGD which looks like a neutrino interaction inside the FGD. For the νe

selection this is broken down into two types.

– OOFV γ - This background primarily concerns the νe selections. A

photon travels though TPC1, which cannot detect electrically neutral

particles, and pair produces an e+e−. If the e+ is missed by the re-

construction then the e− will mimick the signal. These photons are

normally created by a neutrino interaction upstream of FGD1 (most

commonly the PØD) where a π0 is produced, which decays to a pair

of photons. The large contribution of this background is due to the

relatively large number of νµ to νe in the beam and the large number

of interactions in the PØD and other upstream detectors.

– OOFV Other - The other OOFV events are mostly caused by posi-

tively charged particles travelling backwards, usually starting in the

barrel or DS ECal, that stops in FGD1. This is reconstructed as

a forward-going negatively charged particle starting in FGD1. Since

these are reconstructed incorrectly, the particle identification is often
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also incorrect. Thus, the most common backwards going particle that

mimicks the electron or muon is a positively-charged pion. There is a

very small number of events than happen within FGD1 but outside the

fiducial volume and are reconstructed as occuring within the fiducial

volume. This background is also classified as OOFV Other.

• CC Other - This is only for the CC0π samples. A charged current interac-

tion of a neutrino of the correct flavour in the FGD1 fiducial volume with

more than just the lepton and proton leaving the interaction nucleus.

The distributions of the selected events are shown in Fig 4.5.6 in terms of the

reconstructed momentum and angle of the candidate lepton track. In all of these

plots, the signal, as defined in Sec 4.2, is shown in blue and the points show

data. These two quantities are chosen because they can be directly measured in

the detector and the data can be compared with the simulation. The selections

shown are broken down into the desired signal events, and the different types of

background event.

The event distributions are slightly different between νe and νµ. The νe in the

beam tend to be higher energy than the νµ, this means that the lepton momen-

tum is peaked at higher energies and are more forward boosted for signal events.

The electron being lighter than the muon further increases the peak at low angles

in the νe selection compared to νµ. A significant background of out of fiducial

volume events also plays a role in the event distributions for νe, causing a broader

and lower peak in the momentum spectrum.

Fig 4.5.7 shows the same events as the νe and νµ CC0π selections in Fig 4.5.6

but with a CCQE signal instead of CC0π. The raw numbers of events passing

the selection are unchanged, but the amount of background and missed events

are different.

For studying the ratios of neutrino interaction cross sections, other quantities

like neutrino energy and four-momentum transfer, Q2, are more interesting. Us-

ing the truth information for the Monte Carlo, the distributions of the selected
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Figure 4.5.6: The distribution of events for NEUT Monte Carlo and data for the
four selections shown in terms of the reconstructed momentum and angle of the
candidate lepton track. The two plots in the first row are for the νe CC0π selection,
the second row shows the νe CC selection and the third and fourth rows show the
νµ CC0π and νµ CC selections respectively.
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Figure 4.5.7: The distribution of events for NEUT Monte Carlo and data for the
CCQE selections shown in terms of the reconstructed momentum and angle of the
candidate lepton track. The first row shows the νe CCQE selection and the second
row shows the νµ CCQE selection. The numbers of selected events are identical
as the CC0π selections in Fig 4.5.6 but with the signal and backgrounds defined
differently.
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events can be studied for these quantities. It is also possible to look at the true

momentum and true angle of the candidate lepton track to compare with the

distributions shown in Fig 4.5.6. These are shown in Figs 4.5.8 - 4.5.11 for the νe

CC, νe CC0π, νµ CC and νµ CC0π selections respectively. The neutrino energy

and Q2 are more interesting to study but require the use of a model to extract

them in data. The method to do this will be described later.
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Figure 4.5.8: The distribution of NEUT Monte Carlo events for the νe CC selec-
tion shown in terms of the several variables. These are the true momentum and
angle of the electron produced in the interaction, the energy of the interacting neu-
trino and the four-momentum transfered in the neutrino interaction. These rely on
the Monte Carlo truth information and so data can not be added to these plots.
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Figure 4.5.9: The distribution of NEUT Monte Carlo events for the νe CC0π
selection shown in terms of the several variables. These are the true momentum
and angle of the electron produced in the interaction, the energy of the interacting
neutrino and the four-momentum transfered in the neutrino interaction. These rely
on the Monte Carlo truth information and so data can not be added to these plots.
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Figure 4.5.10: The distribution of NEUT Monte Carlo events for the νµ CC
selection shown in terms of the several variables. These are the true momentum
and angle of the muon produced in the interaction, the energy of the interacting
neutrino and the four-momentum transfered in the neutrino interaction. These rely
on the Monte Carlo truth information and so data can not be added to these plots.

114



4.5 Event Selections

True Track Momentum (GeV/c)
0.0 0.5 1.0 1.5 2.0 2.5

C
ou

nt
s/

B
in

0

500

1000

1500

2000

2500
π CC0µν

 CC Otherµν

 NCµν

eν

OOFV

True Neutrino Energy (GeV)
0.0 0.5 1.0 1.5 2.0 2.5

C
ou

nt
s/

B
in

0

200

400

600

800

1000

1200

1400

1600

1800

)θTrue Track Angle (cos 
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

C
ou

nt
s/

B
in

0

1000

2000

3000

4000

5000

)2 (GeV2Q
0.0 0.5 1.0 1.5 2.0 2.5

C
ou

nt
s/

B
in

0

2000

4000

6000

8000

10000

Figure 4.5.11: The distribution of NEUT Monte Carlo events for the νµ CC0π
selection shown in terms of the several variables. These are the true momentum
and angle of the muon produced in the interaction, the energy of the interacting
neutrino and the four-momentum transfered in the neutrino interaction. These rely
on the Monte Carlo truth information and so data can not be added to these plots.
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The shapes of the event distributions for the νe CC selection in Figs 4.5.8 are

strongly influenced by the shape of the backgrounds. The two largest back-

grounds, the muon background and out of fiducial volume photon background,

are both largest at low neutrino energies, low track momentum, and low four-

momentum transfer. There is a strong preference for signal events to be very

forward going due to the forward boosting of the beam, leading to a peak in the

distribution at high values of cos(θ). The background events have a less peaked

distribution with respect to the angle of the candidate track. This is because the

background tracks are often a secondry track from a neutrino interaction or from

a secondary interaction and so tend to have a larger range of angles.

The events in the νe CC0π sample are a subset of those in the νe CC sample

and the CC other interactions have similar distributions. Consquently, the dis-

tribution of these events are similar for both samples. The main difference is

due to CC0π interactions being dominant at lower neutrino energies and so the

distributions of events in terms of track momentum, neutrino energy and Q2 are

all peaked at lower values for the νe CC0π samples than the νe CC samples. The

background from νe CC other interactions increases with energy, track momen-

tum, and Q2, as these interactions require more energy.

The νµ CC selection has a significantly lower rate of background interactions

than the νe CC selection. This is primarily due to two reasons. Firstly, the flux

of muon neutrinos in the beam is much higher than electron neutrinos so the

relative amount of background events with no selections applied is much lower.

Secondly, muons tend to travel much further into the detector and so are easier

to identify than electrons, meaning the background rejection rate is higher. Due

to this, the event distributions are dominated more by the signal events than the

background events. The distributions are similar to those for the νe CC selec-

tion. The main differences arise from the energies of muon neutrinos in the beam

being less than the energy of electron neutrinos. This means that distributions

in terms of track momentum, neutrino energy and Q2 are lower for the νµ sample.
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As with the νe selections, the events in the νµ CC0π are a subset of those in the

νµ CC sample with similar distributions for CC other to CC0π. This means that

the distributions of events are similar for the two samples. The same arguments

as used to describe the differences in the νe CC0π and νe CC samples apply and

the result is distributions that are peaked at lower values of track momentum,

neutrino energy and Q2. The CC other background is the largest background

to the νµ CC0π distribution, with the most contamination at larger values of

neutrino enregy.

4.5.4 Purities and Efficiencies

To quantify how well the selections perform, the purities, ρ, and efficiencies, ε,

are calculated. The purity is a measure of the proportion of selected events that

are signal events, it is calculated in Eq 4.5.12. The efficiency is a measure of the

number of signal events selected compared to the total number of signal events.

Purity multiplied by efficiency is used as a measure of the performance of a selec-

tion as both should be maximised. Both purity and efficiency are dimensionless

quantities.

ρ =
Number of signal events selected

Total number of events selected
(4.5.12)

ε =
Number of signal events selected

Total number of signal events
(4.5.13)

The purities, efficiencies, and purities multiplied by efficiencies of the four selec-

tions are shown in Figs 4.5.12 - 4.5.15 for the νe CC, νe CC0π, νµ CC and νµ

CC0π selections respectively. These are shown in terms of the same variables

used to study the event distributions with the same binning.
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Figure 4.5.12: The purities and efficiencies of the νe CC selection using the same
parameterisation as in Fig 4.5.8. The black points show the purities of each bin
of the selection, the red points show the efficiencies and the green points show the
product of the purities and efficiencies.
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Figure 4.5.13: The purities and efficiencies of the νe CC0π selection using the
same parameterisation as in Fig 4.5.9. The black points show the purities of each
bin of the selection, the red points show the efficiencies and the green points show
the product of the purities and efficiencies.
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Figure 4.5.14: The purities and efficiencies of the νµ CC selection using the same
parameterisation as in Fig 4.5.10. The black points show the purities of each bin
of the selection, the red points show the efficiencies and the green points show the
product of the purities and efficiencies.
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Figure 4.5.15: The purities and efficiencies of the νµ CC0π selection using the
same parameterisation as in Fig 4.5.11. The black points show the purities of each
bin of the selection, the red points show the efficiencies and the green points show
the product of the purities and efficiencies.
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The purity of the both the νe selections increases with track momentum. This

is because the OOFV photon and νµ backgrounds tend to be low energy and so

low track momentum. At higher track momentum, it is easier to differentiate

muons from electrons. Due to how the OOFV photon events are produced, most

of the initial neutrino energy doesn’t go to the electron. The efficiency of the

νe selections increases with track momentum and neutrino energy because low

momentum electrons curve significantly in the magnetic field making them dif-

ficult to reconstruct accurately. At higher momentum, the tracks are easier to

reconstruct and the efficiency improves. This means that above ≈ 0.6 GeV/c

the reconstruction and identification of electron tracks doesn’t improve much.

Both the purity and efficiency suffer in the first bin, this is due to the cut on

reconstructed track momentum at 0.2 GeV/c leading to very few events in this

bin. Since these events have been badly reconstructed, they are more likely to be

background events.

The purity and the efficiency of the νµ CC selection increases with track mo-

mentum for the same reasons as the νe selections; as these events are easier to

reconstruct. For the νµ CC0π selection, the purity and efficiency initially increase

with track momentum as the events are reconstructed more accurately. At higher

momenta (above 1 GeV/c) the amount of charged current interactions that aren’t

CC0π interactions increases and the purity drops. Also the cuts to remove these

events become less effective and the efficiency drops.

The purity of the νe selections increases with more forward angles. This is because

the OOFV photon backgrounds tend to have a large spread in angles whereas the

signal is peaked more at more forward angles. The efficiency of the νe selections

also increases with more forward angles. This is because more forward going

tracks tend to traverse more of the TPC, which helps with reconstruction.

The efficiency of the νµ CC and νµ CC0π selections increases with more forward

angles as these events are easier to reconstruct as they will leave a longer path

in a TPC. The neutral current background producing a single charged pion is

strongly peaked at forward angles for the same kinematic reasons as the case of
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the lepton produced in a charged current interaction. This has the affect that

the purity decreases for very forward boosted tracks. For the CC0π sample, the

largest background is CC other interactions. These also tend to be more forward

boosted as the events that are incorrectly tagged as CC0π tend to only have one

high-momentum track which tends to be forward going. This means the νµ CC0π

sample has a lower purity than the νµ CC sample, particularly for forward going

tracks.

4.6 Method

The interaction cross sections are calculated by first taking the event distribu-

tions described in Sec 4.5.3 and calculating a scaling factor to account for missed

signal events (efficiency) and selected background events (purity). This scaling

factor, f , is given by Eq 4.6.1 where ρ and ε are the purity and efficiency of a

selection as calculated in Sec 4.5.4.

f =
ρ

ε
(4.6.1)

Another factor, ϕ, is needed for each bin to take into account the the fluxes of

electron and muon neutrinos. A description of how this factor is calculated is

given in Sec 4.6.1. The interaction cross section, σ, is then given by Eq 4.6.2 for

the number of selected events x and the number of targets within the Fiducial

Volume, N .

σ =
ρ

ε
· x

ϕN
(4.6.2)

The ratio of two interaction cross sections, R, is then given by Eq 4.6.3 for x1 and

x2 selected events. The number of targets cancels in the ratios and there will be

partial cancellation in the flux weight that needs to be applied, this is described

in Sec 4.6.1. The description of the correlations between the samples and how
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the statistical uncertainties are calculated is given in Sec 4.7.1.

R =
ϕ2

ϕ1

· ρ1ε2
ρ2ε1

· x1
x2

(4.6.3)

To calculate the cross sections and ratios of cross sections in terms of quantities

that aren’t directly accessible in data, such as neutrino energy or four-momentum

transfer, an unfolding procedure is used. This also takes into account events mi-

grating between bins due to errors in reconstruction. Unfolding uses a control

sample to convert the distribution of events from one variable to another. The

full methodology is described in Sec 4.6.2. The cross section calculated for an

unfolded variable is given by Eq 4.6.4 where U(xi) represents unfolding selected

events in terms of variable x with bins i into another variable, y, with bins j. The

purity is calculated in terms of the pre-unfolding variable ρi and applied to the

selected events. Then the purity-weighted sample is unfolded and the efficiency

and flux weight are calculated in terms of the post-unfolding variable and applied

to the unfolded distribution. Lastly, because the data is binned, the width of

each bin, wj, needs to be taken into account too.

(
dσ

dy

)
j

=
U(xiρi)j
εjϕjwjN

(4.6.4)

The cross section ratio in terms of an unfolded variable is then given by Eq 4.6.5.

The width of the bins cancels out in this equation. However, the distribution of

events within each bin will still play a role in the final result.

Rj =
U(xiρi1)j
U(xiρi2)j

· εj2ϕj2
εj1ϕj1

(4.6.5)

4.6.1 Flux Weighting

When comparing νe and νµ cross sections, the different amount of νe and νµ in

the beam needs to be taken into account. For the CC0π / CC ratios the flux
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of signal events will cancel out as these interactions will be from the same neu-

trino species. This means the flux factor will be 1. However, due to slightly

different backgrounds and thus slightly different proportions of νe and νµ in these

selections, the flux will not cancel entirely. The correction for this needs to be

calculated for each bin of the selection.

A weight for each event can be calculated for Monte Carlo using the flux his-

tograms provided by the beam group. These show the number of each type of

neutrinos in the beam as a function of neutrino energy for different runs. The νe

and νµ fluxes, and the ratio of them, are shown in Fig 4.6.1 for the run2 beam

with equivalent histograms existing for all T2K runs. In later runs, the beam

power increased (refer back to Fig 2.2.6) leading to larger fluxes. Also, the beam

width and position change slightly across runs and so each run must be treated

separately.

These histograms are used to generate a weight for each event, w, in Monte Carlo

by finding the value of the flux based on the energy and flavour of the interacting

neutrino. A weight to be applied to each bin, ϕ, is calculated by summing the

weights for each event, as in Eq 4.7.4 for n selected events in that bin.

ϕ =
1

n

n∑
i=0

wi (4.6.6)

This weight can then be applied to the data or Monte Carlo. For data there is

an extra complication; because the weight is calculated using Monte Carlo, the

weight has to be scaled by the ratio of data events to Monte Carlo events in the

bin to ensure that the weighting is applied for the correct number of events. This

should then take into account the different numbers of νe and νµ in the beam

when calculating a cross section or taking a ratio of them.

It was found that the flux weights for the CC0π and CC selections are very sim-

ilar to each other such that their ratios are very close to 1. The weights for the

ratios not being exactly one is due to different proportions of different neutrino
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Figure 4.6.1: The flux of νe and νµ in the beam during run 2 per 50 MeV per
cm2 per 1021 protons on target.
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flavours in the backgrounds to the selections. An example of the actual weights

applied can be seen in Fig 4.6.2 for the νe CC0π / νe CC ratio.
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Figure 4.6.2: The flux weights that need to be applied to take into account the
different amounts of νe and νµ in the beam for the νe CC0π / νe CC ratio. The
weights not being exactly 1 is a consequence of slightly different backgrounds in the
selections. The weights are calculated for the selections unfolded from candidate
track momentum to neutrino energy.

4.6.2 Unfolding

A Bayesian unfolding technique [73] is used to take into account detector ineffi-

ciencies and reconstruction failures. Unfolding is a procedure that uses estimates

of the probability of an event with some true value being measured with some

reconstructed value to unsmear distributions in data. This method can be used

to convert a reconstructed quantity to a “true” quantity, such as reconstruced

track momentum to “true” lepton momentum or neutrino energy.
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These probability estimates come from a statistically independent Monte Carlo

sample. A response matrix encoding these probabilities, Rmt, is calculated based

on event distribution nm and true distribution µMC
t for reconstructed bins m and

true bins t as shown in Eq 4.6.7.

nm =
∑
t

Rmt µ
MC
t (4.6.7)

An unsmearing matrix can be calculated using Bayes Theorem, for T true bins,

as shown in Eq 4.6.8.

R
(1)
tm =

Rmt µ
MC
t∑

i=0,T Rmi µMC
i

(4.6.8)

The unsmearing matrix can then be applied to the reconstructed distribution to

get a representation of the true distribution, as shown in Eq 4.6.9.

µ̂
(i+1)
t =

∑
m

R
(i+1)
tm nm (4.6.9)

A statistically and systematically independent sample is needed as a control sam-

ple. Otherwise this method would be equivalent to simply using the Monte Carlo

truth information from the sample used to study background events and missed

events (the NEUT Monte Carlo). The sample used for unfolding is GENIE Monte

Carlo with 3.50× 1021 POT.

The implimentation of unfolding is handled by RooUnfold [74]. Bayesian un-

folding is chosen over other unfolding methods as it can be applied iteratively.

Choosing zero iterations means that the response matrix is generated using only

the Monte Carlo control sample. With each subsequent iteration, the unfolding

result from the previous iteration is used as a prior to replace µMC
i in Eq 4.6.9.

This means the data is used in the unfolding procedure, making it less model

dependent than the other methods.
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The response matrices for unfolding from reconstructed track momentum to true

track momentum for the four selections are shown in Fig 4.6.3. Since there aren’t

significant biases in the reconstruction, the distributions are fairly symmetrical.
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Figure 4.6.3: The response matrices for converting between reconstructed track
momentum and true track momentum for events passing the four selections. These
were made with an Monte Carlo sample that is statistically independent from the
samples used to study the selections.

The response matrices for unfolding from reconstructed track momentum to neu-

trino energy for the four selections are shown in Fig 4.6.4. These are significantly

different to the response matrices unfolding to true track momentum. This is

because the neutrino energy is necessarily larger than the true track momentum,

leading to a highly asymmetric response matrix. There are cases where the mo-

mentum is reconstructed incorrectly as being larger than the true neutrino energy.

These are rare, but are consistent with the momentum resolution.
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Figure 4.6.4: The response matrices for converting between reconstructed track
momentum and neutrino energy for events passing the four selections. These were
made with an Monte Carlo sample that is statistically independent from the sam-
ples used to study the selections.
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As a check of this method, the unfolded distribution for data and fake data can

be compared to the true distribution for a Monte Carlo sample. The results of

this are shown in Fig 4.6.5 when unfolding from reconstructed track momentum

to true neutrino energy.
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Figure 4.6.5: The four selections shown in terms of neutrino energy. The black
points show the true number of events from the Monte Carlo. The red and green
points show the selections in Monte Carlo and data unfolded with a control sample.
The Monte Carlo distributions are scaled to the same POT as the data.

The reasonable agreement between the unfolded Monte Carlo and the truth from

the Monte Carlo helps to validate the unfolding method. A perfect reproduction

of the true distribution is not expected due to statistical and systematic differ-

ences between the control sample and the sample used for the selections. Iterating

the unfolding will improve the agreement. The issue of the number of iterations
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will be addressed shortly. The unfolded distribution of the data agrees well with

the true distribution and unfolded distribution from the Monte Carlo. When us-

ing a Monte Carlo sample to unfold itself, it was found that the true distribution

was reproduced perfectly. These results help validate the implimentation of the

unfolding procedure.

The unfolding procedure is applied iteratively. With each sucessive iteration, the

data is used to a greater extent in the unfolding procedure. As a consequence

of this, the statistical fluctuations on the data has a greater effect with each

iteration. The optimum number of iterations to apply is determined by calcu-

lating a χ2 for unfolding based on the difference between the true and unfolded

distributions. Since the unfolding isn’t expected to reproduce the values from

the Monte Carlo, the χ2 can be quite large. More important is the different χ2

values as a function of number of iterations. The number of iterations is then

chosen by whether the χ2 of the convergence decreases faster than the effect on

the statistical uncertainty increases. Fig 4.6.6 shows the value of the χ2 of the

unfolding divided by the sum of the statistical uncertainty of the bins.

The downward trend shown in Fig 4.6.6 shows that one unfolding iteration is op-

timum, as the uncertainty on the result grows faster than the χ2 of the unfolding

decreases. In the case of a much larger data set, this may not be the case.

The issue of model dependencies is addressed in Fig 4.6.7. This shows two dif-

ferent models being used to unfold data from reconstructed track momentum to

neutrino energy for the four selections. If the results of unfolding data using a

GENIE sample, shown in black, and a NEUT sample, shown in red, show signifi-

cant differences, then the models have a large impact on the result. The points do

agree reasonably well, which is a good sign. However, it is not true that similar

results mean that the result is not model independent, as the two models may be

incorrect in the same way.
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Figure 4.6.6: The χ2 of the unfolding procedure on data divided by the statistical
uncertainty on the result of the unfolding with the number of unfolding iterations.
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Figure 4.6.7: A comparison of how two different models can affect the results
of unfolding for the four selections. The points show data unfolded with a GE-
NIE Monte Carlo sample (black) and a NEUT Monte Carlo sample (red). The
uncertainties are statistical only.
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4.6.3 Binning

The binning to use for each variable is determined by studying the distribution

of events with the Monte Carlo. The choice of binning is determined by two

factors; maintaining enough statistics in each bin to ensure a relatively low sta-

tistical error O(10%), and having a roughly equal number of events across each

bin. The latter is difficult as the distributions of events are sharply peaked in all

the variables being studied. The bins chosen due to these criteria will be large

enough that the measurement resolution will not have a significant effect.

Since there are far more events for the νµ selections than for the νe selections, it

would be ideal to use finer binning for these selections and the νµ single ratio.

However, when taking the νe to νµ double ratio, the statistics of the νe samples

are far more important. So the binning chosen is based on what is optimum for

the νe selections.

4.6.4 Method Test

As a check of this method, the cross sections are calculated using Eq 4.6.4 with

the NEUT Monte Carlo sample and the data, then compared with the Monte

Carlo predictions given in Sec 4.3. Since the Monte Carlo generators do not cal-

culate cross sections in terms of the final state topology, the CCQE cross section

is calculated in place of CC0π for these comparisons. The resulting cross sections

are given in Fig 4.6.8 for NEUT simulated data shown as black points, the data

shown as red points, with NEUT and GENIE calculations shown as curves in blue

and red respectively. These are plotted in terms of true neutrino energy unfolded

from reconstructed track momentum using the GENIE sample acting as a control

sample. The points from data show full statistical and systematic uncertainties

whilst the Monte Carlo points show only statistical uncertainties. A description

of how these uncertainties are calculated is given in Sec 4.7
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The choice of binning for the cross section plots is important for several reasons.

If the bins are too large and encompass areas in with very few events (due to the

bin covering a range not possible with the T2K beam), then the division by bin

width in Eq 4.6.4 will cause the cross section to be measured at too low a value.

On the other hand, if the bins are too small, then the statistical uncertainties will

grow rapidly. On top of this, the distributions of events within the bins needs to

be considered. If most of the events inside a bin are at the lower end of the bin,

then it will pull the measured value of the cross section towards the value at the

lower energy. For this reason, the choice of binning used for the cross sections is

different than that used for the cross section ratios, as these effects will matter

less for the ratios where the statistics are the chief concern.

The Monte Carlo distributions agree quite well with the calculations from the

Monte Carlos within the statistical uncertainties. There are statistical fluctua-

tions on the event selections and unfolding control sample that prevent a perfect

reproduction of the predicted cross section. The slight disagreement between the

NEUT points and the NEUT calculation for the νe CC and νµ CC cross sections

is attributed to model dependency assoicated with unfolding to neutrino energy.

However, the general shape and magnitude of the cross sections are roughly as

expected. This indicates that the method to extract the cross sections with the

unfolding and flux weighting can reproduce the values in the Monte Carlo. The

data shows a systematic difference from the Monte Carlo predictions for the νe

cross sections but agrees reasonably well for the νµ cross sections. This indi-

cates a disagreement between the Monte Carlos and the data. Taking the ratios

of these will help determine whether this is a problem with a particular con-

tributor to the charged current cross section or whether the total is mismodelled.

It is a simple extension to this method to calculate the ratios of the cross sections.

Using unfolding requires the use of a model to determine the distribution of events

in some quantity given another. Due to this, unfolding means that the results

are dependent on how accurately the models simulate the process. Studying

quantities like neutrino energy and four-momentum transferred requires a good

understanding of the neutrino cross section and the interactions of secondary
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Figure 4.6.8: The νe and νµ cross sections for CCQE and CC interactions, plotted
in terms of neutrino energy unfolded from reconstructed track momentum using a
GENIE control sample. The blue and red lines show calculations from the NEUT
and GENIE Monte Carlo generators respectively. The red data points show the
cross section calculated using events simulated with NEUT with statistical uncer-
tainties only and the black points show data with full systematic and statistical
uncertainties. The calculation of these errors will be described later. The measured
values and their uncertainties for data are presented in Tab 4.6.1.
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Eν (GeV) σ(νeCC) σ(νeCCQE) σ(νµCC) σ(νµCCQE)

0 - 0.2 0 0 0 0

0.2 - 0.4 0 0 1.84 ± 0.11 1.67 ± 0.11

0.4 - 0.6 3.34 ± 1.59 2.30 ± 1.21 3.88 ± 0.09 2.90 ± 0.08

0.6 - 0.8 5.32 ± 1.78 3.22 ± 1.24 5.91 ± 0.11 3.34 ± 0.08

0.8 - 1 6.30 ± 1.88 2.83 ± 1.11 7.17 ± 0.17 3.30 ± 0.12

1 - 1.2 9.75 ± 2.79 4.06 ± 1.52 9.55 ± 0.30 3.94 ± 0.20

1.2 - 1.6 10.0 ± 2.4 3.42 ± 1.28 12.0 ± 0.4 4.48 ± 0.23

1.6 - 2 13.3 ± 3.0 4.38 ± 1.65 16.3 ± 0.6 4.63 ± 0.34

2 - 2.5 14.5 ± 3.2 3.1 ± 1.3 19.4 ± 0.8 4.23 ± 0.35

Table 4.6.1: The four measured cross sections (in units of 10−38 cm2/ GeV/
Nucleon) with the total systematic and statistical uncertainty for each bin. The
values given are for data. The νe cross sections calculated are 0 for 0 - 0.4 GeV.
This is due to a lack of events in these bins in data after unfolding, not a lower
threshold for interactions. This affects the νe results more because there are fewer
νe in the beam and they tend to have higher energies.
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particles within the nucleus. Since these are not well known, it adds uncertainty

to the final result. Unfolding to lepton momentum is safer as the track momen-

tum is directly measurable in the detector and so do not rely on nuclear models

or cross section models to extract the results. Also, comparisons between data

and Monte Carlo distributions for reconstructed track momentum and angle help

validate the results. Consequently, the results are classified as either model de-

pendent for neutrino energy and four-momentum transfer, or model independent

for track momentum and track angle.

4.7 Uncertainties

The uncertainties on the cross sections or ratios can be broken down into 5 un-

correlated types: statistical, flux, cross section, final state interactions (FSI), and

detector uncertainties. These are calculated separately as they won’t have any

affect on each other. The calculation of the statistical uncertainties is given in

Sec 4.7.1. The other four are calculated using a similar procedure as described in

Sec 4.7.2.

The individual sources of uncertainty that contribute to the flux, detector, cross

section and FSI uncertainties are described in Sec 4.7.3 - 4.7.6. The individual

components of these uncertainties are treated as correlated when calculating the

covariance and error matrices, otherwise the uncertainties would be overestimates.

4.7.1 Statistical Uncertainties

The statistical uncertainties on the selections are treated as the square root of the

number of events in each bin. When taking the event ratios, the statistical uncer-

tainties are calculated using Binomial statistics for cases where one selection is a

subset of the other (i.e. CC0π to CC) or Poisson statistics for the double ratios.

139



4.7 Uncertainties

The calculations of these uncertainties for ratio n1/n2 are shown in Eqs 4.7.1 and

4.7.2 for Binomial and Poisson uncertainties respectively.

σB =
1

n2

√
n1

(
1− n1

n2

)
(4.7.1)

σP =
n1

n2

√(
1

n1

+
1

n2

)
(4.7.2)

The uncertainties on the efficiencies and purities have to be taken into account

when weighting the selections. These can also be described by binomial statistics

(Eq 4.7.1). These are added in quadrature with the statistical uncertainties on a

selection or a ratio.

The statistical uncertainty when unfolding is handled by the RooUnfold pack-

age. An uncertainty is calculated for the unfolding by repeatedly varying the

covariance matrix used to relate the reconstructed quantity to the true quantity.

These variations are propagated to the unfolding result and an uncertainty calcu-

lated by comparing to the nominal result. This is similar to the method used to

propagate the systematic uncertainties in Sec 4.7.2. For a single selection, the sta-

tistical uncertainty in each bin post-unfolding is calculated as the square root of

the number of events in that bin added in quadrature with unfolding uncertainty.

This uncertainty is then propagated through the ratios with the uncertainties on

the purities and efficiencies.

A breakdown of fractional statistical uncertainties on the selections and ratios,

and the efficiencies and purities is summarised in Tab 4.7.1 for unbinned events.
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Analysis Selected Purity Efficiency Total

νe CC0π 0.057 0.0065 0.0056 0.057

νe CC 0.053 0.0038 0.0061 0.053

νµ CC0π 0.011 0.00078 0.0011 0.011

νµ CC 0.0065 0.00058 0.00046 0.0065

νe CC0π/νe CC 0.018 0.0075 0.0083 0.021

νµ CC0π/νµ CC 0.0031 0.00097 0.0012 0.0035

DR 0.019 0.0075 0.0084 0.022

Table 4.7.1: A summary of the fractional statistical uncertainties on the number
of selected events and the purity and the efficiency for the four selections and
ratios. No binning is used for these calculations and therefore unfolding is also
unused (unfolding doesn’t change the total number of events). The sample used
for the selections is the full data set, whereas the efficiency and purity calculations
are done using the full NEUT Monte Carlo sample.

4.7.2 Systematic Uncertainty Propagation

For each source of systematic uncertainty, a fractional covariance matrix is calcu-

lated. This relates how each flavour and energy bin is affected by changes in the

systematic parameters and how the changes in each bin affects the other bins. An

error matrix is then calculated by Cholesky Decomposing the covariance matrix

[75], which is then used to propagate the uncertainties to the event selections and

interaction cross section ratios.

For the flux uncertainty, a fractional covariance matrix is provided by the T2K

beam group. For the detector, cross section and FSI uncertainties, the covari-

ance matrices have to be calculated as part of this work. A series of different

weights are calculated for each event using a Gaussian distribution with a width

based on the results of separate T2K analyses. An example of such is given in

Sec 3.3 where the calculated uncertainties correspond to the width of the gaus-

sian. The detector, cross section and FSI uncertainties have multiple sources of
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uncertainty contributing to the total, so the events weights are calculated by ran-

domly throwing each variable simultaneously. The different sources are described

in the following sections.

The covariance matrix is then calculated as in Eq 4.7.3 for n calculated weights

and b bins of energy and flavour. χ and w are the nominal and weighted numbers

of events in each bin of energy and flavour respectively.

Cbb =
n∑
i=0

[
b∑

j=0

j∑
k=0

(χj − wi,j)(χk − wi,k)

]
(4.7.3)

For the detector, cross section and FSI uncertainties, 1,000 weights were used to

calculate the fractional covariance matrices. The resulting matrices are shown in

Fig 4.7.1. The binning used is taken from the covariance matrix provided by the

T2K beam group for the neutrino flux uncertainty. This matrix contains 25 neu-

trino energy bins for the flux in the ND280; 11 νµ bins, 5 ν̄µ bins, 7 νe bins, and 2

ν̄e bins. The error matrices resulting from Cholesky Decomposing the fractional

covariance matrix are shown in Fig 4.7.2.

The systematic uncertainties for a selection are estimated by creating many toy

experiments where the number of events in each bin is weighted (thrown) for

each neutrino species. The resulting distributions for each toy experiment are

then compared to the nominal distribution to calculate the uncertainty. A vector

of random numbers from a gaussian distribution of mean 0 and width 1 is multi-

plied by the relevant error matrix to get the weight, fνiE, for each toy experiment,

i, for each neutrino flavour, ν, for a particular neutrino energy, E.

To calculate the flux uncertainty in terms of any variable, x, not just neutrino

energy, a weight for each bin in x is needed. To do this, a 2D distribution of x

against neutrino energy, E, is made for each neutrino type. For each bin in x,

all the energy bins are weighted by fνiE and then summed. This gives the total

weight to be applied for that variable for that neutrino species. Thus the weights
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Figure 4.7.1: The covariance matrices used to propagate the systematic uncer-
tainties to the event selections and cross section ratios. The 25 bins are bins of
neutrino energy and flavour; 11 νµ bins, 5 ν̄µ bins, 7 νe bins, and 2 ν̄e bins. The
binning was chosen based on the flux covariance matrix provided by the T2K beam
group.

for each bin, Wνi, for neutrino flavour ν and toy experiment i, are calculated as in

Eq 4.7.4 where yν is the number of events in the energy bin of the 2D histogram.

For n toy experiments, the flux uncertainty, σ, is given by Eq 4.7.5 where xν is the

number of events in the selection. In Eq 4.7.5 the calculation of the uncertainty

is simply the standard deviation from the mean where the formula is modified

to sum each of the neutrino flavours that contribute to the number of events for

each toy.
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Figure 4.7.2: The error matrices calculated by Cholesky Decomposing the co-
variance matrices shown in Fig 4.7.1. These are used when generating the different
toy experiments.

Wνi =
∑
E

fνiEyν (4.7.4)

σ =

√√√√ 1

n

n∑
i=1

[∑
ν

(
xν − xν(1 +Wνi)

)]2
(4.7.5)

For the ratios, the same procedure is used where for each toy the contribution of

each neutrino type to both selections is weighted by the same amount. Likewise

for the double ratio. This is described in Eq 4.7.6 for a single ratio where xν and

yν are the number of events in the first and second selection respectively with
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neutrino parent, ν.

σ =

√√√√ 1

n

n∑
i=1

[∑
ν xν∑
ν yν
−
∑

ν xνWνi∑
ν yνWνi

]2
(4.7.6)

The uncertainties are propagated in a similar manner when considering the un-

folded distributions. The difference is that the number of events in each bin is

weighted, then unfolded, then compared with the nominally unfolded value. If

the number of events in a bin is represented by x for the pre-unfolded distribu-

tion, then the number of events in a bin of the unfolded distribution is denoted

U(x). In addition, the response matrix used to perform the unfolding is thrown

using the same tweaks used to throw the selections for each toy. The calculations

of the uncertainties in the unfolded distributions are then described by Eq 4.7.7

and by Eq 4.7.8 for the ratios of unfolded distributions.

σ =

√√√√ 1

n

n∑
i=1

[∑
ν

(
U(xν)− U(xν(1 +Wνi))

)]2
(4.7.7)

σ =

√√√√ 1

n

n∑
i=1

[∑
ν U(xν)∑
ν U(yν)

−
∑

ν U(xνWνi)∑
ν U(yνWνi)

]2
(4.7.8)

4.7.3 Flux Uncertainties

The flux uncertainty is the uncertainty on the number and energy of each type of

neutrino in the beam. Mismodeling the neutrino flux could cause rate and shape

differences in the results. The NA61/SHINE experiment [76] at CERN provides

constrains on the T2K flux [77], which helps to reduce the uncertainties on T2K

analyses.

NA61/SHINE is an experiment designed to study hadron production in hadron-

proton, hadron-nucleus and nucleus-nucleus collisions. It uses several different
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targets for studying these collisions including a replica of the T2K target. The

energy of the proton beam can be matched to the 31 GeV used by T2K [76]. The

results from NA61/SHINE are used to determine the uncertainty on several of

the different components to the total flux uncertainty [77].

The individual sources of uncertainty that lead to the flux uncertainty in the

ND280 are given below. These are all included in the fractional covariance matrix

shown in Fig 4.7.1.

1. Pion production.

The rate of pion production when the proton beam hits the target has a

significant effect on the flux of muon neutrinos in the beam. This would

have a large effect on the νe/νµ ratios.

2. Kaon production.

The rate of kaon production when the proton beam hits the target has a

significant effect on the flux of electron neutrinos in the beam. This would

have a large effect on the νe/νµ ratios.

3. Secondary nucleons.

The amount of secondary nucleons further affects the amount of pions and

kaons, and therefore the flux of electron and muon neutrinos.

4. Production cross sections.

This is the total cross section of protons interacting with the target. It

mostly affects the beam flux normalisation with a slight effect on the shape.

Consequently, it shouldn’t affect the ratios much.

5. Beam angle.

The off-axis angle of the neutrino beam significantly affects the flux and

energy of neutrinos in the ND280 (see Fig 2.2.4).

6. Protons on target.

If the number of protons in the proton beam is modelled incorrectly, it would

change the flux of neutrinos but not the energy spectrum or the ratio of νe

to νµ in the beam.
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7. Horn alignment.

If the magnetic horns focus the beam differently to expectation, then it

could change the off-axis angle and width of the beam, altering the neutrino

flux significantly.

8. Horn current.

The operating current of the focusing horns affects how focused (narrow)

the neutrino beam is. It could potentially affect the energy spectrum of the

neutrino beam.

4.7.4 Detector Uncertainties

The detector uncertainties relate to the performance of the detector and how

it is modelled. These include reconstruction failures, detector inefficiencies and

smearing of measured values from the true values. These can effect both the rate

and shape of the cross sections and the ratios of the cross sections.

The sources of uncertainty associated with the detector are detailed below. The

uncertainties of these individual systematics are determined with custom T2K

analyses (such as the one described in Sec 3.3) and the results are used to generate

event weights for the parameter affected by the systematic. Additional detail on

all of these can be found in [72]. When calculating the covariance matrix for the

detector systematics, all of these parameters are thrown simultaneously to create

a combined weight for each toy experiment.

1. Magnetic field distribution.

If the distribution of the magnetic field is not modelled properly then it

would affect the measured momentum of a track. Refer back to Fig 2.2.9

for the variation in magnetic field strength in a TPC.

2. Momentum measurement scale.

The measurement of the momentum of a track depends on the absolute

strength of the magnetic field. This is different to the magnetic field distri-

bution systematic but can similarly affect the momentum measurements.
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3. Momentum resolution.

There is a difference found in data and Monte Carlo for the momentum

resolution of a track as measured using the curvature of the track. This sys-

tematic is applied to take this into account by smearing the reconstructed

momentum in the Monte Carlo. The effect changes as a function of momen-

tum but is typically 5% - 10%. The potential effect of this uncertainty is a

possible change in shape for the extracted interaction cross section ratios.

4. Momentum range resolution.

This systematic uncertainty is similar to the mometum resolution system-

atic but concerns the momentum resolution determined using the range of

the track. It has similar consequences of potentially changing the shape of

an extracted interaction cross section.

5. Particle identification in the TPCs.

Uncertainties on the measured dE/dx pulls in the TPCs could affect the

relative numbers of different particles selected.

6. Particle identification in the FGDs.

An incorrectly identified track in the FGD could change how the event is

classified by incorrectly reconstructing the number of protons leaving the

interaction vertex.

7. Energy resolution in the ECals.

If the energy of an ECal segment is incorrectly calculated it could change

the measured momentum of the track and the number of selected events

of different particles. The νµ selections do not use the ECals and so this

uncertainty will only affect the νe selection.

8. Charge confusion.

For very straight tracks, backwards-going or highly curved tracks, the elec-

tric charge can be reconstructed incorrectly. This will change the number of

background events in the selection and the number of missed signal events.

9. TPC track reconstruction efficiency.

This concerns the efficiency of reconstructing an isolated TPC object. If

148



4.7 Uncertainties

this is mismodelled then the relative number of background events will be

different between data and Monte Carlo.

10. FGD track reconstruction efficiency.

If the efficiency of reconstructing FGD objects is different in data and Monte

Carlo, then the relative number of events rejected by the FGD veto cuts

will be different and the number of background events in the selections will

be different. It could also affect the reconstruction of the topology of the

event by having a different rate of missed proton tracks in data and Monte

Carlo.

11. FGD to TPC track matching efficiency.

If the efficiency of matching a track across an FGD and a TPC is not

modelled correctly in the simulation, then the number of missed signal

events will be incorrecly calculated.

12. Number of OOFV background events.

For a description of the different types of OOFV background events refer

back to Sec 4.5.3. Most of these are caused by some sort of reconstruction

failure and so have reconstruction-related uncertainties applied to them.

The largest contributor to the OOFV background is events that interact

upstream of the target FGDs, typically the PØD, ECals or magnets. The

interaction cross sections on the heavy targets in these modules is poorly

understood and so have a large uncertainty associated with them. This

systematic uncertainty should have a much larger affect on the νe selections

than the νµ selections since the OOFV background is much larger.

13. Pile up.

This systematic affects the cuts designed to veto interactions upstream of

the target FGD. The pile up is the number of interactions in the detector

within a beam spill. If this is miscalculated for the simulation then the

number of events rejected by the veto cuts will be different for data and

Monte Carlo.
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14. The mass of the FGD.

If the known mass of the FGD is incorrect, then any extracted interaction

cross section on the FGDs will be scaled to the wrong number of nucleons.

Due to engineering tolerances involved in production the mass is not per-

fectly known. A previous study has shown the uncertainty on this is 0.67%

[80]. For the ratio of interaction cross sections on the same target, this

should completely cancel out.

15. Michel electron reconstruction efficiency

The reconstruction efficiency for decay electrons in the FGD is relevant

for identifying background events due to low-momentum pions. If this is

mismodelled then the number of background events due to other particles

will be different for data and Monte Carlo.

16. TPC clustering efficiency.

This is related to the probability of finding a group of single TPC hits (a

cluster) that corresponds to a track in the TPC. A difference in efficiency

for data and Monte Carlo would cause a different fraction of events to pass

the criteria on the number of TPC hits in data and Monte Carlo.

17. ECal object reconstruction efficiency

This concerns the efficiency of reconstructing an ECal object, particularly

the cuts to veto various backgrounds originating in the ECals and the PID

for the νe selection. If the efficiency is modelled incorrectly, then the back-

ground contributions to the selections will be different for Monte Carlo and

the data.

18. Particle identification in the ECals.

Uncertainties on the performance of the ECal PID variables will affect the

numbers of background events in the selection and the number of missed

signal events. Since the νµ selection does not use ECal information, this

should only affect the νe selection.

19. TPC to ECal track matching efficiency.

The number of missed signal events in the selections could be mismodelled
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due to a miscalculation of the efficiency of matching a track between a TPC

and an ECal. A detailed description of how this is calculated is given in

Sec 3.3. This should only affect the νe selections as the νµ selections don’t

use ECal information.

20. FGD to ECal track matching efficiency.

This is similar to the TPC to ECal track matching systematics but concerns

FGD track matching. This shouldn’t affect any of the selections as none of

them include tracks with this topology.

21. Pion secondary interactions.

A pion produced in a neutrino interaction can undergo an interaction with a

nucleus after travelling away from the neutrino interaction vertex. Possible

interaction types are elastic scattering, absorption, and charge exchange.

These mechanisms are not well understood and make it difficult to identify

pion tracks. Consequently, the amount of pion background events that are

rejected will not be well understood.

4.7.5 Cross section Uncertainties

The cross section uncertainty relates to how likely a neutrino is to interact within

the detector and the topology of the interaction. This is dependent on the flavour

and the type of interaction the neutrino undergoes.

The weights calculated for an individual cross section uncertainty are based on

previous measurements of neutrino interaction cross sections. The Gaussian used

to generate the weights has a width that is related to the uncertainty on the

previous measurements. Where these measurements show inconsistencies or dis-

agreement with the models, the range of weights calculated is larger leading to

a larger uncertainty on this analysis. NEUT is used to calculate a total weight

for the cross section uncertainty for each event. These weights are then used to

calculate the covariance matrix given in Fig 4.7.1. The most important source of
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external data is from the MiniBooNE experiment [78]. A more detailed descrip-

tion of how this is used is given in [79].

The sources of uncertainty in neutrino cross sections that can contribute signifi-

cantly to the analysis are listed below.

1. The axial mass in Quasi-Elastic interactions.

The axial mass essentially acts as an effective radius of a nucleon and affects

the interaction probability as a function of Q2.

2. Fermi Momentum in RFG model.

The Fermi momentum used in the Relativistic Fermi Gas (RFG) model of

the nucleus. This has a small effect on the shape and normalisation of the

cross section.

3. Spectral Function model differences.

A spectral function model is an alternative method to model neutrino in-

teractions. This uncertainty takes into account the differences between the

RFG model and the spectral function model.

4. The axial mass in Resonance interactions.

In principle there is good reason to expect this to be the same as the QE

axial mass, but is often treated separately in order to get good agreement

with data.

5. Interaction mode normalisations.

The modelling of the different interaction modes is constrained by cross

section results from other analyses from T2K and other experiments. Poor

constraints from the data or disagreements between results contribute to

this uncertainty.

6. Pion production in resonance interactions.

The spectrum of pion production in resonance interactions does not agree

well between data and Monte Carlo. This could change the topology of

events seen in the detector.
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4.7.6 Uncertainties on Final State Interactions

Final State Interactions (FSI) concern the particles produced in the neutrino in-

teractions. If one of these particles undergoes an interaction within the nucleus

then it will affect the observed final state in the detector. If these processes are

not modelled correctly it could change the shape and size of the measured cross

section. This uncertainty is seperate from the detector uncertainties as they apply

to interactions within the nucleus before the particles have any chance to show

up in the detector.

The probability of a particle interacting within the nucleus is calculated by al-

lowing the particle to travel through the nucleus at intervals and allowing it to

interact at each step. This is based on external data from proton and pion-

nucleus scattering experiments for each interaction type. The weights calculated

for FSI uncertainties are based on the uncertainty of the calculated probability of

interaction within the nucleus. As with the cross section uncertainties, the most

important source of external data is from the MiniBooNE experiment [78] with

a more detailed description of how this is used given in [79].

The sources of FSI uncertainty are detailed below.

• Nucleon elastic scattering

The momentum and angle of an outgoing nucleon being changed due to

scattering within the nucleus would change the topology of the event and

potentially affect the shape of the measured cross section ratios.

• Delta resonance production

A particle traversing the nucleus can excite a proton to a higher energy

state, which will then decay to a charged pion. This could cause CCQE

events to be reconstructed as CCnQE (Charged Current not Quasi-Elastic)

events.

• Pion inelastic scattering.

Similarly to nucleon scattering, the reconstructed final state can be affected
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by pions rescattering within the nucleus. This should not affect the analysis

significantly as the pion momentum and angle are not used in the classifi-

cation of events.

• Charge exchange.

Charge exchange can affect the reconstructed topology of the interaction

via interactions such as π+ +n→ π0 + p. This could increase the measured

CC0π cross sections.

• Pion absorption The absorption of a pion within the nucleus could lead to

CCnQE events being classified as CCQE events, causing a change of shape

of the cross section ratios. In the case of the CC0π topology, this shouldn’t

have any affect.

4.7.7 Total Uncertainties

All of the uncertainties are shown in Fig 4.7.3 and Fig 4.7.4 in terms of the

reconstructed momentum and angle of the candidate lepton track for the four

selections. The uncertainties on the ratios are shown in Fig 4.7.5 and Fig 4.7.6.

No unfolding is used in these calculations as these are the two variables used to

unfold to other quantities. The total uncertainty for the measured cross section or

ratio of cross sections is calculated by adding the different sources of uncertainty

in quadrature.

Since the events are broken down into neutrino type, the systematic uncertainties

for the CCQE and CC0π topologies will be the same. For this reason, the CCQE

uncertainties are not shown.

To understand the shape of the statistical uncertainties in these plots, refer back

to the selection plots in Sec 4.5.3 as σstat ∝
√
n. The uncertainties for the flux,

detector, cross section and FSI are based on the error matrices shown in Fig 4.7.2.

It is difficult to deconvolute the different error sources to describe the shapes of

these plots, however, there is a small general trend of a smaller uncertainty in the
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Figure 4.7.3: The different sources of uncertainty for the four selections in terms
of the reconstructed momentum of the outgoing candidate lepton.
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Figure 4.7.4: The different sources of uncertainty for the four selections in terms
of the reconstructed angle of the outgoing candidate lepton.
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Figure 4.7.5: The different sources of uncertainty for the ratios in terms of the
reconstructed momentum of the outgoing candidate lepton.
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Figure 4.7.6: The different sources of uncertainty for the ratios in terms of the
reconstructed angle of the outgoing candidate lepton.
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regions where there are fewer background events (higher purity) in the selection.

Mostly, the value of the uncertainty does not change much across the bins used.

The uncertainties are similar between the CC0π selections and the CC inclusive

selections, as they share many of the same events.

As with previous T2K cross section anaylses [17] [18] [19], the flux and cross

section uncertainties are dominant at around 10%. The uncertainty due to final

state interactions is approximately 6% and the detector uncertainties are O(1%).

A rough calculation then gives the total systematic uncertainty at ≈ 15% for the

four selections.

Each of the four single ratios show different amounts of cancellation for the dif-

ferent sources of uncertainty. For the νe CC0π / νe CC and νµ CC0π / νµ CC

ratios, the numerator and denominator contain events primarily coming from the

same flavour of neutrino. Thus, one would expect the flux and cross section

systematic uncertainties to cancel significantly. However, the event topology is

very different, so the FSI and detector systematics will cancel to a lesser degree.

Since the ν` CC0π events are a subset of the ν` CC events, it is reasonable to

expect a high degree of cancellation in general for these ratios. This should mean

that the double ratio will have a large amount of cancellation for the systematic

uncertainties as well, with the statistical uncertainty dominating.

The uncertainties for the unfolded selections are shown in Fig 4.7.7 and Fig 4.7.8

for true track momentum and track angle, and Fig 4.7.9 and Fig 4.7.10 for neu-

trino energy and four momentum transfered. There is very little event migration

when unfolding from reconstructed track momentum or angle to the true quantity.

This means that the uncertainties don’t change much between the reconstructed

and unfolded quantities. For neutrino energy and Q2 the distributions change

significantly, so the uncertainties change more too. The unfolding simply moves

events around, and so the total uncertainties for the selections or ratios do not

change much when unfolding. The small change in the total uncertainty is due

to throwing the response matrix for each toy experiment.
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The uncertainties for the ratios are shown in Figs 4.7.11 - 4.7.14 for the four

unfolded variables. The same arguments used previously are able to describe the

cancellation of the systematic uncertainties for the ratios of unfolded selections.
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Figure 4.7.7: The different sources of uncertainty for the four selection in terms
of the true momentum of the outgoing lepton unfolded from the reconstructed
momentum of the outgoing candidate lepton.
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Figure 4.7.8: The different sources of uncertainty for the four selection in terms
of the true angle of the outgoing lepton unfolded from the reconstructed angle of
the outgoing candidate lepton.
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Figure 4.7.9: The different sources of uncertainty for the four selection in terms of
the energy of the interacting neutrino unfolded from the reconstructed momentum
of the outgoing candidate lepton.
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Figure 4.7.10: The different sources of uncertainty for the four selection in terms
of the four-momentum transfered in the neutrino interaction unfolded from the
reconstructed momentum of the outgoing candidate lepton.
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Figure 4.7.11: The different sources of uncertainty for the ratios in terms of the
true momentum of the outgoing lepton unfolded from the reconstructed momentum
of the outgoing candidate lepton.
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Figure 4.7.12: The different sources of uncertainty for the ratios in terms of
the true angle of the outgoing lepton unfolded from the reconstructed angle of the
outgoing candidate lepton.
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Figure 4.7.13: The different sources of uncertainty for the ratios in terms of the
energy of the interacting neutrino unfolded from the reconstructed momentum of
the outgoing candidate lepton.
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Figure 4.7.14: The different sources of uncertainty for the ratios in terms of the
four-momentum transfered in the neutrino interaction unfolded from the recon-
structed momentum of the outgoing candidate lepton.
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4.7 Uncertainties

The statistical uncertainties, flux uncertainties, detector uncertainties, FSI un-

certainties and cross section uncertainties are added in quadrature to get the

total uncertainty for each selection and ratio. These are summarised in Tab 4.7.2

for each of the selections and cross section ratio analyses. No binning is used

when calculating the numbers in Tab 4.7.2. For the uncertainties on the binned

selections and cross section ratios, see Tab A.1.3 - Tab A.1.14

Analysis Statistical Flux Detector Cross
section

FSI

νe CC0π 0.122 0.076 0.003 0.077 0.048

νe CCQE 0.137 0.076 0.003 0.077 0.048

νe CC 0.084 0.075 0.003 0.076 0.046

νµ CC0π 0.013 0.089 0.003 0.081 0.068

νµ CCQE 0.015 0.089 0.003 0.082 0.068

νµ CC 0.009 0.084 0.003 0.079 0.060

νeCC0π/νeCC 0.103 0.002 0.001 0.002 0.001

νeCCQE/νeCC 0.120 0.002 0.001 0.002 0.001

νµCC0π/νµCC 0.008 0.010 0.001 0.011 0.007

νµCCQE/νµCC 0.010 0.010 0.001 0.011 0.006

DR (CC0π) 0.101 0.013 0.001 0.011 0.008

DR (CCQE) 0.125 0.013 0.001 0.011 0.007

Table 4.7.2: A summary of the total fractional uncertainties for the selections
and cross section ratios analyses. No binning is used when calculating these num-
bers. The flux, detector, cross section and FSI uncertainties need to be propagated
through the unfolding, so this procedure is used when calculating these numbers
despite the data being unbinned.
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4.8 Results

4.8.1 Monte Carlo Testing

The cross section ratios are first calculated for the GENIE Monte Carlo sample in

terms of neutrino energy and compared with the Monte Carlo calculations given

in Sec 4.3. This is the final test of the method that is used to measure the ratios

with data. The NEUT sample is used to simulate the selections and calculate

the weights for purity, efficiency and flux. The unfolding is performed with the

GENIE control sample. As with Fig 4.6.8 the CC0π topology is replaced with

a CCQE signal in order to test the results by comparing with the Monte Carlo

generators. The results of this are shown in Fig 4.8.1 with total systematic and

statistical uncertainties on the data points and statistical uncertainties only on

the Monte Carlo points.

The level of agreement in Fig 4.8.1 shows that the methodology is able to extract

the cross section ratios. The distribution of events within the bins affects the

single ratios. There tends to be a greater number of events at higher energies,

where the CC interaction cross section is dominant. This pushes the two single

ratios to lower values for the lower energy bins. The energy spectra can be seen

in Figs 4.5.8 - 4.5.11 for the four selections, which should help demonstrate this

affect.

170



4.8 Results

Neutrino Energy (GeV)
0.0 0.5 1.0 1.5 2.0 2.5

R
at

io

0.0

0.2

0.4

0.6

0.8

1.0 Data

MC

GENIE Calculation

NEUT Calculation

Data

MC

GENIE Calculation

NEUT Calculation

Data

MC

GENIE Calculation

NEUT Calculation

Data

MC

GENIE Calculation

NEUT Calculation

(a) νe CCQE / νe CC

Neutrino Energy (GeV)
0.0 0.5 1.0 1.5 2.0 2.5

R
at

io

0.0

0.2

0.4

0.6

0.8

1.0

(b) νµ CCQE / νµ CC

Neutrino Energy (GeV)
0.0 0.5 1.0 1.5 2.0 2.5

R
at

io

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c) Double Ratio of (a) and (b)

Figure 4.8.1: The ratios plotted in terms of neutrino energy for a data sample and
a NEUT Monte Carlo sample. The unfolding is performed using a GENIE Monte
Carlo sample. The red points show the ratio calculated for simulated NEUT events
with statistical uncertainties and the black points show data with total statistical
and systematic uncertainties. The CC0π cross sections are not shown here because
the generators can not calculate the cross sections in terms of final state topologies.

4.8.2 Model Independent Measurement

Following the methodology in Sec 4.6, the ratios of the cross sections can be cal-

culated. A model-independent approach is used by taking the ratios in terms of

detector variables. The ratios are shown in Figs 4.8.2 and 4.8.3 in terms of track

momentum and track angle. The unfolding procedure described in Sec 4.6.2 is

used to take into account missing events and event migration due to the detector

performance.
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4.8 Results

The T2K beam has a wide range of neutrino energies (see Fig 2.2.4). This adds a

complication when taking the ratios in terms of other quantities as the neutrino

energy is the quantity that is directly related to the cross section. Due to this

the ratios presented in Fig 4.8.2 and Fig 4.8.3 are flux-averaged over the energy

of the beam instead of a fixed energy.

The coloured areas around the central values correspond to the sizes of the un-

certainties on the results for data added in quadrature. The innermost area

corresponds to the size of the detector uncertainties on the results. The next lay-

ers out include the other sources of systematic uncertainty added in quadrature;

the uncertainty on the neutrino interaction cross section and the properties of

the interactions, the uncertainty on the neutrino flux, and the uncertainty on the

interactions particles can undergo before leaving the nucleus. The outermost area

includes the statistical uncertainty on the number of selected events, the scaling

factor to correct for missed events and background events and the uncertainty

assoicated with unfolding. This culminates in the total uncertainty on the mea-

sured ratios.

To interpret the ratios in terms of the momentum of the lepton track, as shown

in Fig 4.8.2, one needs to consider the kinematics of the interaction. Interactions

with a high momentum outgoing lepton will be due to a high energy incident neu-

trino, meaning the phase space was large enough to create additional particles.

This causes the decrease in the νe and νµ single ratios at higher lepton momenta.

Interactions with very low lepton momentum (removed by the momentum cut

for the νe selection) will often be caused by a CCnQE interaction just above the

threshold for producing particles other than the lepton and causing the lepton to

have little momentum. This leads to the dip in the νµ single ratios at low lepton

momentum.

The double ratios show that at low lepton momentum, a νµ is more likely to un-

dergo a CCnQE interaction. These events are likely due to low energy neutrinos,

which are less likely to be able to produce additional particles for a νµ than a νe

due to the difference in lepton masses. This explains the dip in the double ratios
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Figure 4.8.2: The ratios plotted in terms of the momentum of the candidate
lepton unfolded from the reconstructed momentum of the candidate track. Since
the neutrinos in the beam have a wide range of energies, the ratios shown are not for
a fixed neutrino energy. Instead, a flux-averaged measurement is presented. The
black points show data with the coloured bands representing the size of the different
sources of uncertainty on the data. The red points show the ratios calculated for
Monte Carlo with statistical uncertainties only.
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Figure 4.8.3: The ratios plotted in terms of the angle of the candidate lepton
unfolded from the reconstructed angle of the candidate track. Since the neutrinos
in the beam have a wide range of energies, the ratios shown are not for a fixed
neutrino energy. Instead, a flux-averaged measurement is presented. The black
points show data with the coloured bands representing the size of the different
sources of uncertainty on the data. The red points show the ratios calculated for
Monte Carlo with statistical uncertainties only.

174



4.8 Results

for low lepton momenta.

The first bin in plots (a), (b), (e), and (f) in Fig 4.8.2 shows a Monte Carlo data

point with large uncertainties and a value of 0 for data. This is due to the cut

on reconstructed track momentum at 0.2 GeV/c when selecting νe interactions.

When unfolding to true track momentum, a very small number of Monte Carlo

events are migrated to this first bin. Due to the differences in sample size, there

are no data events in this bin and the calculated ratios are 0, leading to the

discrepancies. There are too few of these events to do anything meaningful with

them.

The ratios in terms of the angle of the lepton track are a little trickier to in-

terpret. At fixed neutrino energy one would expect the single ratios to decrease

at more forward going angles, since CCQE (CC0π) interactions tend to be more

forward boosted due to less energy being lost in the interaction. However, the

ratios in Fig 4.8.3 are for a wide range of energies with the higher energy inter-

actions tending to be very forward boosted. This has the effect that the more

forward boosted (higher energies) have a lower fraction of CCQE (CC0π) events

compared to larger angles. This particularly affects the νµ ratios as a difference

in energy will have a larger affect on the angle of the outgoing muon than for an

electron, due to its greater mass. These effects show up overall as an increase in

the double ratio at higher values of lepton angle.

The differences between the CCQE and CC0π ratios is very small. This is because

most CC0π events are CCQE interactions, but all CCQE interactions should re-

sult in no pions leaving the nucleus. This means that the CC0π ratios have a

very similar shape to the CCQE ratios but with slightly lower values, due to there

being a greater number of CC0π events.
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4.8.3 Model Dependednt Measurement

It is possible to calculate the ratios shown in Figs 4.8.2 and 4.8.3 in terms of neu-

trino energy. This is a more interesting quantity from a theoretical perspective

but requires an assumption that the models used to describe neutrino interactions

are accurate. The Monte Carlo generators NEUT and GENIE can calculate the

cross sections in terms of neutrino energy. This can be used to form a predic-

tion for the cross section ratios as described in Sec 4.3. The ratios are therefore

presented in Fig 4.8.4 as a cross check of the methodology by comparing the cal-

culated ratios with the ratios found using fake data studies.

As with the ratios in terms of track momentum and track angle, the ratio shown

in Fig 4.8.5 is for neutrino energy that is averaged over the flux of neutrinos in

the beam. The ratios in terms of neutrino energy are flux-averaged within each

bin of neutrino energy.

For interpretation of the results shown in Figs 4.8.4 and 4.8.5 refer back to

Sec 2.1.7. These arguements were given for the cross section ratios in terms of

neutrino energy, but also apply to the four-momentum transfered since the two

variables are very highly correlated. The calculated values and their uncertain-

ties for each of the ratios shown in Figs 4.8.2 - 4.8.5 can be found in Appendix A.1.

The ratios shown in Figs 4.8.2 - 4.8.5 have good agreement between data and

Monte Carlo. This indicates that there are not significant differences in νe and

νµ cross sections not due to the different lepton masses. Some caution should be

taken when considering the ratios plotted in terms of neutrino energy and four

momentum transfer as these use models of processes that are not well understood.

For all the ratios, the statistical uncertainties dominate over the systematic uncer-

tainties. These systematic uncertainties are small enough (O(1%)) that as T2K

continues to take data, these ratios could become a powerful tool for studying

neutrino interactions.
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Figure 4.8.4: The ratios plotted in terms of the energy of the neutrino unfolded
from the reconstructed momentum of the candidate track. The black points show
data with the coloured bands representing the size of the different sources of un-
certainty on the data. The red points show the ratios calculated for Monte Carlo
with statistical uncertainties only.
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Figure 4.8.5: The ratios plotted in terms of the four-momentum transfered in the
neutrino interaction unfolded from the reconstructed momentum of the candidate
track. Since the neutrinos in the beam have a wide range of energies, the ratios
shown are not for a fixed neutrino energy. Instead, a flux-averaged measurement
is presented. The black points show data with the coloured bands representing the
size of the different sources of uncertainty on the data. The red points show the
ratios calculated for Monte Carlo with statistical uncertainties only.
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Conclusions
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The results from a number of service tasks are presented with the combined goal

of improving the performance and understanding of the ND280 ECals. These

are useful for the T2K collaboration as a whole and for the cross section ratio

analysis that is also presented.

Firstly, a calibration of the scintillator bars in the ND280 ECals is performed for

T2K runs 4, 5 and 6. The results of this showed a much greater consistency of

the ECals when measuring the energy deposited by charged particles had been

achieved. This allows the ECals to provide more accurate information and there-

fore helps reduce the uncertainty on any selection using them. The improvements

gained by applying the calibrations can be seen in Fig 3.1.3

A study into the rate of ageing of the ECal scintillator bars is also presented.

This parameterises the reduction in light collection efficiency for the bars in the

ECals as they age. This reduction was found to be well modelled by an exponen-

tial decay as shown in Fig 3.2.5 with approximately 3% loss per year in the first

5 years of running. Extrapolating the exponential fits into the future allows for

a prediction of detector performance at later times. The fit parameters can be

used to calculate a correction for the ageing of the scintillator. This will affect

all future analyses which use the ECals.

Lastly, a study on the systematic uncertainty associated with matching a recon-

structed object in a TPC with a reconstructed object in an ECal is given. An

uncertainty of 1.0 % was calculated for the Barrel ECals and 0.6 % for the Down-

stream ECal. Electron-like and muon-like tracks are studied separately to be

used by different analyses. The uncertainties for electron-like tracks are shown

in Fig 3.3.21 and muon-like tracks in Fig 3.3.23. The results of these studies

are used in the cross section ratio analysis when generating the throws for the

detector systematics.

For the main analysis of this thesis, cut-based selections were used to determine

the number of electron and muon neutrinos interacting within the FGD1 fiducial

volume in the ND280. From these, the neutrino interaction cross sections on
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Carbon and several different ratios of the cross sections were calculated. This

was motivated by a need to test the Standard Model and the NEUT and GE-

NIE Monte Carlo generators. Taking the ratios of the cross sections was shown to

have a significant amount of cancellation of the uncertainties on the measurement

compared to directly measuring the cross sections. This meant a precise test of

the models could be performed. To achieve this, the cross section ratios were

calculated for data and the Monte Carlo generators then compared to each other.

Any significant difference would be indicative of Physics beyond the Standard

Model.

The main challenge of the analysis was the calculation of the uncertainties and

to what degree they would cancel out when taking the ratios of the cross sec-

tions. Many toy experiments were generated where the values associated with

each source of uncertainty were thrown. These were propagated through the un-

folding procedure and the standard deviation of the results of all the toys was

calculated to give the systematic uncertainty. It can be seen in Figs 4.7.11 -

4.7.14 compared with Figs 4.7.7 - 4.7.10 that the systematic uncertainties do

decrease when taking the ratios. The statistical uncertainties become dominant

for the ratios, meaning the analyses are statistically limited. With more ND280

data, very precise tests of the neutrino generators could be performed.

In general the data shows no significant deviation from the Monte Carlos for any

of the ratios being tested. There are data values that deviate from the Monte

Carlo values within their uncertainties, but this is to be expected for multiple

ratios plotted in terms of several different properties of the interactions. The

limited statistics mean the uncertainties are too large to determine whether there

are effects beyond the differences in final state lepton mass that can affect νe

and νµ cross sections. With greater statistics, this method could prove to be a

powerful probe of neutrino interaction cross sections.
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A.1 Appendix

A.1 Appendix

νe CC0π / νe CC νµ CC0π / νµ CC DR (CC0π)

p` (GeV/c)

0 - 0.2 0 0.42 ± 0.04 0

0.2 - 0.5 0.51 ± 0.14 0.72 ± 0.01 0.71 ± 0.19

0.5 - 0.8 0.47 ± 0.10 0.71 ± 0.01 0.65 ± 0.19

0.8 - 2.5 0.38 ± 0.05 0.40 ± 0.02 0.94 ± 0.14

θ` (cos θ)

0.5 - 0.75 0.46 ± 0.13 0.64 ± 0.02 0.73 ± 0.20

0.75 - 0.9 0.36 ± 0.08 0.55 ± 0.02 0.66 ± 0.15

0.9 - 1 0.38 ± 0.05 0.40 ± 0.01 0.94 ± 0.13

Eν (GeV)

0 - 0.2 0 0 0

0.2 - 0.8 0.84 ± 0.12 0.81 ± 0.01 1.03 ± 0.15

0.8 - 1.4 0.56 ± 0.09 0.57 ± 0.01 0.99 ± 0.17

1.4 - 2.5 0.38 ± 0.07 0.37 ± 0.01 1.04 ± 0.19

Q2 (GeV2)

0 - 0.5 0.52 ± 0.05 0.66 ± 0.01 0.79 ± 0.08

0.5 - 1 0.34 ± 0.07 0.48 ± 0.02 0.70 ± 0.15

1 - 2.5 0.21 ± 0.07 0.20 ± 0.02 1.05 ± 0.36

Table A.1.1: A summary of the values of the ratios and the total uncertainties
for the ratios in terms of lepton momentum, lepton angle, neutrino energy, and
four-momentum transfered. The ratios are calculated using a CC0π signal.
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νe CCQE / νe CC νµ CCQE / νµ CC DR (CCQE)

p` (GeV/c)

0 - 0.2 0 0.24 ± 0.04 0

0.2 - 0.5 0.43 ± 0.14 0.61 ± 0.01 0.71 ± 0.23

0.5 - 0.8 0.38 ± 0.09 0.62 ± 0.01 0.62 ± 0.15

0.8 - 2.5 0.30 ± 0.05 0.32 ± 0.01 0.92 ± 0.16

θ` (cos θ)

0.5 - 0.75 0.38 ± 0.12 0.53 ± 0.02 0.71 ± 0.23

0.75 - 0.9 0.29 ± 0.08 0.45 ± 0.01 0.65 ± 0.17

0.9 - 1 0.27 ± 0.04 0.30 ± 0.01 0.91 ± 0.15

Eν (GeV)

0 - 0.2 0 0 0

0.2 - 0.8 0.67 ± 0.14 0.68 ± 0.01 1.00 ± 0.20

0.8 - 1.4 0.44 ± 0.09 0.45 ± 0.01 0.98 ± 0.20

1.4 - 2.5 0.30 ± 0.06 0.27 ± 0.01 1.09 ± 0.24

Q2 (GeV2)

0 - 0.5 0.40 ± 0.05 0.53 ± 0.01 0.77 ± 0.10

0.5 - 1 0.26 ± 0.07 0.40 ± 0.02 0.65 ± 0.18

1 - 2.5 0.15 ± 0.06 0.15 ± 0.02 1.02 ± 0.43

Table A.1.2: A summary of the values of the ratios and the total uncertainties
for the ratios in terms of lepton momentum, lepton angle, neutrino energy, and
four-momentum transfered. The ratios are calculated using a CCQE signal.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 7.74 0.43 7.46 5.00 11.86

0.20 - 0.50 39.41 7.73 0.41 7.48 5.01 41.16

0.50 - 0.80 26.48 7.74 0.32 7.60 5.05 29.06

0.80 - 2.50 16.80 7.42 0.36 7.58 4.58 20.40

Total 12.41 7.56 0.31 7.60 4.77 17.08

Angle (cos θ)

0.50 - 0.75 34.40 7.87 0.34 7.75 5.13 36.49

0.75 - 0.90 26.44 7.78 0.29 7.85 5.04 29.10

0.90 - 1.00 15.56 7.30 0.36 7.45 4.17 19.19

Total 12.55 7.50 0.32 7.60 4.53 17.09

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 29.05 7.85 0.37 7.72 5.08 31.48

0.80 - 1.40 22.61 7.71 0.30 7.80 4.92 25.61

1.40 - 2.50 21.90 7.45 0.37 7.74 4.56 24.82

Total 12.62 7.65 0.31 7.75 4.83 17.36

Q2 (GeV2)

0.00 - 0.50 13.31 7.65 0.31 7.70 4.75 17.82

0.50 - 1.00 26.70 7.58 0.32 7.69 4.64 29.18

1.00 - 2.50 36.86 7.58 0.32 7.68 4.63 38.68

Total 12.09 7.63 0.31 7.70 4.73 16.92

Table A.1.3: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the νe CC0π selection when unfolded from a either reconstructed
track momentum or reconstructed track angle to lepton momentum, lepton angle,
neutrino energy, and four-momentum transfered. The total uncertainties are the
other sources added in quadrature. These numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 7.76 0.42 7.55 4.96 11.92

0.20 - 0.50 44.91 7.76 0.41 7.57 4.97 46.47

0.50 - 0.80 29.66 7.78 0.32 7.69 5.02 32.01

0.80 - 2.50 18.13 7.44 0.36 7.64 4.54 21.52

Total 13.60 7.59 0.31 7.64 4.74 17.98

Angle (cos θ)

0.50 - 0.75 36.63 7.79 0.35 7.83 5.12 38.60

0.75 - 0.90 29.45 7.68 0.29 7.93 5.02 31.85

0.90 - 1.00 17.06 7.19 0.37 7.52 4.16 20.41

Total 14.05 7.39 0.33 7.66 4.53 18.20

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 30.96 7.81 0.37 7.64 5.02 33.22

0.80 - 1.40 24.62 7.66 0.31 7.71 4.86 27.35

1.40 - 2.50 24.72 7.38 0.38 7.69 4.48 27.29

Total 14.33 7.61 0.31 7.67 4.78 18.58

Q2 (GeV2)

0.00 - 0.50 15.75 7.61 0.31 7.73 4.86 19.73

0.50 - 1.00 31.94 7.51 0.32 7.71 4.72 34.04

1.00 - 2.50 44.18 7.50 0.32 7.71 4.72 45.71

Total 14.02 7.59 0.31 7.72 4.83 18.36

Table A.1.4: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the νe CCQE selection when unfolded from a either reconstructed
track momentum or reconstructed track angle to lepton momentum, lepton angle,
neutrino energy, and four-momentum transfered. The total uncertainties are the
other sources added in quadrature. These numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 7.45 0.33 7.55 4.60 11.57

0.20 - 0.50 26.83 7.60 0.41 7.53 4.79 29.29

0.50 - 0.80 19.57 7.62 0.33 7.66 4.83 22.87

0.80 - 2.50 11.48 7.35 0.34 7.65 4.47 16.26

Total 8.50 7.46 0.31 7.64 4.61 14.41

Angle (cos θ)

0.50 - 0.75 25.21 7.74 0.35 7.61 4.93 27.89

0.75 - 0.90 18.15 7.66 0.30 7.69 4.83 21.70

0.90 - 1.00 10.34 7.27 0.36 7.34 4.11 15.19

Total 8.24 7.42 0.32 7.48 4.43 14.09

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 27.52 7.70 0.38 7.51 4.79 29.94

0.80 - 1.40 18.57 7.60 0.31 7.60 4.70 21.96

1.40 - 2.50 15.01 7.44 0.34 7.57 4.46 18.92

Total 8.58 7.53 0.31 7.57 4.60 14.45

Q2 (GeV2)

0.00 - 0.50 10.46 7.46 0.31 7.53 4.64 15.60

0.50 - 1.00 15.68 7.41 0.31 7.55 4.57 19.46

1.00 - 2.50 17.33 7.40 0.31 7.54 4.56 20.81

Total 8.60 7.45 0.31 7.53 4.61 14.40

Table A.1.5: The statistical, flux, detector, cross section, FSI percentage uncer-
tainties for the νe CC selection when unfolded from a either reconstructed track
momentum or reconstructed track angle to lepton momentum, lepton angle, neu-
trino energy, and four-momentum transfered. The total uncertainties are the other
sources added in quadrature. These numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 13.96 8.66 0.41 7.65 6.39 19.22

0.20 - 0.50 2.26 8.86 0.37 7.83 6.83 13.84

0.50 - 0.80 2.38 9.08 0.27 8.27 7.01 14.34

0.80 - 2.50 2.78 8.61 0.28 8.50 6.30 13.92

Total 1.56 8.87 0.29 8.11 6.79 13.89

Angle (cos θ)

0.50 - 0.75 2.71 8.99 0.33 7.94 6.87 14.09

0.75 - 0.90 2.40 8.98 0.29 8.07 6.83 14.09

0.90 - 1.00 2.30 8.27 0.33 7.81 5.69 12.93

Total 1.47 8.75 0.29 7.91 6.41 13.51

Energy (GeV)

0.00 - 0.20 0.00 8.47 0.42 7.67 6.42 13.11

0.20 - 0.80 1.71 8.81 0.34 8.04 6.98 13.93

0.80 - 1.40 2.39 8.68 0.26 8.40 6.69 14.02

1.40 - 2.50 3.94 8.40 0.28 8.57 6.31 14.12

Total 1.36 8.75 0.29 8.16 6.83 13.85

Q2 (GeV2)

0.00 - 0.50 1.54 8.80 0.30 8.18 6.86 13.92

0.50 - 1.00 4.27 8.72 0.26 8.41 6.66 14.47

1.00 - 2.50 9.41 8.55 0.27 8.54 6.46 16.63

Total 1.37 8.80 0.29 8.21 6.84 13.91

Table A.1.6: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the νµ CC0π selection when unfolded from a either reconstructed
track momentum or reconstructed track angle to lepton momentum, lepton angle,
neutrino energy, and four-momentum transfered. The total uncertainties are the
other sources added in quadrature. These numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 21.96 8.64 0.42 7.66 6.34 25.61

0.20 - 0.50 2.46 8.80 0.37 7.81 6.78 13.81

0.50 - 0.80 2.46 9.02 0.28 8.27 6.96 14.30

0.80 - 2.50 3.15 8.56 0.28 8.51 6.25 13.96

Total 1.49 8.84 0.29 8.11 6.75 13.85

Angle (cos θ)

0.50 - 0.75 3.09 8.84 0.33 8.03 6.92 14.15

0.75 - 0.90 2.81 8.82 0.29 8.17 6.89 14.14

0.90 - 1.00 2.53 8.13 0.34 7.85 5.71 12.92

Total 1.56 8.61 0.30 7.97 6.46 13.49

Energy (GeV)

0.00 - 0.20 0.00 8.56 0.42 7.65 6.36 13.13

0.20 - 0.80 1.93 8.84 0.34 7.99 6.86 13.89

0.80 - 1.40 2.66 8.71 0.26 8.40 6.61 14.04

1.40 - 2.50 4.35 8.47 0.29 8.53 6.23 14.22

Total 1.42 8.75 0.30 8.14 6.75 13.80

Q2 (GeV2)

0.00 - 0.50 1.62 8.88 0.30 8.09 6.83 13.92

0.50 - 1.00 4.79 8.78 0.27 8.38 6.64 14.64

1.00 - 2.50 11.20 8.64 0.27 8.51 6.43 17.72

Total 1.46 8.87 0.30 8.12 6.81 13.90

Table A.1.7: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the νµ CCQE selection when unfolded from a either reconstructed
track momentum or reconstructed track angle to lepton momentum, lepton angle,
neutrino energy, and four-momentum transfered. The total uncertainties are the
other sources added in quadrature. These numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 7.30 8.34 0.36 7.54 5.90 14.65

0.20 - 0.50 1.66 8.68 0.34 7.85 6.59 13.54

0.50 - 0.80 1.68 8.74 0.28 8.20 6.60 13.79

0.80 - 2.50 1.62 7.60 0.41 7.88 5.00 12.15

Total 0.98 8.39 0.32 7.90 6.03 13.05

Angle (cos θ)

0.50 - 0.75 2.13 8.60 0.31 7.89 6.51 13.54

0.75 - 0.90 1.69 8.39 0.31 7.86 6.15 13.15

0.90 - 1.00 1.27 7.28 0.47 7.08 4.52 11.19

Total 0.95 7.96 0.37 7.48 5.43 12.24

Energy (GeV)

0.00 - 0.20 0.00 8.33 0.37 7.44 5.79 12.58

0.20 - 0.80 1.45 8.69 0.32 7.83 6.48 13.45

0.80 - 1.40 1.64 8.37 0.32 7.89 5.88 13.03

1.40 - 2.50 2.10 7.81 0.39 7.85 5.17 12.41

Total 0.86 8.44 0.32 7.84 5.99 13.01

Q2 (GeV2)

0.00 - 0.50 1.11 8.47 0.31 7.87 6.17 13.15

0.50 - 1.00 1.94 8.02 0.35 7.93 5.57 12.73

1.00 - 2.50 2.15 7.83 0.37 7.91 5.33 12.53

Total 0.90 8.33 0.32 7.88 5.99 12.98

Table A.1.8: The statistical, flux, detector, cross section, FSI percentage uncer-
tainties for the νµ CC selection when unfolded from a either reconstructed track
momentum or reconstructed track angle to lepton momentum, lepton angle, neu-
trino energy, and four-momentum transfered. The total uncertainties are the other
sources added in quadrature. These numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.50 25.96 0.33 0.02 0.32 0.19 25.97

0.50 - 0.80 20.48 0.32 0.02 0.31 0.19 20.48

0.80 - 2.50 14.04 0.16 0.04 0.16 0.10 14.04

Total 10.21 0.00 0.00 0.00 0.00 10.21

Angle (cos θ)

0.50 - 0.75 27.99 0.33 0.03 0.31 0.20 27.99

0.75 - 0.90 23.46 0.31 0.03 0.30 0.20 23.47

0.90 - 1.00 13.33 0.10 0.02 0.10 0.07 13.33

Total 10.73 0.24 0.03 0.23 0.15 10.74

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 13.61 0.31 0.03 0.30 0.18 13.62

0.80 - 1.40 16.50 0.23 0.07 0.23 0.14 16.51

1.40 - 2.50 18.18 0.24 0.10 0.26 0.07 18.18

Total 10.41 0.22 0.06 0.21 0.13 10.42

Q2 (GeV2)

0.00 - 0.50 10.01 0.00 0.00 0.00 0.00 10.01

0.50 - 1.00 21.94 0.15 0.03 0.14 0.09 21.94

1.00 - 2.50 33.06 0.15 0.03 0.15 0.09 33.06

Total 10.12 0.00 0.00 0.00 0.00 10.12

Table A.1.9: The statistical, flux, detector, cross section, FSI percentage uncer-
tainties for the ratio of the νe CC0π to νe CC selections after unfolding from a either
reconstructed track momentum or reconstructed track angle to lepton momentum,
lepton angle, neutrino energy, and four-momentum transfered. The total uncer-
tainties are the other sources added in quadrature. These numbers were calculated
for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.50 31.14 0.33 0.02 0.31 0.19 31.14

0.50 - 0.80 24.30 0.33 0.02 0.30 0.20 24.30

0.80 - 2.50 16.50 0.15 0.04 0.16 0.09 16.50

Total 11.97 0.00 0.00 0.00 0.00 11.97

Angle (cos θ)

0.50 - 0.75 31.15 0.32 0.03 0.31 0.20 31.16

0.75 - 0.90 26.65 0.30 0.03 0.29 0.20 26.65

0.90 - 1.00 16.76 0.10 0.02 0.10 0.06 16.76

Total 12.25 0.24 0.03 0.23 0.15 12.25

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 20.55 0.31 0.03 0.30 0.18 20.56

0.80 - 1.40 20.42 0.24 0.09 0.24 0.13 20.42

1.40 - 2.50 21.61 0.30 0.12 0.32 0.08 21.62

Total 12.34 0.22 0.06 0.21 0.13 12.35

Q2 (GeV2)

0.00 - 0.50 12.28 0.00 0.00 0.00 0.00 12.28

0.50 - 1.00 26.86 0.13 0.03 0.12 0.08 26.86

1.00 - 2.50 40.40 0.15 0.05 0.16 0.09 40.41

Total 11.99 0.00 0.00 0.00 0.00 11.99

Table A.1.10: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the ratio of the νe CCQE to νe CC selections after unfolding from
a either reconstructed track momentum or reconstructed track angle to lepton
momentum, lepton angle, neutrino energy, and four-momentum transfered. The
total uncertainties are the other sources added in quadrature. These numbers were
calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 9.28 1.04 0.15 1.17 0.56 9.43

0.20 - 0.50 0.67 0.89 0.09 1.08 0.40 1.61

0.50 - 0.80 1.23 1.00 0.10 1.15 0.61 2.05

0.80 - 2.50 1.99 2.18 0.20 1.92 1.40 3.79

Total 0.75 1.05 0.12 1.18 0.68 1.88

Angle (cos θ)

0.50 - 0.75 1.07 1.06 0.12 1.31 0.61 2.09

0.75 - 0.90 1.64 1.50 0.17 1.67 0.94 2.94

0.90 - 1.00 1.72 2.02 0.21 1.81 1.30 3.47

Total 0.63 1.43 0.16 1.51 0.91 2.36

Energy (GeV)

0.00 - 0.20 0.00 1.08 0.16 1.19 0.58 1.71

0.20 - 0.80 0.45 0.87 0.09 1.09 0.49 1.55

0.80 - 1.40 1.35 1.34 0.11 1.14 0.82 2.37

1.40 - 2.50 2.84 1.87 0.15 1.56 1.14 3.92

Total 0.66 1.02 0.13 1.09 0.64 1.76

Q2 (GeV2)

0.00 - 0.50 0.72 1.13 0.13 1.28 0.73 2.00

0.50 - 1.00 2.11 1.71 0.17 1.64 1.10 3.36

1.00 - 2.50 7.61 1.79 0.15 1.54 1.12 8.05

Total 0.75 1.29 0.14 1.36 0.85 2.19

Table A.1.11: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the ratio of the νµ CC0π to νµ CC selections after unfolding from
a either reconstructed track momentum or reconstructed track angle to lepton
momentum, lepton angle, neutrino energy, and four-momentum transfered. The
total uncertainties are the other sources added in quadrature. These numbers were
calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 17.14 1.03 0.15 1.12 0.55 17.21

0.20 - 0.50 1.48 0.88 0.09 1.04 0.39 2.05

0.50 - 0.80 1.28 0.98 0.10 1.11 0.59 2.05

0.80 - 2.50 2.40 2.19 0.20 1.89 1.37 4.00

Total 0.95 1.05 0.12 1.14 0.67 1.94

Angle (cos θ)

0.50 - 0.75 1.99 1.06 0.12 1.33 0.60 2.69

0.75 - 0.90 2.04 1.50 0.17 1.68 0.94 3.19

0.90 - 1.00 2.07 2.01 0.21 1.81 1.29 3.65

Total 0.98 1.43 0.16 1.52 0.91 2.48

Energy (GeV)

0.00 - 0.20 0.00 1.08 0.16 1.19 0.59 1.72

0.20 - 0.80 0.95 0.87 0.09 1.08 0.50 1.76

0.80 - 1.40 1.86 1.35 0.10 1.12 0.80 2.69

1.40 - 2.50 3.64 1.85 0.15 1.54 1.13 4.51

Total 1.06 1.01 0.13 1.08 0.62 1.93

Q2 (GeV2)

0.00 - 0.50 1.00 1.15 0.13 1.28 0.74 2.12

0.50 - 1.00 2.86 1.74 0.17 1.65 1.12 3.90

1.00 - 2.50 9.60 1.83 0.15 1.56 1.13 9.97

Total 0.99 1.30 0.14 1.36 0.85 2.29

Table A.1.12: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the ratio of the νµ CCQE to νµ CC selections after unfolding from
a either reconstructed track momentum or reconstructed track angle to lepton
momentum, lepton angle, neutrino energy, and four-momentum transfered. The
total uncertainties are the other sources added in quadrature. These numbers were
calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.50 26.22 0.65 0.08 0.87 0.21 26.24

0.50 - 0.80 19.92 0.70 0.08 0.84 0.41 19.95

0.80 - 2.50 14.00 1.94 0.16 1.67 1.22 14.28

Total 10.10 0.00 0.00 0.00 0.00 10.10

Angle (cos θ)

0.50 - 0.75 29.20 0.77 0.10 1.10 0.40 29.24

0.75 - 0.90 23.15 1.20 0.13 1.39 0.72 23.23

0.90 - 1.00 13.65 1.84 0.18 1.63 1.17 13.92

Total 10.17 1.31 0.14 1.33 0.82 10.37

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 12.79 0.61 0.07 0.86 0.31 12.84

0.80 - 1.40 16.44 1.26 0.05 0.96 0.68 16.53

1.40 - 2.50 18.31 1.93 0.09 1.51 1.09 18.51

Total 10.23 1.29 0.07 1.07 0.76 10.39

Q2 (GeV2)

0.00 - 0.50 9.97 0.00 0.00 0.00 0.00 9.97

0.50 - 1.00 21.92 1.57 0.13 1.45 0.96 22.05

1.00 - 2.50 33.82 1.67 0.12 1.34 0.98 33.90

Total 9.96 0.42 0.00 0.39 0.08 9.98

Table A.1.13: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the double ratio of the four selections after unfolding from a either
reconstructed track momentum or reconstructed track angle to lepton momentum,
lepton angle, neutrino energy, and four-momentum transfered (with a CC0π signal
used). The total uncertainties are the other sources added in quadrature. These
numbers were calculated for real data.
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Bin Statistical Flux Detector Cross
section

FSI Total

Momentum (GeV/c)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.50 31.57 0.65 0.08 0.86 0.21 31.59

0.50 - 0.80 23.97 0.69 0.08 0.84 0.39 24.00

0.80 - 2.50 16.17 1.98 0.15 1.70 1.21 16.42

Total 12.74 0.00 0.00 0.00 0.00 12.74

Angle (cos θ)

0.50 - 0.75 32.62 0.77 0.10 1.07 0.40 32.65

0.75 - 0.90 26.76 1.19 0.13 1.36 0.72 26.84

0.90 - 1.00 15.85 1.82 0.18 1.60 1.17 16.07

Total 11.85 1.29 0.14 1.30 0.82 12.02

Energy (GeV)

0.00 - 0.20 0.00 0.00 0.00 0.00 0.00 0.00

0.20 - 0.80 20.57 0.61 0.07 0.87 0.30 20.60

0.80 - 1.40 20.55 1.31 0.05 0.93 0.65 20.62

1.40 - 2.50 21.81 1.96 0.09 1.52 1.08 21.98

Total 11.98 1.30 0.06 1.04 0.74 12.12

Q2 (GeV2)

0.00 - 0.50 12.72 0.00 0.00 0.00 0.00 12.72

0.50 - 1.00 27.22 1.59 0.13 1.49 0.99 27.32

1.00 - 2.50 41.69 1.71 0.11 1.37 0.99 41.76

Total 12.26 0.54 0.00 0.50 0.22 12.28

Table A.1.14: The statistical, flux, detector, cross section, FSI percentage un-
certainties for the double ratio of the four selections after unfolding from a either
reconstructed track momentum or reconstructed track angle to lepton momentum,
lepton angle, neutrino energy, and four-momentum transfered (with a CCQE signal
used). The total uncertainties are the other sources added in quadrature. These
numbers were calculated for real data.
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