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Abstract

The measurement of the relative width difference ∆Γd/Γd of the B0–B̄0 sys-

tem using 25.2 fb−1 of integrated luminosity collected by the ATLAS detector

at the LHC in pp collisions at
√
s = 7 TeV and

√
s = 8 TeV is presented. The

analysis described in this thesis incorporates results previously published by

the ATLAS collaboration while providing greater detail and additional stud-

ies. The measured value is ∆Γd/Γd = (−0.1±1.1 (stat.)±0.9 (syst.))×10−2.

Currently, this is the most precise single measurement of ∆Γd/Γd. It agrees

with the Standard Model prediction and measurements by other experiments.
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Chapter 1

Introduction

The Standard Model of particle physics has shown its great quality many

times since its inception. Not least in its accolades are the successful predic-

tions of the discoveries of the W and Z bosons in 1983; the top quark in 1995;

the τ neutrino in 2000; and the Higgs boson in 2012. There are, however,

still a number of questions that are not yet answered by the Standard Model,

such as the origin of mass and matter-antimatter asymmetry. It is therefore

important to continue to study the Standard Model and there are still many

ongoing studies, including those of CP violation. Detailed descriptions of the

Standard Model, CP violation and B meson decays are given in chapter 2.

The design objectives of the Large Hadron Collider (LHC) can be sum-

marized by the following two statements [1]:

• To perform high precision measurements of Standard Model parame-

ters.

• To search for new physics beyond the limitations of the Standard

Model.

Construction of the LHC began at the European Organization for Nuclear

Research (CERN) in 1998 with performance goals of a nominal centre of

mass energy of 14 TeV and a luminosity of 10−34cm−2s−1. A description of

the LHC is given in chapter 3. The data used for this thesis was taken by the

general purpose detector ATLAS in 2011 and 2012. ATLAS is one of seven

experiments that measure the products of collisions generated by the LHC.

The ATLAS detector is described in chapter 4.

1
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A measurement of the width difference of the B0 meson (∆Γd) can be

considered as satisfying both of the given LHC objectives. The Standard

model predicts a small value of ∆Γd [2] and so any new physics contribution

within ∆Γd would be readily observable over the low Standard Model value.

It has been demonstrated [3] that such a contribution would not contradict

other existing tests of the Standard Model, even if ∆Γd is several times larger

than the Standard Model value. A precise experimental measurement of ∆Γd

and its comparison to to the Standard Model expectation would therefore

provide a stringent test of the underlying theory [4], along with some other

prominent quantities such as the branching ratio Br(B0
s → µ+µ−) [5] or the

CP violating phase of the B0
s → J/ψφ decay [6], which have attracted much

more experimental and theoretical attention.

The current experimental uncertainty on ∆Γd is much larger than the

SM central value, preventing a meaningful test of the Standard Model pre-

diction. Furthermore, the measurements of ∆Γd made by the Belle [7] and

LHCb [8] experiments differ between them by more than 1.5 standard devia-

tions. Therefore, more precise measurements of ∆Γd are necessary to confirm

its value and to perform a significant “null test” of the SM. A detailed de-

scription of the measurement of ∆Γd performed by the ATLAS collaboration

is given in chapter 6 to chapter 9. The measurement was published in 2016

[9] and has been presented at several international conferences, including The

16th International Conference on B-Physics at Frontier Machines [10].

In addition to the measurement of ∆Γd, this thesis includes a description

of the techniques used by the ATLAS collaboration to measure the initial

flavour of the B0
s meson in the analysis of the B0

s → J/ψφ decay. This

description is presented in chapter 10.



Chapter 2

Theory

This chapter will introduce and explain the essential theoretical concepts

needed for the measurement of ∆Γd. First, the Standard Model is outlined,

followed by the introduction of the CKM matrix, after which the oscillations

of the B0 meson are explained, and finally the time dependent decay rates

of the B0 meson for CP and flavour specific final states are derived.

2.1 The Standard Model

The Standard Model of particle physics is the best established description

of the electromagnetic, strong and weak forces and the fundamental bosons

(particles with integer spin) that mediate them. It additionally defines all

of the observed fundamental fermions (particles with half-integer spin) - the

constituent particles of matter. Also included in the Standard Model is

the newly discovered Higgs boson, which is required to explain why certain

fundamental particles are not massless.

2.1.1 Fermions

The fundamental fermions are point-like particles with spin of one half. They

can be subdivided into two types: quarks and leptons. The properties of the

quarks and leptons are given in tables 2.1 and 2.2 respectively.

3
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Quarks

Quarks have an intrinsic property known as colour charge, through which

they are able to interact via the strong force. Quarks exist in nature within

colourless bound states called hadrons. Hadrons are classified by their quark

content and can be separated into two main types: Mesons which have one

valence quark and one valence antiquark; and baryons which have three

valence quarks. The much rarer tetraquark, comprised of two valence quarks

and two valence antiquarks, was recently observed by the LHCb collaboration

[11]. Also, the combination of 4 valence quarks and one valence antiquark,

known as the pentaquark, was discovered by the LHCb collaboration in 2015

[12].

There are six quarks: The down quark d, the up quark u, the strange

quark s, the charm quark c, the bottom quark b and the top quark t. The

down, strange and bottom quarks have an electric charge of -1/3 and the up,

charm and top quarks have an electric charge of +2/3. Quarks are therefore

able to interact with the electromagnetic force. Quarks are grouped in three

generations: The first generation consists of the up and down quarks, the

second is comprised of the strange and charm quarks and the third contains

the bottom and top quarks. A quark is able to change flavour, for example

s→ u, via the weak interaction.

Quark Charge Mass
d -1/3 4.8+0.5

−0.3 MeV/c2

u +2/3 2.3+0.7
−0.5 MeV/c2

s -1/3 95± 5 MeV/c2

c +2/3 1.275± 0.025 GeV/c2

b -1/3 4.18± 0.03 GeV/c2

t +2/3 173.21± 0.51± 0.71 GeV/c2

Table 2.1: Properties of the quarks [2]

Leptons

Unlike quarks, leptons exist independently. There are six fundamental lep-

tons: The electron e−, the muon µ−, the tau τ−, the electron neutrino νe,
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the muon neutrino νµ and the tau neutrino ντ . All fundamental leptons ex-

perience interactions with the weak force, through which their flavour can

change, for example µ→ νµ.

The e−, µ− and τ− have an electric charge of −1 and therefore undergo in-

teractions with the electromagnetic force. Their corresponding anti-particles

are the positron e+, the anti-muon µ+, the anti-tau τ+, which have a charge

of +1 but are otherwise identical to the respective leptons. The neutrinos

have no electric charge and thus do not interact with the electromagnetic

force. In the limit where the neutrinos are massless, the anti-neutrinos (ν̄e,

ν̄µ and ν̄τ ) have right handed chirality and the neutrinos have left handed

chirality. In the high energy limit (E � m), the chirality of a particle is

equivalent to its helicity, which is defined as the projection of a particle’s

spin onto its direction of momentum.

Lepton Charge Mass
e -1 0.510998928± 0.000000011 MeV/c2

µ -1 105.6583715± 0.0000035 MeV/c2

τ -1 1776.82± 0.16 MeV/c2

νe 0 < 2.05 eV/c2

νµ 0 < 0.19 MeV/c2

ντ 0 < 18.2 MeV/c2

Table 2.2: Properties of the leptons [2]

2.1.2 Bosons

Interactions between the fermions in the Standard Model are defined by a

Lagrangian, which is dependent on the local gauge symmetry of the SU(3)×
SU(2) × U(1) group. The 8 generators of the SU(3) group represent the

gluons g, which mediate the interactions of the strong force. Two of the

generators of SU(2) represent the W± bosons while the Z boson and the

photon γ are represented by linear combinations of SU(2) and U(1). The

W± and Z bosons mediate the weak force. Electromagnetism is mediated

by the photon. The properties of the gauge bosons are given in table 2.3.

The gauge invariance of the Standard Model Lagrangian requires that

the gauge bosons are massless. However, the consideration of a spontaneous
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breakdown of the gauge symmetry of the SM Lagrangian resulted in the

prediction of massive W± and Z bosons and the Higgs boson H0 [13] [14].

The Higgs boson was discovered at the LHC in 2012 [15] [16].

Boson Charge Mass Force
γ 0 < 10−18 eV/c2 Electromagnetism
g 0 0 Strong
W± ±1 80.385± 0.015 GeV/c2 Weak
Z 0 91.1876± 0.0021 GeV/c2 Weak
H0 0 125.7± 0.4 GeV/c2

Table 2.3: Properties of the gauge bosons [2]

2.1.3 Symmetries

Charge conjugation

In quantum mechanics, the charge conjugation operator C reverses the sign of

the static quantities of a particle, such as electric charge, magnetic moment,

baryon number and lepton number. The dynamical quantities such as energy,

momentum and helicity are not changed. Therefore, if C operates on the

wavefunction of a particle, the wavefunction will be transformed to that of

the anti-particle. It is important to note that this is not the case for all

particles: for example, if C acts on the wavefunction of a neutrino, the

chirality will not change and the resulting wavefunction will not be that of

an antineutrino. Thus, charge conjugation is violated in weak interactions.

Parity

The parity operator P inverts the spatial coordinates of a wavefunction ψ:

Pψ(r, t) = ψ(−r, t). It was initially assumed that parity would be conserved

in all interactions. However, an experiment was proposed by Lee and Yang

and performed by Wu [17] in which 60Co nuclei were oriented parallel or

anti-parallel to a magnetic field, which provides the reference direction to

which the emitted beta electron trajectory can be measured. Reversing the

magnetic field direction (and hence the 60Co alignment) is equivalent to a

parity inversion. The angular distribution of the electrons was observed to
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change after the magnetic field flip, which showed that parity is violated in

weak interactions.

CP

With the observation that both charge conjugation and parity are violated

individually, it was proposed that the combination CP would be a funda-

mental symmetry for all interactions, including the weak interaction [18].

However, CP violation was observed in neutral kaon decays [19], where the

CP -violating decay K0
2 → π+π− was measured to have a branching ratio of

(2.0±0.4)×10−4 relative to all charged decay modes of the K0
2 . CP violation

has also been observed in the neutral B meson system [20] [21].

2.2 The CKM matrix

2.2.1 Four-quark model

Weak decays involving a W±, known as charged current decays, are able to

change quark flavour and generation. For example, the decays u→ W+d and

u→ W+s are both seen to occur. c→ W+d and c→ W+s are also observed

to exist. Figure 2.1 shows the charged current decay of an up type quark

ui = u, c or t to a down type quark dj = d, s or b and a W+ boson. The matrix

elements that govern each of these decays are Vij. Cabibbo proposed that

linear combinations of the mass eigenstates d and s form weak eigenstates

d′ and s′, as defined in Eq. 2.1, and that only the decays u → W+d′ and

c→ W+s′ are allowed [22].(
d′

s′

)
=

(
Vud Vus

Vcd Vcs

)(
d

s

)
(2.1)

2.2.2 Six-quark model

Kobayashi and Maskawa identified that the quark quartet model could not

explain the CP violation observed in weak interactions [23]. Although the

bottom quark had not yet been discovered, they proposed a quark six-plet

model in which the weak eigenstates d′, s′ and b′ are related to the mass
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Figure 2.1: Charged current decay of an up type quark ui to a down type
quark dj and a W+ boson [24].

eigenstates d, s and b by a 3× 3 matrix, known as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix:d
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 (2.2)

The CKM matrix can be parameterized by three mixing angles (θ12, θ23, θ13)

and a phase δ, with a non-zero δ representing CP violation in the Standard

Model:

d
′

s′

b′

 =

 c12c13 s12s13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ c12s23 − s12c23s13e

iδ c23c13


ds
b


(2.3)

where cij = cos θij and sij = sin θij.

2.2.3 Wolfenstein parameterization

Another convenient representation of the CKM matrix is the Wolfenstein

parameterization [25]. Wolfenstein noted that if |Vus| is of order λ � 1

then, numerically, |Vcb| will be of order λ2 and |Vub| will be of order λ3. The
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following values are therefore assigned:

|Vus| = λ (2.4)

|Vcb| = Aλ2 (2.5)

|Vub| = Aλ3(ρ− iη) (2.6)

where A is a constant to be determined empirically and ρ and η account for

the CP -violating phase.

The unitarity of the CKM matrix determines the remaining parameters

to order λ3:

d
′

s′

b′

 =

1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

0 −Aλ2 1


ds
b

 (2.7)

The best fit for the Wolfenstein parameters are: λ = 0.22537 ± 0.00061,

A = 0.814+0.023
−0.024, ρ̄ = ρ(1−λ2/2) = 0.117±0.021 and η̄ = η(1−λ2/2) = 0.353±

0.013 [2]. It can clearly be seen that the diagonal elements of the CKM matrix

are close to one and the off-diagonal elements are much smaller. Decays that

change quark generations are therefore suppressed, and decays that change

two generations such as b→ W−u suffer much greater suppression that those

that change a single generation such as b→ W−c.

2.2.4 Unitarity relations

The CKM matrix is a unitary matrix and it therefore satisfies the following

condition:

V †V = V V † = I3 (2.8)

where V is the CKM matrix, V † is its Hermitian conjugate and I3 is the 3×3

identity matrix. From the diagonal terms of this relation, weak universality

is obtained:
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∑
j

|Vij|2 =
∑
i

|Vij|2 = 1 (2.9)

where i = u, c, t and j = d, s, b. Weak universality demonstrates that the

sum of all of the couplings of the u, c or t to the d, s and b quarks are equal

to one.

The off-diagonal terms of the unitarity relation result in the six orthogo-

nality relations:

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 (2.10)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (2.11)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0 (2.12)

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (2.13)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.14)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (2.15)

Each orthogonality relation can be illustrated by a unitiary triangle in the

complex plane. The unitarity triangles all have the same area which depends

on the CP -violating phase of the CKM matrix. Figure 2.2 shows the unitarity

triangle produced by equation 2.14. From the Wolfenstein representation,

the vertices of this triangle are (0, 0), (0, 1) and (ρ̄, η̄), and, because of its

relative simplicity, it is the most widely used unitarity triangle. It is therefore

oftentimes known as The Unitarity Triangle. The current world average

Figure 2.2: The Unitarity Triangle [2].
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measurement of the angle β [6] is shown in Fig. 2.3 and is given by:

sin 2β = 0.682± 0.019 (2.16)

Since the measured quantity is sin 2β, there is an ambiguity because β has

two possible values (β or π
2
− β). This ambiguity can be resolved through

the analysis of the B0 → J/ψK∗0 and B0 → D∗+D∗−KS channels in which

cos 2β is measured [6].

Figure 2.3: Constraints of β in the ρ̄− η̄ plane [6].

2.3 Oscillations of the B0 meson

The valence composition of the B0 meson is b̄d. The flavour changing ability

of weak interactions allows for the transition B0 ↔ B̄0, where the composi-

tion of B̄0 is bd̄. The Feynman diagrams for this transition is shown in Fig.

2.4.

The diagram with internal top quarks is dominant over those with internal
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Figure 2.4: Feynman box diagrams for B0 ↔ B̄0 transitions [26]. The label
q represents either a u or c quark.

u or c quarks because the contribution to the transition increases with the

mass of the internal quarks.

The existence of B0 ↔ B̄0 transition means that B0 and B̄0 are not

mass eigenstates. The light and heavy mass eigenstates of the B0 system are

denoted by BL and BH respectively, and are linear combinations of B0 and

B̄0:

|BL〉 = p |B0〉+ q |B̄0〉

|BH〉 = p |B0〉 − q |B̄0〉
(2.17)

where |p|2 + |q|2 = 1. A produced B0 meson will therefore propagate in time

as a superposition of B0 and B̄0. The time evolution of BL and BH is given

by:

|Bj(t)〉 = e−iMjte−Γjt/2 |Bj〉 (2.18)

where j = L,H and Mj and Γj are ,respectively, the mass and width of Bj.

The time dependent Schrodinger equation that represents the evolution
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of B0 and B̄0 is

i
d

dt

(
|B0(t)〉
|B̄0(t)〉

)
= H

(
|B0(t)〉
|B̄0(t)〉

)
(2.19)

where H is a 2× 2 matrix which represents the B0 ↔ B̄0 transition and can

be written as the sum of two Hermitian matrices, M and Γ:

H = M− i

2
Γ =

(
M11 M12

M∗
12 M22

)
+
i

2

(
Γ11 Γ12

Γ∗12 Γ22

)
(2.20)

Inserting Eqs. 2.17 and 2.18 into 2.19 allows H to be diagonalized:

H′ = Q−1HQ =

(
ML − iΓL/2 0

0 MH − iΓH/2

)
(2.21)

where

Q =

(
p p

q −q

)
and Q−1 =

1

2pq

(
q p

q −p

)
(2.22)

and ML, MH and ΓL, ΓH are, respectively, the masses and widths of the light

and heavy mass eigenstates of the B0 meson. Using Eqs. 2.20, 2.21 and 2.22,

the relation between p and q therefore is:

(
q

p

)2

=
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

=
M∗

12

(
1 + i

2

∣∣∣ Γ12

M12

∣∣∣ eiφ)
M12

(
1 + i

2

∣∣∣ Γ12

M12

∣∣∣ e−iφ) (2.23)

where the phase φ is given by:

M12

Γ12

=

∣∣∣∣M12

Γ12

∣∣∣∣ eiφ (2.24)

The expression for the time evolution of B0 and B̄0 is then

(
|B0(t)〉
|B̄0(t)〉

)
= Q

(
e−iMLt−ΓLt/2 0

0 e−iMH t−ΓH t/2

)
Q−1

(
|B0〉
|B̄0〉

)
(2.25)

It is now useful to define the mean mass Md and mass difference ∆Md of the

mass eigenstates, as well as the mean width Γd and width difference ∆Γd:
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Md =
MH +ML

2

∆Md = MH −ML

(2.26)

Γd =
ΓL + ΓH

2

∆Γd = ΓL − ΓH

(2.27)

With these definitions, the time evolution of B0 and B̄0 can be expressed as:(
|B0(t)〉
|B̄0(t)〉

)
=

(
g+(t) q

p
g−(t)

p
q
g−(t) g+(t)

)(
|B0〉
|B̄0〉

)
(2.28)

where

g+ = e−iMdte−iΓdt/2

[
cosh

∆Γdt

4
cos

∆Mdt

2
− i sinh

∆Γdt

4
sin

∆Mdt

2

]
(2.29)

g− = e−iMdte−iΓdt/2

[
− sinh

∆Γdt

4
cos

∆Mdt

2
+ i cosh

∆Γdt

4
sin

∆Mdt

2

]
(2.30)

2.4 Time dependent decay rate of the B0 me-

son

The time dependent decay rate of a B0 meson decaying to final state f can

be defined as:

Γ(B0(t)→ f) = Nf | 〈f |S |B0(t)〉 |2 (2.31)

where Nf is the time independent normalization and S is the S-matrix for

the B0 → f decay.

Using the expression for B0(t) from Eq. 2.28, Γ(B0(t) → f) can be

rewritten as:

Γ(B0(t)→ f) = Nf |g+(t)Af + g−(t)Āf |2 (2.32)

where Af = 〈f |S |B0〉 and Āf = 〈f |S |B̄0〉.
Applying the definitions of g+(t) and g−(t) and defining
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λf =
q

p

Āf
Af

(2.33)

yields the following equation for Γ(B0(t)→ f):

Γ(B0(t)→ f) = Nf |Af |2e−Γdt

[
1 + |λf |2

2
cosh

∆Γdt

2
+

1− |λf |2

2
cos ∆Mdt

−Re(λf ) sinh
∆Γdt

2
− Im(λf ) sin ∆Mdt

]
(2.34)

The equivalent expression for the decay B̄0(t)→ f is:

Γ(B̄0(t)→ f) = Nf |Af |2
1

1− a
e−Γdt

[
1 + |λf |2

2
cosh

∆Γdt

2
− 1− |λf |2

2
cos ∆Mdt

−Re(λf ) sinh
∆Γdt

2
+ Im(λf ) sin ∆Mdt

]
(2.35)

where a = 1 − |q/p|2. Using Eq. 2.23 and that Γ12 � M12 such that terms

O
(∣∣∣ Γ12

M12

∣∣∣2) can be neglected, a can be expressed as:

a =

∣∣∣∣ Γ12

M12

∣∣∣∣ sinφ (2.36)

The total untagged time dependent decay rate for a B0 meson decaying to

state f is obtained by combining Γ(B0(t)→ f) and Γ(B̄0(t)→ f):

Γ(f, t) ≡ σ(B0)

σ(B0) + σ(B̄0)
Γ(B0(t)→ f) +

σ(B̄0)

σ(B0) + σ(B̄0)
Γ(B̄0(t)→ f)

Γ(f, t) = Nf |Af |2e−Γdt
1 + |λf |2

2

[
cosh

∆Γdt

2
+ APA

dir
CP cos ∆Mdt

+A∆Γ sinh
∆Γdt

2
+ APA

mix
CP sin ∆Mdt

]
+O(a)

(2.37)
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where

Adir
CP =

1− |λf |2

1 + |λf |2
A∆Γ =

−2Re(λf )

1 + |λf |2
Amix

CP =
−2Im(λf )

1 + |λf |2
(2.38)

|Adir
CP|2 + |A∆Γ|2 + |Amix

CP |2 = 1 (2.39)

σ(B0) and σ(B̄0) are the respective production cross-sections for B0 and B̄0

in pp collisions. The production asymmetry AP of the B0 meson is defined

as:

AP =
σ(B0)− σ(B̄0)

σ(B0) + σ(B̄0)
(2.40)

2.5 B0 decaying to a CP eigenstate

If the final state f is an eigenstate of CP conjugation, the following relation

is satisfied:

CP |f〉 = ηf |f〉 (2.41)

where ηf = ±1 is the CP eigenvalue of f .

A property of a CP specific f is that |Af | = |Āf |, meaning that the

decays B0 → f and B̄0 → f have the same decay rate. An example of such

a state is J/ψKS (ηf = −1) which is shown in the Feynman diagram of Fig.

2.5.

The relation between the decay amplitudes is:

Āf
Af

= ηfe
2iφf (2.42)

where φf = arg(VcbV
∗
cs), due to the b→ cc̄s transition.

Equations 2.23 and 2.36 give the following expression for the ratio q/p:

q

p
≈ M12∗
|M12|

(
1 +O(a)

)
≈ e−iφM (2.43)

where φM = arg(M12). Therefore, using Eqs. 2.33, 2.42 and 2.43, for a CP

specific f :
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Figure 2.5: Feynman tree diagram for the B0 → J/ψKS decay [26]. For the
B̄0 → J/ψKS decay, the arrows on the fermion lines are reversed.

λf = ηfe
−i(φM−2φf ) (2.44)

In the Wolfenstein interpretation of the CKM matrix, arg(VcbV
∗
cs) = O(λ6)

[27] and so φM � φf such that λf ≈ ηfe
−iφM . Inspecting the Feynman box

diagrams in Fig. 2.4 gives the following value for φM :

φM = arg(VtbV
∗
td)

2 = arg

(
VtbV

∗
td

V ∗tbVtd

)
= 2β (2.45)

where β is the angle of the unitarity triangle shown in Fig. 2.2.

The expression for λf in Eq. 2.42 then reduces to:

λf = ηfe
−2iβ (2.46)

Therefore, for the decay B0 → J/ψKS, the values of the coefficients defined

in Eq. 2.38 are:

Adir
CP = 0 A∆Γ = −ηf cos 2β Amix

CP = ηf sin 2β (2.47)
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The untagged time dependent decay rate for the B0 → J/ψKS decay is then

given by:

Γ(J/ψKS, t) = Nf |Af |2e−Γdt

[
cosh

∆Γdt

2
− ηf cos 2β sinh

∆Γdt

2

+APηf sin 2β sin ∆Mdt

] (2.48)

2.6 B0 decaying to a flavour specific final state

For a flavour specific f , Āf = 0, which means that the decay B̄0 → f does

not occur. Only B0 → f and B̄0 → f̄ are possible. Such a state is J/ψK∗0

which is shown in the Feynam diagram of Fig. 2.6.

Figure 2.6: Feynman tree diagram for the B0 → J/ψK∗0 decay [26]. For the
B̄0 → J/ψK̄∗0 decay, the arrows on the fermion lines are reversed.

An obvious consequence of Āf = 0 is that, from its definition in Eq. 2.33,

λf = 0. The coefficients defined in Eq. 2.38 therefore have the following

values:

Adir
CP = 1 A∆Γ = 0 Amix

CP = 0 (2.49)
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Accordingly, the untagged time dependent decay rate for the B0 → J/ψK∗0

decay is:

Γ(J/ψK∗0, t) = Nf |Af |2
e−Γdt

2

[
cosh

∆Γdt

2
+ AP cos ∆Mdt

]
(2.50)

For the charge conjugate final state f̄ = J/ψK̄∗0, it follows that Af̄ = 0 and

Āf̄ = Af , thus:

λf̄ =
q

p

Āf̄
Af̄
→∞ (2.51)

and the coefficients in Eq. 2.38 are therefore:

Adir
CP = −1 A∆Γ = 0 Amix

CP = 0 (2.52)

The equivalent decay rate for B̄0 → J/ψK̄∗0 is then:

Γ(J/ψK̄∗0, t) = Nf |Af |2
e−Γdt

2

[
cosh

∆Γdt

2
− AP cos ∆Mdt

]
(2.53)

2.7 Determining ∆Γd/Γd

The obtained expressions for the untagged time dependent decay rates for a

B0 decaying to J/ψKS and J/ψK∗0(K̄∗0) (given by Eqs. 2.48, 2.50 (2.53)

respectively) are used to determine ∆Γd/Γd. The decay rate to the CP

eigenstate J/ψKS contains the ∆Γd dependence, while the decay rate to the

flavour specific eigenstate J/ψK∗0 provides normalization. By measuring the

ratio of these two decay rates the factor e−Γdt is cancelled, which allows the

value of ∆Γd/Γd to be measured precisely.
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The Large Hadron Collider

The Large Hadron Collider (LHC) is a dual-beam hadron accelerator and

collider. It was initially approved by the CERN council in 1994 [28, 29] and

construction was completed in 2008. The LHC was installed in the circular

26.7 km tunnel, originally used for LEP (Large Electron-Positron collider) ,

which lies between 45 m and 175 m underground near Geneva, Switzerland.

The LHC is linked to the CERN accelerator complex, which provides particle

injection, by two 2.5 km transfer tunnels. The geographical and schematic

layouts of the LHC at CERN are shown in Figs. 3.1 and 3.2 respectively.

3.1 Performance

The principal aim of the LHC is to probe physics beyond the Standard Model

using collisions with centre-of-mass energies (
√
s) of up to 14 TeV at a peak

luminosity of 1034cm−2s−1. The number of events per second produced by

collisions in the LHC is given by:

dN

dt
= LσEvent (3.1)

where L is the LHC luminosity and σEvent is the production cross section for

the particular event under study. The luminosity is the number of particles

per second that pass through a unit area of the bunch-crossing region:

L = f
n1n2

4πσxσy
(3.2)

20
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Figure 3.1: Geographic layout of the LHC at CERN [32].

where f is the bunch-crossing frequency, n1 and n2 are the number of particles

in each bunch, σx and σy are, respectively, the horizontal and vertical beam

profiles, such that the cross-sectional area of the beam is given by 4πσxσy.

The luminosity delivered by the LHC, as measured by the ATLAS detector,

is shown in Fig. 3.3.

The integrated luminosity (
∫
Ldt) therefore signifies the total number

of events that have been delivered in a given time span. The integrated

luminosity is measured in units of inverse area, such as inverse femtobarns,

where 1 fb−1 = 10−43 m−2.

The LEP/LHC tunnel has an internal diameter of 3.7 m, which is too

small to contain two separate proton rings. Due to this limitation, the LHC

uses twin bore magnets that consist of two beam channels contained within

the same mechanical structure and cryostat. The disadvantage of this design

is that the rings are magnetically coupled, which reduces beam flexibility.

Other performance limitations are detailed in Refs. [28, 29] and include the

following:

• Beam-beam limits.
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Figure 3.2: Schematic layout of the LHC accelerator complex [32].

• Mechanical aperture size.

• Maximum dipole and magnet quench limits.

• Energy stored in the circulating beams and in the magnetic fields.

• Heat load limits.

• Field quality and dynamic aperture limits.

• Collective beam instabilities.

The luminosity and centre-of-mass energy are dependent on the characteris-

tics of the accelerator and so these performance limitations can affect them
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Figure 3.3: Delivered luminosity versus time for 2010, 2011, 2012 (including
both p-p and Pb-Pb data), as measured by ATLAS [33].

as well as the interaction cross sections, which depend on
√
s, as shown in

Fig. 3.4

3.2 Proton production and acceleration

The LHC proton bunches are produced by ionizing hydrogen gas using a

magnetic field. The protons are then accelerated by the injector chain, which

is shown in Fig. 3.2 and has four main sections:

• Linac2

• The Proton Synchrotron Booster (PSB)

• The Proton Synchrotron (PS)

• The Super Proton Synchrotron (SPS)

The proton beam is then injected into the LHC where it is captured, accel-

erated and stored using a superconducting cavity system that consists of:
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Figure 3.4: Various production cross sections for centre-of-mass energies cor-
responding to the LHC and the Tevatron [30].

• Radio-frequency oscillators the accelerate the proton beam.

• Dipole magnets that manoeuvre the beam into its circular path.

• Quadrupole magnets that focus the beam to maintain the size of the

beam envelope.

The LHC has more than 1600 superconducting magnets in total, each of

which typically weighs around 27 tonnes. The magnets are cooled to their

operating temperature of 1.9K by liquid helium.
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3.3 Beam properties

The high design luminosity of the LHC requires that both beams have a large

number of bunches, with a high bunch crossing frequency. Nominally, the

proton beams have 2808 bunches, each of which contains 1.1× 1011 protons.

The gap between bunches was 50 ns during Run 1 of the LHC, corresponding

to a maximum bunch crossing frequency of 20 MHz. The beams are designed

to collide an angle of 150− 200 µm, which reduces the number of unwanted

collisions near the interaction point.

The region in which the proton-proton collisions occur is known as the

“beam spot”. The beam and magnet conditions of the LHC determine, to

a great extent, the size, position and shape of the beam spot [31]. The

transverse dimensions of the beam spot are determined by how the beams

are focussed near the bunch crossing region and the spread of positions and

momenta of the protons in the colliding bunches. Beam focussing is described

by the β-function [31], which has a minimum value of β∗. The longitudinal

size of the beam spot is determined by the length of the bunches and the

angle at which the bunches collide.

In ATLAS, the beam spot is monitored continuously and is reconstructed

at regular intervals using several thousand interactions collected from many

events. The average size of the beam spot, measured by the ATLAS detector,

for different β∗ settings, in 2010, 2011 and 2012, is given in table 3.1.

Year β∗ σLx(µm) σLy(µm) σLz(µm)
2010 11 48± 8 60± 12 29± 3
2010 2 30± 5 39± 12 36± 3
2010 3.5 41± 4 44± 6 63± 3
2011 1.5 26± 2 24± 2 57± 3
2011 1.0 20± 1 20± 1 56± 3
2012 0.6 15± 2 15± 1 48± 2

Table 3.1: Average size of the beam spot for different β∗ settings. The
errors given in the table are the RMS spread of the parameters during the
corresponding time period [31].
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The ATLAS detector

ATLAS (A Toroidal LHC ApparatuS) is general purpose detector designed to

study pp collisions in the LHC. The overall design requirements were defined

in accordance with the physics targets for the LHC [1] and are as follows:

• A wide pseudorapidity acceptance and complete coverage of azimuthal

angle.

• An inner detector with excellent momentum resolution and reconstruc-

tion efficiency for charged particles as well as vertex detectors near the

interaction zone to identify secondary vertices.

• Electromagnetic calorimetry capable of identification and energy mea-

surements of photons and electrons.

• Hadronic calorimetry which can accurately measure jet energy and

missing transverse energy.

• Muon detection which is effective at both low and high momentum and

is able to explicitly determine the charge of high transverse momentum

muons.

• Low transverse momentum triggers with effective background rejection.

The general design of the ATLAS detector is shown in Fig. 4.1.

26
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Figure 4.1: The layout of the ATLAS detector. [32].

4.1 Coordinate system

The origin of the ATLAS coordinate system is defined to be the nominal

interaction point. The z-axis is defined by the beam line, the x-axis is defined

to point towards the centre of the LHC ring and the y-axis is defined to point

upwards, as shown in Fig. 4.2. The azimuthal angle φ has its usual definition

of being the angle around the z-axis in the x− y plane. The radial distance

R =
√
x2 + y2 is the distance from the z-axis in the x− y plane. The polar

angle θ is defined as the angle from the z-axis in the R− z plane.

Figure 4.2: The Cartesian coordinate system of the ATLAS detector.
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The pseudorapidity is defined as:

η = − ln

(
tan

θ

2

)
(4.1)

The transverse momentum of a particle is defined as the component of its

momentum in the x− y plane.

4.2 Magnet system

A charged particle travelling through a magnetic field will have a curved

trajectory. A measurement of the curvature allows the particle’s momentum

to be determined. ATLAS uses a magnet system that consists of a central

solenoid, a barrel toroid and two end-cap toroids. The layout of the magnets

is shown in Fig 4.3

Figure 4.3: The magnet system of the ATLAS detector [1].

4.2.1 The central solenoid

The central solenoid provides an axial field of 2 T in the inner detector. It

has inner and outer diameters of 2.46 m and 2.56 m, respectively, and it

is 5.3 m long, with a mass of 5.7 tonnes. The physical arrangement of the

solenoid was chosen to minimise the amount of material between the inner



4.3 Beam pipe 29

detector and the liquid-argon calorimeter. The resulting solenoid system has

a normal thickness of approximately 0.66 radiation lengths at |η| = 0.

4.2.2 The barrel toroid

The barrel toroid produces a toroidal field of 0.5 T in the central region of

the muon spectrometer. It consists of eight coils arranged in a torus. Each

coil is 25.3 m long and 5.4 m wide. The complete barrel toroid has an inner

diameter of 9.4 m and an outer diameter of 25.3 m. It has a total mass of

830 tonnes.

4.2.3 The end-cap toroids

The end-cap toroids provide a toroidal field of 1T in the end-cap region of

the muon spectrometer. Each is a single cold mass of 240 tonnes comprised

of eight square coils.

4.3 Beam pipe

The ATLAS beam pipe is 38m long and is made from seven pipes which

are bolted together such that an ultra-high vacuum system is obtained. The

central of the seven pipes is composed of 0.8 mm beryllium and has an

inner diameter of 58 mm. It is positioned with its centre on the nominal

interaction point and is combined with the inner pixel detector. Beryllium is

used here because its low radiation length means that high energy particles

are not likely to interact with the pipe, which reduces the chances of multiple

scattering. The remaining six pipes are composed of stainless steel and are

placed symmetrically on both sides of the central beryllium pipe.

4.4 Inner detector

The purpose of the ATLAS inner detector is to provide high quality mo-

mentum resolution and measurements of primary and secondary vertices for

charged tracks which have pseudorapidity |η| < 2.5. The inner detector

cylinder is shown in Fig. 4.4. It is 7 m long and has a radius of 1.15 m.
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The inner detector contains three complementary sub-detectors which

are detailed in the following sections. The dimensions and properties of the

sub-detectors are given in tables 4.1 and 4.2. The innermost sub-detector

is the pixel detector, followed by the semiconductor tracker (SCT), and the

transition radiation tracker (TRT).

Figure 4.4: The layout of the ATLAS inner detector. [32].

4.4.1 Pixel detector

The pixel detector is formed by 80.4 million identical channels, each of which

has an area of 50×400 µm2 in R−φ×z, which provides high granularity near

the vertex region. The pixel layers are positioned in the R − φ plane along

the z-axis such that each charged track will usually cross three pixel layers.

There are three layers in the barrel and four in the end-caps. The barrel

section covers the range 0 < |η| < 1.7 and the end-caps provide coverage for

1.7 < |η| < 2.5 The intrinsic resolution of the pixel detector in the barrel is

10 µm in R − φ and 115 µm in z. In the end-caps, the resolution is 10 µm

in R− φ and 115 µm in R.
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Item Radial Extension (mm) Length (mm)
Overall 0 < R < 1150 0 < |z| < 3512
Beam-pipe 29 < R < 36
Pixel Overall envelope 45.5 < R < 242 0 < |z| < 3092
3 cylindrical layers Sensitive barrel 50.5 < R < 122.5 0 < |z| < 400.5
2× 3 disks Sensitive end-cap 88.8 < R < 149.6 495 < |z| < 650

SCT Overall envelope 255 < R < 549 (barrel) 0 < |z| < 805
251 < R < 610 (end-cap) 810 < |z| < 2797

4 cylindrical layers Sensitive barrel 299 < R < 514 0 < |z| < 749
2× 9 disks Sensitive end-cap 275 < R < 560 839 < |z| < 2735

TRT Overall envelope 554 < R < 1082 (barrel) 0 < |z| < 780
617 < R < 1106 (end-cap) 827 < |z| < 2744

73 straw planes Sensitive barrel 563 < R < 1066 0 < |z| < 712
160 straw planes Sensitive end-cap 644 < R < 1004 848 < |z| < 2710

Table 4.1: Dimensions of the inner sub-detectors [1]

4.4.2 Semiconductor Tracker (SCT)

There are 6.3 million readout channels of the SCT, which have a total surface

area of 61 m2. The barrel region of the SCT is made up of stereo strips that

have an angular size of 40 mrad. These strips are used to measure both the

R − φ and z coordinates. The barrel SCT covers the range 0 < |η| < 1.4.

Each module in the barrel SCT has intrinsic resolutions of 17 µm in R − φ
and 580 µm in z. The SCT end-cap section has two sets of stereo strips:

one that runs radially and one that runs an angle of 40 mrad. The sets of

strips have a mean pitch of 80 µm. The pseudorapidity coverage of the SCT

end-caps is 1.1 < |η| < 2.5. The modules in the SCT end-caps have intrinsic

resolutions of 17 µm in R− φ and 580 µm in R. Each track should interact

with eight of the SCT strip layers, which corresponds to four spatial points.

4.4.3 Transition Radiation Tracker (TRT)

The TRT has approximately 351,000 readout channels and provides many

more hits than the pixels or SCT: typically 36 per track. It consists of straw

tubes of 4 mm diameter, which are positioned parallel to the beam axis in the
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System Position Area Resolution Channels |η| coverage
(m2) σ(µm) (106)

Pixels B layer 0.2 Rφ = 12, z = 66 16 2.5
Other 2 barrel layers 1.4 Rφ = 12, z = 66 81 1.7
4 end-cap disks 0.7 Rφ = 12, z = 77 43 1.7− 2.5

SCT 4 barrel layers 34.4 Rφ = 16, z = 580 3.2 1.4
9 end-cap wheels 26.7 Rφ = 16, z = 580 3.0 1.4− 2.5

TRT Axial barrel straws 170 per straw 0.1 0.7
Radial end-cap straws 170 per straw 0.32 0.7− 2.5

Table 4.2: Properties of the inner sub-detectors [1]

barrel and have a length of 144 cm. In the end-caps, the tubes are in a radial

wheel arrangement and are 37 cm long. The TRT provides a pseudorapidity

coverage of 0 < |η| < 2.0.

Each straw tube houses a tungsten wire of 31µm diameter that is plated

with gold. The 70% Xe, 27% CO2, 3% O2 gas mixture that fills the remaining

volume is contained by the tube walls, which are comprised of two 35 µm

multi-layer films. The tubes have a typical electron collection time of 48 ns

and an intrinsic resolution of 130 µm in R − φ, which is the only direction

for which the TRT contributes.

4.5 Calorimetry

Figure 4.5 shows the calorimetry system the ATLAS detector. It consists of

two main sub-systems:

• The electromagnetic calorimeter, which has fine granularity appropri-

ate for measuring the energy and momentum of electrons and photons

with high precision.

• The hadronic calorimeter, which has coarser granularity suitable for jet

construction and measurements of missing transverse energy.
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Figure 4.5: The layout of the ATLAS calorimetry system. [32].

4.5.1 The LAr electromagnetic calorimeter

Liquid Argon is used as the active sampling material in the EM calorime-

ter and lead plates are used as the absorber. The barrel part of the EM

calorimeter covers the pseudorapidity range 0 < |η| < 1.475. It is made of

two identical half-barrels that are separated by a 4 mm gap at z = 0. The

accordion geometry of the barrel section provides full coverage and isotropy

in φ. The end-caps have outer and inner coaxial wheels which provide cov-

erage for 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2 respectively. The barrel and

outer wheel end-cap sections are used for high precision physics analyses and

thus have finer lateral granularity than the inner wheel end-caps. The depth

of the EM calorimeter must be sufficient to contain electromagnetic showers

and limit the number of stray particles that enter the muon system. To this

end, the EM calorimeter is more than 22 radiation lengths (X0 = 140 mm

[2]) thick in the barrel region and is greater than 24 X0 in the end-caps.
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4.5.2 The hadronic calorimeter

The hadronic calorimeter is divided into three separate parts which can be

seen in Fig. 4.5.

First, the tile calorimeter which uses scintillating tiles as the active sam-

pling material and steel as the absorber. It has a barrel that covers the

pseudorapidity range 0 < |η| < 1.0 and two extended barrels that cover

0.8 < |η| < 1.7. The barrel and extended barrels each have 64 modules

which are positioned azimuthally. The tile calorimeter has a total thickness

of 9.7 interaction lengths (λ = 204 mm for pions [2]) at η = 0 which provides

sufficient containment for hadronic showers and good resolution of hadronic

jets.

Second, the Hadronic End-cap Calorimeter (HEC) which has two inde-

pendent wheels in each end-cap that are positioned directly behind the end-

cap wheels of the EM calorimeter. It uses copper plates as the absorbing

material which are interleaved with 8.5 mm gaps within the liquid Argon

cryostat, which it shares with the EM calorimeter end-caps. The HEC cov-

ers the range 1.5 < |η| < 3.2 and therefore intentionally overlaps the tile and

forward calorimeters to ensure that there is sufficient material density in the

transition regions.

Third, the Forward Calorimeter (FCal) is incorporated in the end-cap

liquid Argon cryostats. It helps to provide uniform calorimetric coverage

and reduce background radiation in the muon system. The FCal has three

modules in each end-cap, each of which contains a metal matrix that has

gaps for the liquid Argon sampling material. The first module is designed

for electromagnetic measurements and uses copper for its metal matrix. The

remaining two modules are optimized for hadronic measurements and use

tungsten. The FCal provides coverage for 3.1 < |η| < 4.9 and has a total

thickness of 10λ.

4.6 Muon system

High energy muons are indicative of B meson decays, which makes good muon

detection essential for the study of the B0 width difference. Muons are highly

penetrative and thus are not absorbed in the calorimeters. A dedicated muon
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detector is therefore needed. Figure 4.6 shows a schematic of the ATLAS

muon system. The muon system measures the momentum of muons through

Figure 4.6: The layout of the ATLAS muon system. [32].

the use of large superconducting air-core toroid magnets, which bend the

muon tracks. The large barrel toroid provides magnetic deflection for the

pseudorapidity range 0 < |η| < 1.4 and coverage for 1.6 < |η| < 2.7 is

provided by two end-cap magnets. The transition region 1.4 < |η| < 1.6 is

covered by a combination of the barrel toroid and the end-cap magnets.

Monitored Drift Tubes (MDT’s) provide high precision measurements of

the muon tracks for the majority of the pseudorapidity range. The MDT’s

are composed of a 50µm diameter Tungsten-Rhenium wire contained within

a 30 mm diameter Aluminium tube. The gas inside the tubes is a mixture

of Argon and CO2. The MDT’s in the barrel region are laid out in three

cylindrical layers. In the end-caps the MDT’s are positioned in three planar

layers perpendicular to the beam.

Cathode Strip Chambers (CSC’s) are used in the high pseudorapidity

region (2 < |η| < 2.7) as they are able to cope with the extreme rate and

background environment. CSC’s are multiwire proportional chambers di-

vided into three strips and thus have much finer granularity that the MDT’s.

The muon detector also has a trigger system which has three main pur-
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poses:

• To provide bunch-crossing identification.

• To provide precise transverse momentum thresholds.

• To measure the coordinate of muon tracks complementary to the coor-

dinate measured by the high precision tracking chambers.

The barrel section of the muon trigger system covers the range 0 < |η| < 1.05

and consists of Resistive Plate Chambers (RPC’s). The end-cap sections

cover 1.05 < |η| < 2.4 and use Thin Gap Chambers.

4.7 Trigger system

The LHC produces a p−p bunch crossing every 25 ns, which is an event rate

of 40 MHz. A typical event has a size of 1.3 Mbytes and so storing anywhere

close to the full number of events would be completely infeasible. To reduce

the event rate to a manageable level, the ATLAS trigger system must have an

event rejection factor of order 105 but the number of important physics events

that are discarded should be minimized. To this end, the trigger system is

separated into three subsequent levels. Each level improves on the choices

made by the previous level and applies any further selection cuts that are

needed. Figure 4.7 shows a diagram representing the ATLAS trigger system.

The first trigger level (L1) uses information from a subset of the AT-

LAS detectors. The trigger system of the muon detector selects high energy

muons. Selections are also made by 7000 reduced granularity towers in the

electromagnetic and hadronic calorimeters, each of which covers approxi-

mately 0.1×0.1 in ∆η×∆φ. This allows Regions of Interest (RoI’s) in η×φ
to be defined, which are passed on to the next trigger level. The L1 trigger

reduces the event rate to approximately 75 kHz.

The second trigger level (L2) analyses the RoI’s, defined by the L1 trigger,

using the full granularity and precision of the calorimeters, the muon system

and the inner detector. The selections performed by the L2 trigger reduce

the event rate to approximately 3.5 kHz.
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Figure 4.7: Diagram of the ATLAS trigger system [34].

The third trigger level, known as the event filter (EF), applies topological

selections to events that are sent from the L2 trigger. The EF also organizes

the events using a given assortment of event streams. Events that pass the

topological selections are sent to output nodes and are stored in a local file

system based on which stream the events are sorted into. The EF reduces

the event rate to its final value of 200 Hz.

4.7.1 B-physics trigger system

The goal of the B-physics trigger system is to distinguish the decay channels

of B hadrons, such as B0 → J/ψKS and B0 → J/ψK∗0, from the vast bb̄

background.

The main triggers used for these channels are the di-muon triggers, which

require two muons coming from a common vertex at L1, with a transverse

momentum threshold of 4 or 6 GeV. The L2 trigger then attempts to elim-

inate muons from π and K decays using the precision of the inner detector.

The EF performs a more precise fit of the muon tracks and applies invariant

mass selection cuts.
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Other useful triggers for B-physics channels are the single muon triggers.

At L1, these triggers have various transverse momentum thresholds for the

required muon in the muon trigger system. There should also be a cor-

responding RoI in the electromagnetic and hadronic calorimeters. The L2

trigger and the EF then use information from the inner detector to recon-

struct the muon track within the RoI.

Of course, the di-muon triggers are much more effective at identifying

J/ψ → µ+µ− decays, which is why they are the principal triggers used for

the B0 → J/ψKS and B0 → J/ψK∗0 channels.



Chapter 5

ATLAS computing and

software

The ATLAS computing model must be able to manage the O(10PB) of

information in the RAW data collected by the ATLAS detector each year

[35] and provide proper data access to collaboration members all around the

world. To achieve this, ATLAS makes use of a variety of event data formats

which are detailed in Section 5.1. ATLAS also employs a Computational

Grid [36] which allows the computing assets to be distributed to and shared

by the off-site resources of the institutions in the collaboration. Section 5.2

describes the Computational Grid used by ATLAS.

Simulated Monte Carlo data of ATLAS events must be produced and

provided to the collaboration, in a similar way to real data. Monte Carlo

data is created using a well-defined chain of independent processes. The

simulation full chain is described in Section 5.3. Section 5.4 explains how

the raw output from the detector or the simulation chain is converted into

usable physics information. Physics analyses utilize this information through

the procedure described in Section 5.5.

5.1 Data types

To cope with the extremely large volume of data, ATLAS employs a number

of different data formats. The various data types have distinct purposes

and their size varies such that they contain all of the information required

39
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for their task, but they must not be unnecessarily large. The following list

details the data types used by ATLAS:

• RAW data consists of events directly produced by the Event Filter.

The events are expected to have a size of 1.6 MB and an output rate

of 200 Hz. The event filter produces events in “byte-stream” format,

which is similar to the format delivered by the detector, and so is not

an object-oriented representation. Each RAW data file contains events

corresponding to a single run of data taking. However, the events will

be unordered. A typical RAW data file has a size of 2 GB.

• Event Summary Data (ESD) is produced from the RAW data and

the full output of the detector reconstruction. The information held by

ESD allows algorithms for particle identification, track re-fitting and

jet reconstruction to be run and calibrated. ESD events have a typical

size of 500 kB.

• Analysis Object Data (AOD) contains a more concise version of

the reconstructed events, which should be sufficient for most analyses.

AOD can be produced using ESD which eliminates the need to repro-

cess RAW data, increasing efficiency. Events in the AOD format are

typically 100 kB in size.

• Derived Physics Data (DPD) contains event data presented in the

style of a ntuple. Users utilize this format to analyse and histogram

data via standard analysis tools such as ROOT [37]. ROOT is an

object oriented framework designed for large scale physics data analysis,

written in C++. It provides tools for advanced statistical analysis

including histogramming, fitting and minimization. There are several

different DPD sub-types whose details and purpose are dependent on

the requirements of the physics working groups that utilize them.

• Simulated Data (SIM) is produced by the simulation chain described

in Section 5.3. Simulated Data refers to a variety of data that can be

RAW data or DPD or anywhere in between. Simulated Data also

contains Monte Carlo truth information about events, which increases

file size, often exceeding that of RAW data.
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5.2 The Computational Grid

The LHC Computational Grid, henceforth referred to as the Grid, is a

worldwide collaboration consisting of hundreds of computing sites distributed

throughout dozens of countries. The computing sites are separated into three

tiers:

• Tier-0 is responsible for the primary event processing and is based at

CERN and an expansion site in Budapest, Hungary. Tier-0 provides

reconstruction of primary RAW data which is then archived and dis-

tributed to Tier-1 sites.

• Tier-1 is responsible for long term storage of RAW data and providing

access to it. ATLAS is served by about ten Tier-1 sites, each of which

accounts for an approximately equal share of the data. The Tier-1

sites must facilitate access and analysis of the data they host in order

to provide some of the calibration processing capacity.

• Tier-2 sites are plentiful and provide a number of different functions

in ATLAS such as calibration, simulation and analysis facilities for

physics working groups and subgroups. Each Tier-2 site is associated

to a Tier-1 site to form a cloud, which usually consist of the sites from

a single country.

• Tier-3 sites are local resources, usually used within a single institu-

tion. They are able to submit and retrieve jobs from the Grid and are

generally used by an institution to proceed with work “off the Grid”.

Data stored on the Grid can be accessed using the software DQ2 [38],

which is a series of Python tools used by ATLAS to copy, move or delete

data files. A typical ATLAS member will use DQ2 to find and obtain data

sets required for their analysis via elementary commands such as dq2-ls or

dq2-get. Although DQ2 was used for the analyses described in this thesis,

it has now been replaced by Rucio [39].

Data sets can also be searched for using the ATLAS metadata interface

(AMI), which is essentially a web based version of DQ2. AMI provides a

more user-friendly interface for accessing useful information about a data
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set, such as the number of events, the geometry version used in the event

reconstruction and the Monte Carlo version, if applicable.

ATLAS Grid users can submit jobs to the Grid through the Ganga [40]

or PanDA [41] interfaces. These methods of job submission allow analysis

code to be sent to the data sets such that large, cumbersome files do not have

to be downloaded to the user’s local computer. Furthermore, the submitted

jobs can be divided and distributed among the extensive number of Grid

sites, reducing the time needed to run the job.

5.3 The simulation full chain

Simulated Monte Carlo data is produced via a series of processes known as

the full chain. An overview of the steps of the full chain is shown in Fig.

5.1. The main steps of the chain will be detailed in this section based on

information from Ref. [42]. The chain outputs Raw Data Objects (RDOs),

which are equivalent to the output of the ATLAS detector. This allows the

same reconstruction algorithms to be applied to both real and simulated

data. The full chain is implemented using the ATLAS software framework,

Athena, which is also used for the processing of ATLAS data.

Figure 5.1: Overview of the ATLAS simulation full chain. [42].
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5.3.1 The Athena framework

Athena is based on Gaudi [43], which is an adaptable C++ framework, de-

veloped originally by the LHCb collaboration, designed for physics data pro-

cessing. Athena is an enhanced version of Gaudi that consists of algorithms

and tools written in C++ which are configured and loaded by Python scripts

known as “job options”.

One of the major design principles of Athena is that data and algorithms

should be clearly separated. This means that the complex algorithmic code

responsible for building the components of event data, such as tracks and

vertices, is separated from the interface that allows access to the physical

variables describing such components. The benefit of this principle is that

users analysing physics objects are not reliant on the algorithms that pro-

duced those objects. Moreover, upgrades or modifications made to a par-

ticular Athena algorithm are less likely to affect physics users’ specialized

analysis code.

Athena has many different versions, known as releases, which are divided

into major projects based on their functionality. The entirety of the ATLAS

simulation software is contained in a single project. The “simulation” project

has two main dependencies. The first is the“core” project which contains

the Athena framework and projects used for the description of the ATLAS

detector, which are named “conditions” and “detector description”. The

second dependency is the “event” project which describes persistent objects.

5.3.2 Generation

The first step of the simulation full chain is event generation. Here, a set of

simulated particles is produced using, in ATLAS, the modelled interaction

of two partons from a proton-proton collision. The generated event includes

the hadronization and decays of the produced particles. It does not contain

the interaction between the particles and the detector: this is done at a later

stage.

The software used for event generation are known as “generators”. Most

generators are developed externally to ATLAS, but are still used within the

Athena framework. The most relevant generators are Pythia [44] and its AT-
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LAS variant PythiaB [45], used for generating events containing B hadrons,

which are written in FORTRAN; and the newer generators Pythia 8 [46] and

Pythia 8B, written in C++.

PythiaB

The production probability of a bb̄ pair in a proton-proton collision is ap-

proximately 1%, which makes the generation of such events (required for the

measurement of ∆Γd) using Pythia alone very inefficient.

PythiaB was therefore developed by ATLAS to reduce the processing time

needed to generate B hadron events in the numbers required for B physics

analyses. This is achieved by interrupting each event generation just after the

parton interaction, before any hadronization, to check if a bb̄ pair is present.

If found, the simulated hadronization of the same bb̄ pair can be repeated

independently many times (the number of repetitions is defined by the user)

to efficiently produce a sizable sample of generated events. Typically, the b

quark is required to decay to a specified decay channel of interest, while the

b̄ quark decays freely, although the opposite can also be done.

5.3.3 Simulation

Once the generation stage is completed, the generated events are sent to

the next step in the chain known as “simulation”. Before simulation begins,

selection cuts (such as pT or η requirements) can be applied to the gener-

ated events to remove any unneeded particles. The particles are then passed

through a full simulation of the ATLAS detector using the Geant4 toolkit

[47], which provides a framework for performing detector simulation. Geant4

has an extensive range of capabilities including the description of the detec-

tor geometry, the propagation of particles through the detector, and the

modelling of physics processes within the detector, such as ionization and

multiple scattering. These capabilities allow Geant4 to produce simulated

trajectories of the particles in an event, which are compared to the position

of the sensitive regions of the detector. The energies deposited by the parti-

cles in these regions are recorded as “hits”, which contain the position, time

and amount of energy deposited. The output of the simulation stage is a file
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containing the hits of the simulated events.

5.3.4 Truth information

The generation and simulation stages produce a history of the generated par-

ticles and interactions, and of the particle tracks and decays, respectively.

This is known as the “truth” information. A comparison of the truth infor-

mation to the fully reconstructed Monte Carlo output can be used to ensure

that the output sample only contains signal events. Additionally, detector

efficiencies and resolutions can be determined from the difference between

the reconstructed output information and the truth.

5.3.5 Pile-up

The hits file from the simulation step contains a record of the particle inter-

actions from each generated signal event. However, at the high luminosity

of the LHC, there are multiple p− p interactions at each beam crossing such

that each signal event is accompanied by several background events, known

as pile-up. The number of simulated pile-up events is defined as a function

of the simulated luminosity. They usually consist of several event types such

as minimum-bias, cavern background, beam gas and beam halo. The pile-up

events are read in and overlaid with the signal event. Pile-up is an optional

stage in the full chain and so not all hits files contain pile-up information.

The signal plus pile-up events are contained within an event collection and

each event is assigned a numerical index called the generated event number.

Later stages of the full chain rely on the signal event being the first in the

event collection (index 0). Checks were therefore emplaced to ensure that

the signal event is indeed the first, without which some of the branches of

the Monte Carlo AODs and DPDs could be incomplete or empty.

5.3.6 Digitization

The digitization stage of the full chain is where the hits produced by simula-

tion, with or without pile-up, are converted into the output format actually

produced by the ATLAS detector. The hits are turned into detector responses

known as “digits”.
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Each subdetector has its own digitization package which accounts for

the different characteristics of the separate detector subsystems and allows

digitization to be implemented modularly. There is an additional top-level

digitization package which coordinates all of the digitization packages and

ensures that they are configured consistently. The digitization algorithms

are tuned to reproduce the detector response observed in tests of the real

detector. The digits produced by the subdetector packages are written out

as RDOs.

5.4 Reconstruction

Reconstruction is where the raw data, from the detector or digitization, is

translated into recognizable physics objects such as vertices, tracks and jets.

The information from all of the subdetectors is combined into algorithms

to provide optimal reconstruction of the particle parameters. The physics

information output by reconstruction defines the content of the ESD.

Reconstruction also provides particle identification for photons, electrons,

muons and tau-leptons. In the case of muon identification, the algorithm

uses information from the inner detector and the muon system to produce

combined muon tracks. This kind of muon identification is employed by

many B-physics analyses.

Additional optimization and validation of the reconstruction algorithms

is performed using Monte Carlo truth information.

5.5 Analysis

Physics analyses require that the ESD is transformed into AOD. This is done

by applying loose selection criteria on some of the reconstructed objects in

the ESD. Additionally, some physics objects that are specific to AOD, such

as jet tagging, are added.

5.5.1 B-physics analysis

The ATLAS B-physics group has developed a number of analysis tools [48]

which extract B-decay candidates from AOD and produce ntuples that can
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be analysed within the ROOT framework. The B-physics analysis tools have

the following capabilities:

• Selecting tracks that match kinematic cuts for particle candidates,

2such as muons.

• Combining oppositely charged muon candidate pairs into J/ψ pre-

candidates , and fitting such pairs to a vertex while applying appropri-

ate selection cuts.

• Selecting B-decay product candidates additional to the J/ψ (such as

KS or K∗0) by combining tracks which are identified not to be muons

or electrons.

• Matching particle tracks to Monte Carlo truth information.

• Calculating additional variables such as proper decay time and trans-

verse decay length.



Chapter 6

The ∆Γd/Γd analysis

6.1 Introduction

The following four chapters describe in detail the analysis performed by the

ATLAS collaboration to measure the relative width difference ∆Γd/Γd of the

B0–B̄0 system [9]. The aims of this analysis are to produce a measurement

of ∆Γd/Γd with greater precision than any other experiment, from which

results have differed by more than 1.5σ [7, 8], and to carry out an important

null test of the Standard Model prediction. The method by which ∆Γd/Γd

is measured is based on the theoretical description given in chapter 2.

6.2 Standard Model prediction

The prediction of the value of ∆Γd in the Standard Model relies on an op-

erator product expansion, known as the heavy quark expansion, which is

used to calculate Γ12 (defined in Section 2.3) as a simultaneous expansion in

ΛQCD/mb and αs(mb) [49]. ΛQCD is the QCD energy scale, mb is the mass

of the b quark and αs is the strong coupling constant. The next to leading

order (NLO) expansion of Γ12 was obtained in 2003 by Refs. [50, 51]. The

NLO result was improved in 2007 by Ref. [52] using colour-enhanced αs/mb

corrections.

These methods yield the current Standard Model result of [49]:

∆Γd
∆Md

= (0.54± 0.10)× 10−2 (6.1)

48
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The current experimental measurements of ∆Md and τ(B0) are [2]:

∆Md = 0.510± 0.003 ps−1 (6.2)

τ(B0) = 1/Γd = 1.520± 0.004ps (6.3)

These measurements have high enough precision to be used as the SM val-

ues and can therefore be combined with the theoretical result to obtain the

Standard Model prediction of ∆Γd/Γd:

∆Γd
Γd

∣∣∣∣
SM

= (0.42± 0.08)× 10−2 (6.4)

Measurements of ∆Γd/Γd have been performed by the BaBar [53], Belle

[7] and LHCb [8] collaborations. These results along with the current world

average value [6] are given in Table 6.1.

Collaboration ∆Γd/Γd (×10−2)
BaBar −0.8± 3.7(stat.)± 0.9(syst.)
Belle −1.7± 1.8(stat.)± 1.1(syst.)
LHCb −4.4± 2.5(stat.)± 1.1(syst.)
World average −0.1± 1.0

Table 6.1: Previous experimental measurements of ∆Γd/Γd [53, 7, 8] and the
world average value [6].

6.3 Measurement method

In principle, ∆Γd can be extracted from the lifetime distribution of the decay

B0 → f , which is demonstrated in Eq. 2.37. Such a measurement, although

possible, would give poor precision on ∆Γd. Since ∆Γd � Γd, the term e−Γdt

dominates the lifetime distribution, preventing an accurate measurement of

∆Γd. A more promising method is established by Refs. [54, 55], in which

the ratio of the lifetime distributions of two different B0 decay modes is

measured. One of the decay modes should be a CP eigenstate, and the other

a flavour specific state.
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The measurement of ∆Γd presented in this chapter uses the CP eigenstate

J/ψKS and the flavour specific states J/ψK∗0 and J/ψK̄∗0. The flavour

specific states are added together and are henceforth denoted as J/ψK∗0,

unless otherwise stated. For both decay modes, the proper decay length of

the B0 meson LBprop is measured using the procedure described in chapter 7.

The ratio R(LBprop) of the two decay modes is then computed as:

R(LBprop) =
N(J/ψKS, L

B
prop)

N(J/ψK∗0, LBprop)
. (6.5)

where N(J/ψKS, L
B
prop) and N(J/ψK∗0, LBprop) are the numbers of recon-

structed B0 decays to the specified final state as a function of LBprop.

The expected decay rates as a function of the measured value LBprop are:

Γ(J/ψKS, L
B
prop) = Γ(J/ψKS, t)⊗G(t) =

∫ ∞
0

G(LBprop − ct)Γ(J/ψKS, t)dt,(6.6)

Γ(J/ψK∗0, LBprop) = Γ(J/ψK∗0, t)⊗G(t) =

∫ ∞
0

G(LBprop − ct)Γ(J/ψK∗0, t)dt,(6.7)

where G(LBprop − ct) is the detector resolution of LBprop, which is discussed

in chapter 7. The lower limit of the integral is zero rather than negative

infinity as LBprop and t are defined to be positive. The decay rate Γ(J/ψKS, t)

is given by Eq. 2.48. The expression for Γ(J/ψK∗0, t) is obtained from the

sum of Eqs. 2.50 and 2.53. If the detection efficiencies of K∗0 and K̄∗0 are

different, the terms proportional to the production asymmetry AP in Eqs.

2.50 and 2.53 will not cancel in the sum, causing Γ(J/ψK∗0, t) to depend on

AP . The values of AP and the relative difference in detection efficiencies of

K∗0 and K̄∗0 mesons are both of the order of 10−2, which is demonstrated in

chapter 8. This produces a contribution of the order of 10−4 in Γ(J/ψK∗0, t),

which can safely be neglected.

The value of ∆Γd is extracted from a fit to the experimental ratio (6.5)

using expressions (6.6) and (6.7). The details of the fitting procedure are

given in chapter 7. The J/ψ meson is reconstructed using the decay J/ψ →
µ+µ− which offers a clean selection of J/ψ mesons and a highly efficient online

trigger. The trigger efficiencies in the two B0 decay channels are equal within

minor effects related to the differences in the decay kinematics since only the
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properties of the J/ψ meson are used to trigger the events. The KS and K∗0

mesons are reconstructed using the KS → π+π− and K∗0 → K+π− decays.

The details of this reconstruction are given in Section 6.6. The chosen B0

decay modes have the same number of charged particles (two muons and

two hadrons) in the final state. Therefore, many experimental systematic

uncertainties cancel in the ratio R(LBprop) resulting in an increased precision

of the ∆Γd measurement. This is an important advantage of the selected

approach.

6.4 Data sample

This analysis uses the full sample of pp collision data collected by the ATLAS

detector in 2011 at
√
s = 7 TeV and in 2012 at

√
s = 8 TeV.

A set of dimuon trigger chains designed to select J/ψ → µ+µ− decays is

used in this analysis. This collection of triggers includes numerous triggers

with different muon pT thresholds and additional topological and invariant

mass requirements. The integrated luminosity corresponding to this selection

of triggers is 4.9 fb−1 in 2011 and 20.3 fb−1 in 2012. The lifetime efficiency

of the individual triggers is known to be significantly different. However,

this efficiency is expected to cancel in the ratio (6.5), since both decays are

selected with the same suite of triggers. A dedicated study conducted to

prove this cancellation is presented in section 7.0.2.

6.5 Monte Carlo Samples

The method presented in Section 6.3 should be corrected to take into ac-

count the dependence of the reconstruction efficiencies of the B0 → J/ψKS

and B0 → J/ψK∗0 decays on the B0 lifetime. A large part of this depen-

dence, together with any associated uncertainties, cancels in the ratio (6.5)

because the number of final particles in both decay modes is the same and

the procedure to measure the B0 lifetime described in chapter 7 is similar

in both cases. Selecting both channels in a consistent manner, described in

Section 6.6, minimises any lifetime bias. Thus, the correction to the ratio

(6.5) is expected to be small. Still, it cannot be eliminated completely be-
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cause the hadronic tracks in the B0 → J/ψKS decay come from a displaced

KS → π+π− vertex due to the long decay length of the KS, whereas all four

tracks in the B0 → J/ψK∗0 decay originate from a single vertex as the K∗0

decay length is effectively zero. This difference between the two channels is

the main source of the experimental bias in the ratio (6.5), which can be

evaluated only with Monte Carlo (MC) simulation. Using simulated events

the quantity Reff(LBprop) defined as

Reff(LBprop) ≡
ε(B0 → J/ψKS, L

B
prop)

ε(B0 → J/ψK∗0, LBprop)
. (6.8)

is measured. Here ε(B0 → J/ψKS, L
B
prop) and ε(B0 → J/ψK∗0, LBprop) are

the efficiencies to reconstruct B0 → J/ψKS and B0 → J/ψK∗0 decays,

respectively.

In all cases the events are filtered at generator level by requiring two

muons with |η| < 2.5 and transverse momenta, pT > 2.5 GeV for the MC11

samples and pT > 3.5 GeV for the MC12 samples. The events are passed

through a full simulation of the detector as described in section 5.3, and

processed with the same reconstruction algorithms including trigger require-

ments, as used for the data. All samples are produced with both MC11 and

MC12 configurations to properly account for different conditions during the

two years of data-taking. The decays of B0 meson are simulated with Pythia

6.1 for the 7 TeV MC samples and with Pythia 8 for the 8 TeV MC samples.

6.6 Event reconstruction and selection

For a given event, the primary vertex (PV) of the pp collision producing the

B0 meson is determined using good-quality tracks reconstructed in the ID.

The average transverse position of the pp collisions (the beam spot) is used

in this determination as a constraint. Due to the high LHC luminosity, each

event containing a B0 meson is accompanied by a large number of pile-up

interactions, which occur at various z positions along the beam line. These

background interactions produce several PV candidates. The selection of

the primary vertex corresponding to the B0 production point is described in

chapter 7.
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All selection cuts presented in the following subsections were chosen to

maximize the ratio of signal to background.

6.6.1 J/ψ reconstruction

The J/ψ candidates are reconstructed from pairs of oppositely charged muons.

The pair of oppositely charged muons with pT > 2.5 GeV and |η| < 2.4 is

fitted to a common vertex with the VKalVrt fitter package [56]. The χ2(J/ψ)

of the vertex fit must satisfy χ2(J/ψ)/n.d.f. < 16, where n.d.f. stands for

the number of degrees of freedom and is equal to one in this case. The mass

of the J/ψ candidate is required to be between 2.86 and 3.34 GeV.

6.6.2 KS reconstruction

The KS candidates are reconstructed from pairs of oppositely charged par-

ticle tracks not used in the primary or pile-up vertex reconstruction. Each

track is required to have at least one hit in either of the two silicon detectors.

The transverse momenta of the tracks must be greater than 400 MeV and

have |η| < 2.5. The pairs are fitted to a common vertex and kept if the

χ2(KS)/n.d.f. < 15 (n.d.f. = 1), and the projection of the distance between

the J/ψ and KS vertices along the KS momentum in the transverse plane

is less than 44 cm. The ratio of this projection to its uncertainty must be

greater than 2. Two additional requirements are related to the point of clos-

est approach of the KS trajectory to the J/ψ vertex in the xy plane. The

distance between this point and the position of the J/ψ decay vertex in the

xy plane is required to be less than 2 mm. The difference in the z coordi-

nates of these two points must be less than 10 mm. These requirements help

to reduce the combinatorial background. The mass of the KS candidate is

required to be between 465 and 535 MeV and its transverse momentum must

be greater that 1 GeV. Additionally, the transverse decay length of the KS

(Lxy(KS)) is required to be less than 440 mm and the ratio of Lxy(KS) to

its uncertainty must be greater than two. The invariant mass distribution of

the Kπ pairs is shown in Fig. 6.1, in which the cut on m(KS) was removed

and an additional cut of 5230 MeV < m(B0) < 5330 MeV was included.
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(a) (b)

Figure 6.1: The invariant mass distributions for KS candidates for the (a)
2011 and (b) 2012 data sets.

6.6.3 B0 → J/ψKS reconstruction

The B0 → J/ψ(µ+µ−) KS(π+π−) candidates are constructed by refitting the

four tracks of the J/ψ and KS candidates using VKalVrt. The muon tracks

are constrained to intersect in a secondary vertex and their invariant mass

is constrained to the nominal J/ψ mass [2]. The two pions from the KS

decay are constrained to originate from a tertiary vertex and their invariant

mass is constrained to the nominal mass of the KS meson [2]. The combined

momentum of the refitted KS decay tracks is required to point to the dimuon

vertex. The fit has n.d.f. = 6. The quality of the cascade vertex fit is

ensured by the requirement χ2(B0)− χ2(J/ψ) < 25. Finally, the transverse

momentum of the B0 is required to exceed 10 GeV and its mass must be

between 4900 and 5600 GeV. The invariant mass distribution of the B0 →
J/ψKS candidates is shown in Fig. 6.2.

6.6.4 B0 → J/ψK∗0 reconstruction

For the selection of B0 → J/ψK∗0 candidates, a J/ψ candidate and two

additional oppositely charged particles are combined together. One particle

is assigned the mass of the charged kaon and the other the mass of the

charged pion. The transverse momentum of the kaon is required to exceed

800 MeV and the transverse momentum of the pion must be greater than
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Figure 6.2: The invariant mass distribution of the total sample of B0 →
J/ψKS candidates in the 2012 data sample. The full line shows the result
of the fit to the function described in the text. The dashed line shows the
combinatorial background contribution. The filled area shows the peaking
background contribution from the B0

s → J/ψKS decay. The lower frame of
the figure shows the difference between each data point and the fit at that
point divided by the statistical uncertainty of the data point.

400 MeV. The pseudorapidity of the kaon and pion tracks should be less

than 2.5. A vertex fit of the four selected tracks is performed using the

VKalVrt package. In this fit the invariant mass of the two muon tracks is

constrained to the nominal J/ψ mass [2]. All four tracks are constrained to

originate from the same vertex. The quality of the vertex fit is ensured by the

requirement χ2(B0)− χ2(J/ψ) < 16 imposed on the χ2(B0) of this fit. The

invariant mass of the kaon and pion is required to be 850 < m(Kπ) < 950

MeV. This range is slightly shifted with respect to the PDG value of the K∗0

mass (895.81 ± 0.18 MeV) to provide a better suppression of the reflection

from the Bs → J/ψφ decay. The transverse momentum of the Kπ pair is

required to exceed 2 GeV and the transverse momentum of the B0 candidate

must be greater than 10 GeV. Finally, the mass of the B0 candidate must

be between 4900 and 5600 GeV. The invariant mass distribution of the Kπ
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pairs is shown in Fig. 6.3, in which the cut on m(Kπ) was removed and

an additional cut of 5230 MeV < m(B0) < 5330 MeV was included. The

invariant mass distribution of the B0 → J/ψK∗0 candidates is shown in Fig.

6.4.

(a) (b)

Figure 6.3: The invariant mass distributions for Kπ candidates for the (a)
2011 and (b) 2012 data sets.

Since particle identification of charged hadrons is not efficient in ATLAS,

each pair of tracks is tested twice with the assignment of kaon and pion

swapped. If both assignments satisfy the above selection criteria, the combi-

nation with the smallest deviation from the nominal K∗0 mass [2] is chosen.

The final states J/ψK∗0 and J/ψK̄∗0 are not distinguished and the defini-

tion of the B0 proper decay length discussed in chapter 7 is not sensitive to

the assignment of masses. Therefore, the ambiguity of the kaon and pion

identification does not impact on the obtained result.

Similarly to the B0 → J/ψKS selection, no cuts are applied that could

bias the lifetime distribution of the B0 → J/ψK∗0 candidates. Also, multiple

B0 candidates satisfying all selection criteria are treated independently.

6.6.5 Multiplicity of B0 candidates

If there are several B0 → J/ψKS or B0 → J/ψK∗0 candidates in a single

event that pass the selection criteria, they will be included in the data sam-

ple. In such cases, the additional candidates contribute to the combinatorial

background and do not impact the signal yields.
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Figure 6.4: The invariant mass distribution of the total sample of B0 →
J/ψK∗0 candidates in the 2012 data sample.

The B0 → J/ψKS channel has a mean of 1.01 candidates in each event for

the 2011 and 2012 data sets. The mean number of B0 → J/ψKS candidates

in Monte Carlo is 1.00 in both 2011 and 2012.

For the B0 → J/ψK∗0 channel, there is a mean of 1.41 candidates per

event in the 2011 data set and 1.44 in the 2012 data set. In Monte Carlo,

the average number of B0 → J/ψK∗0 candidates per event is 1.16 in 2011

and 2012. The B0 → J/ψK∗0 channel has a much larger combinatorial back-

ground contribution than the B0 → J/ψKS channel and as such has more

candidates per event on average. In simulation, only the decay B0 → J/ψK∗0

was simulated. Therefore, the multiplicity of candidates in simulation is

lower. Figure 6.5 shows the number of B0 candidates that pass selection in

each event in data and Monte Carlo.

6.6.6 Selection efficiencies

Tables 6.2 to 6.5 show all selection cuts applied to events in the Monte Carlo

samples, and their sequential efficiencies. The final selection efficiency is
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(a) (b)

(c) (d)

Figure 6.5: Number of B0 candidates per event for (a,b) B0 → J/ψKS decays
and (c,d) B0 → J/ψK∗0 decays.

lower in 2011 than in 2012 primarily due to the smaller value of
√
s in 2011,

which causes the transverse momentum cuts to be more impactful.
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Cut Efficiency (%)
χ2(J/ψ) < 16 99.56
2860 MeV < m(J/ψ) < 3340 MeV 99.28
χ2(B0)− χ2(J/ψ) < 25 95.57
465 MeV < m(KS) < 535 MeV 94.84
pT (KS) > 1 GeV 93.97
pT (B0) > 10 GeV 86.31
Lxy(KS) < 440 mm 86.31
Lxy(KS)/σLxy(KS) > 2 86.30
4900 MeV < m(B0) < 5600 MeV 85.76

Table 6.2: Selection efficiencies for B0 → J/ψKS events in 2011.

Cut Efficiency (%)
χ2(J/ψ) < 16 99.72
2860 MeV < m(J/ψ) < 3340 MeV 99.47
χ2(B0)− χ2(J/ψ) < 25 96.13
465 MeV < m(KS) < 535 MeV 95.38
pT (KS) > 1 GeV 94.49
pT (B0) > 10 GeV 89.94
Lxy(KS) < 440 mm 89.94
Lxy(KS)/σLxy(KS) > 2 89.93
4900 MeV < m(B0) < 5600 MeV 89.47

Table 6.3: Selection efficiencies for B0 → J/ψKS events in 2012.

Cut Efficiency (%)
χ2(J/ψ) < 16 99.99
2860 MeV < m(J/ψ) < 3340 MeV 99.72
χ2(B0)− χ2(J/ψ) < 16 98.21
850 MeV < m(K∗0) < 950 MeV 88.70
pT (K+) > 800 MeV 87.97
pT (K∗0) > 2 GeV 87.97
pT (B0) > 10 GeV 87.97
4900 MeV < m(B0) < 5600 MeV 87.97

Table 6.4: Selection efficiencies for B0 → J/ψK∗0 events in 2011.
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Cut Efficiency (%)
χ2(J/ψ) < 16 99.99
2860 MeV < m(J/ψ) < 3340 MeV 99.77
χ2(B0)− χ2(J/ψ) < 16 98.38
850 MeV < m(K∗0) < 950 MeV 89.24
pT (K+) > 800 MeV 88.52
pT (K∗0) > 2 GeV 88.52
pT (B0) > 10 GeV 88.52
4900 MeV < m(B0) < 5600 MeV 88.52

Table 6.5: Selection efficiencies for B0 → J/ψK∗0 events in 2012.



Chapter 7

The proper decay length of the

B0 meson

This chapter details the adopted method used to measure the proper decay

length of the B0 meson in the B0 → J/ψKS and B0 → J/ψK∗0 chan-

nels which, as explained in Section 6.3, is required for the measurement of

∆Γd/Γd. The procedure is explicitly designed to use the same input informa-

tion in both the B0 → J/ψKS and B0 → J/ψK∗0 channels. The aim of this

approach is to reduce the experimental bias in the ratio (6.5). The origin of

the B0 meson coincides with the primary pp interaction point. The tracks

from the B0 candidate are excluded in the measurement of the primary ver-

tex (PV) position. The position of the B0 decay is determined by the J/ψ

vertex, which is obtained from the vertex fit of the two muons, and is not

affected by the additional particles from the B0 decay. Therefore, there is

no intrinsic difference in the proper decay length measurement of the two B0

decay modes.

The proper decay length of the B0 meson, LBprop, is determined in the

xy plane of the detector because of the better precision compared to the

measurement in three dimensions, strengthened by the small transverse size

of the beam spot. A further advantage of measuring LBprop in the xy plane

is the reduced dependence on pile-up interactions, which occur at various z

positions along the beam line. The PV corresponding to the B0 production

point is selected from all reconstructed PVs as follows. For each PV can-

didate, the point of closest approach of the B0 trajectory to the PV in the

61



62

xy plane is determined and the difference δz of the z coordinates of these

two points is measured. The candidate with the minimum absolute value

of δz is selected as the B0 production vertex. As with any other procedure

of PV selection, this method is not ideal and occasionally a wrong PV is

selected due to the resolution for the B0 momentum direction. However, any

selected PV should be close enough to the true B0 production vertex because

numerically δz ∼ O(1 mm) and both vertices are located on the beam line,

which has a gradient of approximately 10−3 in both the xz and yz planes.

In addition, as shown in Table 3.1, the transverse size of the beam spot is

about 15 µm in both the x and y directions, and so the distance between the

true vertex and the selected vertex in the xy plane is expected to be much

less than the precision of the decay length measurement, which is about 100

µm. The fraction of events in which the selected PV does not correspond to

the true B0 vertex is estimated using Monte Carlo and is found to be very

small, at about 10−4 in 2011 and 2× 10−4 in 2012 for both B0 decay modes.

The higher value in 2012 is expected due to the increased number of pile-up

vertices. Thus, the measurement of LBprop performed in the xy plane is not

significantly affected by any incorrect selection of the PV.

For each reconstructed B0 → J/ψKS or B0 → J/ψK∗0 candidate, LBprop

is measured using the projection of the B0 decay length along the B0 mo-

mentum in the plane transverse to the beam axis:

LBprop = LB
xy · p̂B

T

mB0

pBT
=

(xJ/ψ − xPV)pBx + (yJ/ψ − yPV)pBy
(pBT)2

mB0 . (7.1)

Here, LB
xy is the transverse decay length of the B0 meson and pB

T is its trans-

verse momentum vector, where pBT = |pB
T |. The quantitymB0 = 5279.61 MeV

[2] is the mass of the B0 meson. The variables xJ/ψ, yJ/ψ are the coordinates

of the J/ψ vertex; xPV, yPV are the coordinates of the primary vertex and

pBx , p
B
y are the x and y components of the momentum of the B0 meson.

The resolution of LBprop is obtained from simulation. It is found to be

very similar for the two decay modes. Figure 7.1 shows the distribution of

the resolution, given by LBprop − ct, where t is the true proper decay time of

the B0 meson. This distribution for the J/ψKS and J/ψK∗0 decay modes

is fitted by the function G(LBprop − ct) defined as the sum of two Gaussian
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functions:

G(x) =
1√
2π

(
f

σ1

e−x
2/(2σ2

1) +
1− f
σ2

e−x
2/(2σ2

2)

)
. (7.2)

where f is the fraction of G(x) comprised by the first Gaussian function and

σ1 and σ2 are, respectively, the standard deviations of the first and second

Gaussian functions. The values of f , σ1 and σ2obtained from the fit for both

decay modes are given in Table 7.1.

(a) (b)

Figure 7.1: Distribution of LBprop − ct. in (a) the 2011 data sample and (b)
the 2012 data sample.

Year
√
s Channel f σ1 [mm] σ2 [mm]

2011 7 TeV B0 → J/ψKS 0.454 0.0234 0.0502
2011 7 TeV B0 → J/ψK∗0 0.412 0.0212 0.0518
2012 8 TeV B0 → J/ψKS 0.453 0.0221 0.0482
2012 8 TeV B0 → J/ψK∗0 0.456 0.0206 0.0455

Table 7.1: Parameters describing the resolution of LBprop. The uncertainties on
these parameters are negligible as they are obtained from the high statistics
of the MC samples.

To obtain the proper decay length distributions in the studied B0 decay

modes, the range of LBprop between −0.3 and 6 mm is divided into ten bins

defined in Table 7.2. The selected bin size is much larger than the average

resolution of LBprop, which is approximately 35 µm for the J/ψKS channel

and 33 µm for the J/ψK∗0 channel. In each bin of LBprop, the number of
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B0 → J/ψKS and B0 → J/ψK∗0 decays are extracted from a binned log-

likelihood fit to the corresponding mass distributions.

Bin number 1 2 3 4 5 6 7 8 9 10
Lower edge [mm] −0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 3.0
Upper edge [mm] 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 3.0 6.0

Table 7.2: Definition of the LBprop bins.

In this fit, the mass distributions are modelled by a sum of functions

describing the signal and background components. For the B0 → J/ψK∗0

channel, the signal function f
J/ψK∗0
s is defined as the sum of two Gaussian

functions. The Gaussian functions are constrained to have the same mean.

The background function f
J/ψK∗0

b is defined using an exponential function

with a second-order polynomial as the exponent. The fit is first applied to

the total sample (shown in Fig 6.4) to determine the mean and standard

deviations of the two Gaussian functions and their relative fractions. For

the fit in each LBprop bin, all parameters describing the signal, except the

normalisation of f
J/ψK∗0
s , are fixed to the values obtained in the fit of the

total sample. A dedicated study was performed to verify that fixing the

parameters of the signal does not produce any bias in the result, which is

described in Section 7.0.1. The parameters of f
J/ψK∗0

b remain free.

The signal function for the B0 → J/ψKS channel f
J/ψKS
s is defined as the

sum of two Gaussian functions. The background is modelled by the sum of

two functions: f
J/ψKS

b = f cb + fBs
b . The combinatorial background function

f cb is defined using an exponential function with a second-order polynomial

as the exponent. The second function, fBs
b , accounts for the contribution

from B0
s → J/ψKS decays and is defined as the sum of two Gaussian func-

tions. The B0
s → J/ψKS contribution is visible in the mass distribution as

a shoulder in the signal peak, as can be seen in Fig. 6.2. Its fraction rel-

ative to the B0 → J/ψKS signal is ∼ 1%. The signal Gaussian functions

are constrained to have the same mean. The relative fractions and standard

deviations of the B0
s background Gaussian functions are parameterised to

be the same as those of the signal Gaussian functions. The B0
s background

Gaussian functions are also constrained to have the same mean. The mean
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of the B0
s background Gaussian functions is shifted relative to the mean of

the signal Gaussian functions by the difference between the nominal masses

of the B0
s and B0 mesons (87.34 MeV) [2]. The fit is first applied to the

total sample to determine the mean and standard deviations of the signal

Gaussian functions and their relative fractions. For the fit in each LBprop bin,

all parameters describing the signal, except the normalisation of f
J/ψKS
s , are

fixed to the values obtained in the fit of the total sample. The parameters

of fBs
b are also fixed, except for the normalisation. A dedicated study was

performed to verify that fixing the parameters of the signal does not produce

any bias in the result, which is described in Section 7.0.1. All parameters of

f cb remain free.

The separation of the B0 → J/ψKS and B0
s → J/ψKS contributions is

important for the ∆Γd measurement because the mean lifetimes of the B0

and B0
s mesons decaying to this CP eigenstate are different. On the contrary,

the separation of B0 → J/ψK∗0 and B0
s → J/ψK∗0 decays is not necessary

because the lifetimes of the B0 and B0
s mesons decaying to this final state

are equal to within 1% [2, 6]. Thus, the small (∼1%) contribution of the

B0
s → J/ψK∗0 decay does not have an impact on the ∆Γd measurement.

The fit ranges of the J/ψKS and J/ψK∗0 mass distributions are selected

such that the background under the B0 signal is smooth. The mass distri-

bution m(J/ψKS) contains a contribution from partially reconstructed B →
J/ψKSπ decays. This contribution has a threshold at m(J/ψKS) ' m(B0)−
m(π) ' 5130 MeV. For this reason, the fit range 5160 < m(J/ψKS) < 5600

MeV is selected. The corresponding contribution of B → J/ψK∗0π decays is

smaller. Therefore, the lower limit of the fit range of m(J/ψK∗0) is selected

at 5000 MeV. The impact of the selection of the fit range on the value of

∆Γd is included in the systematic uncertainty.

The total number of signal B0 → J/ψKS decays obtained from the fit

to the total sample is 28 170 ± 250 in the 2011 data set and 110 800 ± 520

in the 2012 data set. For B0 → J/ψK∗0 decays the corresponding numbers

are 129 200 ± 900 in the 2011 data set and 555 800 ± 1 900 in the 2012 data

set. Figures 7.2 - 7.11 show the fitted mass distributions of B0 → J/ψKS

candidates and B0 → J/ψK∗0 candidates in the bins of LBprop defined in Table

7.2 for the 2012 data sample.
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Figure 7.12 shows the number of signal events and its statistical un-

certainty in each bin as a function of LBprop for the B0 → J/ψKS and

B0 → J/ψK∗0 channels. The ratio of the numbers of B0 candidates in

the two channels computed in each LBprop bin i gives the experimental ratio

Ri,uncor defined as:

Ri,uncor =
Ni(J/ψKS)

Ni(J/ψK∗0)
. (7.3)

Here Ni(J/ψKS) and Ni(J/ψK
∗0) are the numbers of events in a given bin i.

This ratio has to be corrected by the ratio of the reconstruction efficiencies

in each LBprop bin Ri,eff(LBprop) defined by Eq. (6.8). The determination of

Ri,eff(LBprop) is explained is Section 9.1.
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(a)

(b)

Figure 7.2: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for −0.3 < LBprop < 0.0 mm.
The full line shows the result of the fit to the function described in the
text. The dashed line shows the combinatorial background contribution.
The filled area in figure (a) shows the peaking background contribution from
the B0

s → J/ψKS decay. The lower frame of each figure shows the difference
between each data point and the fit at that point divided by the statistical
uncertainty of the data point.
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(a)

(b)

Figure 7.3: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 0.0 < LBprop < 0.3 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.



69

(a)

(b)

Figure 7.4: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 0.3 < LBprop < 0.6 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.5: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 0.6 < LBprop < 0.9 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.6: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 0.9 < LBprop < 1.2 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.7: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 1.2 < LBprop < 1.5 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.8: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 1.5 < LBprop < 1.8 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.9: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 1.8 < LBprop < 2.1 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.10: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 2.1 < LBprop < 3.0 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.11: The invariant mass distributions of (a) B0 → J/ψKS candidates
and (b) B0 → J/ψK∗0 candidates in 2012 for 3.0 < LBprop < 6.0 mm. The
full line shows the result of the fit to the function described in the text. The
dashed line shows the combinatorial background contribution. The filled
area in figure (a) shows the peaking background contribution from the B0

s →
J/ψKS decay. The lower frame of each figure shows the difference between
each data point and the fit at that point divided by the statistical uncertainty
of the data point.
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(a)

(b)

Figure 7.12: The number of B0 candidates as a function of the proper decay
length of the B0 meson, LBprop, for (a) B0 → J/ψKS and (b) B0 → J/ψK∗0

decays after event selection in the 2012 data sample. The uncertainties are
statistical only.
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7.0.1 Verification of mass fits

Tables 7.3 and 7.4 give the χ2/n.d.f. and probability (p-value) for each of the

fits of the mass distributions. These results confirm an overall good quality

of the fit in the individual LBprop bins.

In the fit of the signal yield in the LBprop bins, all parameters describing

the signal except the normalisation are fixed to the values obtained in the

fit of the total sample. The consistency of the fit model in the bins of LBprop

is checked by releasing the width of the first Gaussian function (σ1) and the

scaling factor between the width of the first and second Gaussian functions

(s12). A separate check is performed where the mean (µ) of the Gaussian

functions is released. Tables 7.5 and 7.6 give the difference between the

values of σ1 and s12 from the fit in which they are released and the fit of

the total sample. Tables 7.7 - 7.8 give the difference between the value of µ

from the fit in which µ is released and the fit of the total sample. For the

B0 → J/ψKS channel, the fit of the total sample gives σ1 = 15.78 ± 0.59

MeV, s12 = 2.18± 0.08, µ = 5280.2± 0.2 MeV in 2011 and σ1 = 14.67± 0.42

MeV, s12 = 2.02 ± 0.03, µ = 5280.3 ± 0.1 MeV in 2012. For the B0 →
J/ψK∗0 channel, the fit of the total sample gives σ1 = 17.42 ± 0.57 MeV,

s12 = 2.17± 0.04, µ = 5279.6± 0.2 MeV in 2011 and σ1 = 18.51± 0.27 MeV,

s12 = 2.13 ± 0.02, µ = 5279.5 ± 0.1 MeV in 2012. The relative fraction of

the first Gaussian (f1) is, for the B0 → J/ψKS channel, f1 = 0.541 ± 0.044

for the 2011 sample and f1 = 0.427 ± 0.030 for the 2012 sample. For the

B0 → J/ψK∗0 channel, f1 = 0.371 ± 0.028 for 2011 and f1 = 0.424 ± 0.015

for 2012. The fraction of the second Gaussian in the fit is equal to 1 − f1.

The performed study confirms the validity of the adopted fitting procedure

since a very good consistency between the released and default values of σ1,

s12, and µ is obtained for all LBprop bins in both channels.
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2011 2012
LBprop range (mm) χ2/n.d.f. p-value B0 yield χ2/n.d.f. p-value B0 yield

−0.3 < LBprop < 0.0 48.28/39 0.15 1054± 113 50.14/39 0.11 4147± 226
0.0 < LBprop < 0.3 38.90/39 0.47 13090± 189 44.37/39 0.26 51520± 367
0.3 < LBprop < 0.6 30.01/39 0.85 7228± 107 37.21/39 0.52 28430± 211
0.6 < LBprop < 0.9 39.69/39 0.44 3638± 73 53.64/39 0.06 14310± 142
0.9 < LBprop < 1.2 41.87/39 0.35 1832± 51 31.96/39 0.78 7206± 99
1.2 < LBprop < 1.5 35.25/39 0.64 900± 36 44.17/39 0.26 3539± 68
1.5 < LBprop < 1.8 34.14/39 0.69 456± 25 39.55/39 0.45 1792± 48
1.8 < LBprop < 2.1 50.94/39 0.10 246± 17 29.99/39 0.85 966± 35
2.1 < LBprop < 3.0 26.32/39 0.94 201± 17 39.99/39 0.43 787± 32
3.0 < LBprop < 6.0 14.62/39 1.00 27± 7 30.35/39 0.84 107± 11

Table 7.3: χ2/n.d.f., p-value and B0 yield for the fits to the mass distribu-
tions in each LBprop bin for the B0 → J/ψKS channel.

2011 2012
LBprop range (mm) χ2/n.d.f. p-value B0 yield χ2/n.d.f. p-value B0 yield

−0.3 < LBprop < 0.0 33.55/41 0.79 4535± 512 37.75/41 0.62 19510± 1063
0.0 < LBprop < 0.3 40.61/41 0.49 59950± 681 57.80/41 0.04 257900± 1413
0.3 < LBprop < 0.6 32.45/41 0.83 32870± 253 30.21/41 0.89 141400± 524
0.6 < LBprop < 0.9 49.26/41 0.18 16550± 157 69.39/41 0.01 71180± 326
0.9 < LBprop < 1.2 43.81/41 0.35 8396± 108 58.84/41 0.04 36120± 224
1.2 < LBprop < 1.5 43.13/41 0.38 4319± 78 45.65/41 0.28 18580± 159
1.5 < LBprop < 1.8 41.69/41 0.44 2193± 54 64.72/41 0.01 9432± 112
1.8 < LBprop < 2.1 69, 94/41 0.03 1118± 38 33.99/41 0.77 4809± 79
2.1 < LBprop < 3.0 36.54/41 0.67 949± 36 60.58/41 0.02 4082± 74
3.0 < LBprop < 6.0 29.34/46 0.97 139± 13 59.27/46 0.09 598± 28

Table 7.4: χ2/n.d.f. and p-value for the fits to the mass distributions in each
LBprop bin for the B0 → J/ψK∗0 channel.
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2011 2012
LBproprange (mm) ∆σ1 (MeV) ∆s12 ∆σ1 (MeV) ∆s12

−0.3 < LBprop < 0.0 +5.82± 3.96 +0.46± 2.20 +3.76± 1.79 −0.51± 1.05
0.0 < LBprop < 0.3 +0.25± 0.44 −0.07± 0.10 −0.04± 0.35 +0.01± 0.05
0.3 < LBprop < 0.6 −0.38± 0.46 +0.05± 0.08 +0.25± 0.33 −0.06± 0.05
0.6 < LBprop < 0.9 −0.21± 0.34 +0.05± 0.11 +0.13± 0.27 +0.00± 0.06
0.9 < LBprop < 1.2 −0.51± 0.36 +0.02± 0.17 +0.12± 0.16 −0.03± 0.08
1.2 < LBprop < 1.5 +0.29± 0.68 +0.07± 0.27 −0.68± 0.14 +0.04± 0.14
1.5 < LBprop < 1.8 −0.03± 1.34 −0.09± 0.31 +0.17± 0.77 +0.06± 0.19
1.8 < LBprop < 2.1 −0.95± 1.41 +1.30± 0.61 +0.33± 1.23 +0.03± 0.26
2.1 < LBprop < 3.0 +0.07± 2.27 +0.07± 0.49 +0.25± 1.33 +0.03± 0.28
3.0 < LBprop < 6.0 +4.81± 5.94 −0.27± 0.86 +1.57± 4.64 −0.22± 0.75

Table 7.5: Change in σ1 and s12 between the fit in which they are released
and the default fit for the B0 → J/ψKS channel.

2011 2012
LBprop range (mm) ∆σ1 (MeV) ∆s12 ∆σ1 (MeV) ∆s12

−0.3 < LBprop < 0.0 +1.06± 3.45 +1.15± 0.84 +2.54± 2.03 +0.37± 0.54
0.0 < LBprop < 0.3 −0.32± 0.40 +0.05± 0.10 −0.03± 0.17 −0.05± 0.06
0.3 < LBprop < 0.6 +0.34± 0.49 −0.04± 0.04 −0.11± 0.23 −0.01± 0.02
0.6 < LBprop < 0.9 +0.40± 0.42 −0.06± 0.06 +0.11± 0.20 −0.02± 0.02
0.9 < LBprop < 1.2 −0.46± 0.21 −0.02± 0.08 −0.14± 0.12 −0.04± 0.06
1.2 < LBprop < 1.5 +0.12± 0.59 −0.01± 0.14 −0.44± 0.19 +0.08± 0.06
1.5 < LBprop < 1.8 −0.27± 0.76 +0.19± 0.18 +0.00± 0.38 +0.06± 0.08
1.8 < LBprop < 2.1 −0.70± 1.19 +0.37± 0.28 +0.29± 0.60 −0.03± 0.11
2.1 < LBprop < 3.0 −2.80± 1.08 +0.50± 0.27 −0.80± 0.59 +0.15± 0.13
3.0 < LBprop < 6.0 +1.22± 2.69 +0.74± 0.51 +4.93± 3.72 −0.61± 0.43

Table 7.6: Change in σ1 and s12 between the fit in which they are released
and the default fit for the B0 → J/ψK∗0 channel.
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2011 2012
LBprop range (mm) ∆µ (MeV) ∆µ (MeV)

−0.3 < LBprop < 0.0 +0.6± 2.9 −1.8± 1.2
0.0 < LBprop < 0.3 −0.3± 0.2 −0.3± 0.2
0.3 < LBprop < 0.6 +0.2± 0.2 +0.0± 0.2
0.6 < LBprop < 0.9 +0.0± 0.3 −0.4± 0.2
0.9 < LBprop < 1.2 −0.7± 0.6 +0.4± 0.3
1.2 < LBprop < 1.5 +1.0± 0.9 −0.7± 0.4
1.5 < LBprop < 1.8 +2.4± 1.2 +0.0± 0.6
1.8 < LBprop < 2.1 −2.4± 1.7 −1.4± 0.9
2.1 < LBprop < 3.0 −0.1± 1.8 +0.2± 1.0
3.0 < LBprop < 6.0 +5.3± 4.6 −0.8± 2.5

Table 7.7: Change in µ between the fit in which it is released and the default
fit for the B0 → J/ψKS channel. Values are given in MeV.

2011 2012
LBprop range (mm) ∆µ (MeV) ∆µ (MeV)

−0.3 < LBprop < 0.0 −5.2± 3.6 −4.5± 2.2
0.0 < LBprop < 0.3 −0.3± 0.3 −0.1± 0.2
0.3 < LBprop < 0.6 +0.2± 0.2 +0.2± 0.2
0.6 < LBprop < 0.9 +0.3± 0.3 −0.5± 0.2
0.9 < LBprop < 1.2 +0.0± 0.6 −0.1± 0.3
1.2 < LBprop < 1.5 −0.2± 0.9 −0.7± 0.4
1.5 < LBprop < 1.8 −1.3± 1.2 −1.0± 0.5
1.8 < LBprop < 2.1 −0.8± 1.7 −0.5± 0.7
2.1 < LBprop < 3.0 −1.9± 1.5 −0.9± 0.8
3.0 < LBprop < 6.0 +1.7± 4.1 −3.5± 2.2

Table 7.8: Change in µ between the fit in which it is released and the default
fit for the B0 → J/ψK∗0 channel. Values are given in MeV.
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7.0.2 Triggers

If any of the triggers used in this analysis have a proper decay length depen-

dence, an additional bias in the distributions of LBprop could be introduced.

This section describes the study of the triggers used to identify whether any

such LBprop bias is present.

The fraction of events in the final sample selected by a given trigger for

each channel in the 2011 and 2012 data and MC samples is shown in tables

7.9 to 7.12. The naming convention for the triggers is as following. The

label “EF” stands for the Event Filter, which is described in Section 4.7.

The tag “Jpsimumu” indicates that the trigger requires a µ+µ− pair that

originate from a common vertex and have an invariant mass close to the J/ψ

mass (2.5 GeV < mµµ < 4.3 GeV). The tags “mu10” and “mu4” signify that

at least one of the muons must have transverse momentum greater than,

respectively, 10 GeV or 4 GeV. The “2mu4” and “2mu6” tags indicate that

both muons have transverse momentum greater than 4 or 6 GeV respectively,

and the “mu4mu6” tag means that one muon has transverse momentum

greater than 6 GeV and the other has transverse momentum greater than 4

GeV. The addition of a “T” in these labels signifies that the 4 GeV transverse

momentum requirement was applied at L1 (defined in Section 4.7).

The fractions for the B0 → J/ψKS channel are approximately the same

as those for the B0 → J/ψK∗0 channel, which is expected as the triggers are

applied to the muons from the J/ψ decay. Additionally, the trigger fractions

are similar enough in data and Monte-Carlo that no prescale is required.

Trigger Fraction (%)
Data MC

EF mu10 Jpsimumu 20.39 28.40
EF mu4 Jpsimumu 46.26 59.96
EF 2mu4 Jpsimumu 43.85 33.48
EF 2mu4T Jpsimumu 44.03 34.87
EF mu4Tmu6 Jpsimumu 32.07 28.38

Table 7.9: Trigger fractions for B0 → J/ψKS in 2011.

The data taken in periods A1-C5 of 2012 was affected by a problem

with the level 2 trigger suite used during these periods known as “L2StarA”,
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Trigger Fraction (%)
Data MC

EF mu10 Jpsimumu 23.68 29.86
EF mu4 Jpsimumu 45.35 61.98
EF 2mu4 Jpsimumu 42.83 30.33
EF 2mu4T Jpsimumu 43.71 31.71
EF mu4Tmu6 Jpsimumu 31.61 23.92

Table 7.10: Trigger fractions for B0 → J/ψK∗0 in 2011.

Trigger Fraction (%)
Data MC

EF 2mu4T Jpsimumu 85.70 90.01
EF 2mu4T Jpsimumu Barrel 60.12 50.81
EF 2mu4T Jpsimumu BarrelOnly 50.44 42.50
EF mu4Tmu6 Jpsimumu 67.84 70.57
EF mu4Tmu6 Jpsimumu Barrel 41.39 38.78
EF 2mu6 Jpsimumu 24.08 25.40

EF 2mu4T Jpsimumu L2StarB 58.58 87.85
EF 2mu4T Jpsimumu Barrel L2StarB 42.48 56.56
EF 2mu4T Jpsimumu BarrelOnly L2StarB 39.92 50.30
EF mu4Tmu6 Jpsimumu L2StarB 50.89 69.03
EF mu4Tmu6 Jpsimumu Barrel L2StarB 31.43 43.69
EF 2mu6 Jpsimumu L2StarB 17.36 26.82

Table 7.11: Trigger fractions for B0 → J/ψKS in 2012.

which resulted in a loss of reconstruction efficiency in events where the muons

produced by the decay of a J/ψ meson have a large transverse impact pa-

rameter d0(µ). This caused a decrease in efficiency dependent on the proper

decay length of the B0 meson which would have introduced a bias in the

measurement of LBprop. However, the adopted measurement method ensures

that this bias does not affect the value of ∆Γd/Γd. Both B0 → J/ψKS and

B0 → J/ψK∗0 events are triggered by the muons from the J/ψ decay. There-

fore, the bias in the LBprop distribution should be the same for both channels

and should cancel when the ratio of the two distributions is taken.

Figure 7.13 compares the LBprop distributions for B0 → J/ψKS and B0 →
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Trigger Fraction (%)
Data MC

EF 2mu4T Jpsimumu 86.49 90.46
EF 2mu4T Jpsimumu Barrel 59.12 48.96
EF 2mu4T Jpsimumu BarrelOnly 50.04 41.02
EF mu4Tmu6 Jpsimumu 68.96 71.06
EF mu4Tmu6 Jpsimumu Barrel 40.63 37.40
EF 2mu6 Jpsimumu 27.99 26.56

EF 2mu4T Jpsimumu L2StarB 58.58 87.34
EF 2mu4T Jpsimumu Barrel L2StarB 41.13 53.68
EF 2mu4T Jpsimumu BarrelOnly L2StarB 39.19 48.22
EF mu4Tmu6 Jpsimumu L2StarB 50.53 69.40
EF mu4Tmu6 Jpsimumu Barrel L2StarB 30.20 41.93
EF 2mu6 Jpsimumu L2StarB 19.97 28.21

Table 7.12: Trigger fractions for B0 → J/ψK∗0 in 2012.

J/ψK∗0 events taken with the L2StarA and L2StarB triggers. Figure 7.14

shows the ratio of the LBprop distributions for events taken with the two dif-

ferent triggers. The sensitivity of the LBprop distributions to the trigger in

the individual B0 decay channels is clearly visible. However, the ratio of

the B0 → J/ψKS distribution to the B0 → J/ψK∗0 distribution does not

show any statistically significant LBprop dependence. This ratio is presented

in Fig. 7.15 together with the result of the fit by a first order polynomial.

The fit to the ratio obtained from data has χ2/n.d.f. = 2.17/7 and a slope

of (−0.85 ± 1.58) × 10−2. In Monte-Carlo, the ratio has χ2/n.d.f. = 1.54/7

and a slope of (−0.43 ± 0.57) × 10−2. The slope is consistent with zero

within the statistical uncertainty in both data and MC. This study therefore

clearly indicates that the proper decay length bias of the triggers does not

affect the ratio of the LBprop distributions and therefore does not influence the

measurement of ∆Γd/Γd.

Since the LBprop bias of the triggers is caused by an unexpected d0(µ)

dependence, the distributions of d0(µ) produced using the L2StarA and

L2StarB triggers should also be compared. This comparison for both B0

channels is shown in Fig. 7.16. The ratio of the d0(µ) distributions for the

two triggers is shown in Fig. 7.17. The trigger dependence of d0(µ) distri-
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butions in each channel is clear. The d0(µ) the ratio of the B0 → J/ψKS

distribution to the B0 → J/ψK∗0 distribution is shown in Fig. 7.18. The

fit to this ratio in data by a first order polynomial has χ2/n.d.f. = 4.03/14

and a slope of (−0.02± 1.42)× 10−2. In Monte Carlo, the fit to the ratio has

χ2/n.d.f. = 4.02/16 and a slope of (−0.12±0.39)×10−2. The slope is statis-

tically consistent with zero in both data and MC, which demonstrates that

the trigger bias in d0(µ) cancels when the ratio of the two B0 decay chan-

nels is taken. Therefore, this trigger bias does not affect the measurement of

∆Γd/Γd.

(a) (b)

(c) (d)

Figure 7.13: Comparison of the LBprop distributions for the L2StarB and
L2StarA triggers for (a,b) B0 → J/ψKS candidates in data and MC re-
spectively and (c,d) B0 → J/ψK∗0 candidates in data and MC respectively.
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(a) (b)

(c) (d)

Figure 7.14: Ratio of the LBprop distributions for the L2StarB and L2StarA
triggers for (a,b) B0 → J/ψKS candidates in data and MC respectively and
(c,d) B0 → J/ψK∗0 candidates in data and MC respectively.

(a) (b)

Figure 7.15: Ratio of the LBprop(B0 → J/ψKS) trigger ratio to the LBprop(B0 →
J/ψK∗0) trigger ratio in (a) data and (b) MC.
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(a) (b)

(c) (d)

Figure 7.16: Comparison of the d0(µ) distributions for the L2StarB and
L2StarA triggers for (a,b) B0 → J/ψKS candidates in data and MC respec-
tively and (c,d) B0 → J/ψK∗0 candidates in data and MC respectively.
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(a) (b)

(c) (d)

Figure 7.17: Ratio of the d0(µ) distributions for the L2StarB and L2StarA
triggers for (a,b) B0 → J/ψKS candidates in data and MC respectively and
(c,d) B0 → J/ψK∗0 candidates in data and MC respectively.

(a) (b)

Figure 7.18: Ratio of the d0(µ)(B0 → J/ψKS) trigger ratio to the
d0(µ)(B0 → J/ψK∗0) trigger ratio in (a) data and (b) MC.



Chapter 8

The production asymmetry of

the B0 meson

In this chapter, the measurement of the production asymmetry AP of the B0

meson is described. This measurement is required for the determination of

∆Γd/Γd as it has not previously been evaluated in the ATLAS experiment.

The time dependent decay rate of B0 → J/ψKS given by Eq. 2.48

contains a term proportional to the production asymmetry of the B0 meson.

The measured ratio of proper decay length distributions R(LBprop) defined in

Eq. 6.5 therefore also depends on AP . The expression for AP is given in

Eq. 2.40. Although b quarks are predominantly produced in bb̄ pairs, which

result in an equal number of b and b̄ quarks, the presence of a valence u

quark in pp collisions leads to a small excess of B+ mesons (quark content

b̄u) over B− mesons (bū) [57, 58]. Similarly, there is an excess of B0(b̄d)

mesons over B̄0(bd̄) mesons due to the presence of a valence d quark in the

protons. The larger number of B mesons than B̄ mesons is compensated for

by the excess of b baryons over their corresponding anti-particles. In each

case the excess is expected to be of the order of 1%. A value of AP in pp

collisions has been measured by the LHCb experiment [59], but this result is

not directly applicable to the conditions of the ATLAS experiment because

of the different ranges of pseudorapidities and transverse momenta of the

detected B mesons. Therefore, a dedicated measurement of AP is necessary.

The production asymmetry AP of the B0 meson can be obtained from

the time-dependent charge asymmetry of the flavour-specific B0 → J/ψK∗0

89
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decay. If the initial flavour of the B0 meson is not determined, the time-

dependent rate of the decays B0 → J/ψK∗0 and B̄0 → J/ψK̄∗0 are given

by Eqs. (2.50) and (2.53) respectively. CP violation in mixing is predicted

to be small in the SM and is omitted from these expressions. The terms

proportional to AP in Eqs. (2.50) and (2.53) reflect the oscillating component

of the B0 → J/ψK∗0 decay. The corresponding charge asymmetry due to

B0 oscillations in bin i of LBprop, Ai,osc, is defined as:

Ai,osc ≡

∫ Lmax
i

Lmin
i

(∫∞
0 G(LBprop − ct, J/ψK∗0)(Γ[t, J/ψK∗0]− Γ[t, J/ψK̄∗0])dt

)
dLBprop∫ Lmax

i

Lmin
i

(∫∞
0 G(LBprop − ct, J/ψK∗0)(Γ[t, J/ψK∗0] + Γ[t, J/ψK̄∗0])dt

)
dLBprop

.

(8.1)

Here G(LBprop − ct, J/ψK∗0) is the detector resolution of LBprop, as given by

Eq. (7.2), for the B0 → J/ψK∗0 channel. The values of the lower and upper

edges of bin i, Lmin
i and Lmax

i , are given in Table 7.2. Using Eqs. (2.50) and

(2.53), Ai,osc can be presented as:

Ai,osc = AP

∫ Lmax
i

Lmin
i

(∫∞
0 G(LBprop − ct, J/ψK∗0)e−Γdt cos(∆mdt)dt

)
dLBprop∫ Lmax

i

Lmin
i

(∫∞
0 G(LBprop − ct, J/ψK∗0)e−Γdt cosh ∆Γdt

2 dt
)

dLBprop

. (8.2)

In addition to B0 oscillations, the asymmetry in the number of J/ψK∗0

and J/ψK̄∗0 events is also caused by a detector-related asymmetry Adet due

to differences in the reconstruction of positive and negative particles. The

main source of Adet is the difference in the interaction cross-section of charged

kaons with the detector material, which for momenta below 10 GeV is signif-

icantly larger for negative kaons [2]. This difference is due to the additional

hyperon production channels in K−-nucleon reactions, which are absent in

K+-nucleon interactions. Thus, positive kaons have a larger probability to

pass intact through the active part of the experimental setup and to be de-

tected. In comparison, the charge dependence of the π±-nucleon interactions

is much smaller. Therefore, the observed number of K∗0 → K+π− decays is

larger than that of K̄∗0 → K−π+, resulting in a positive value of the detector

asymmetry Adet. This effect is independent of the B0 decay time.

The values of Ai,osc and Adet are affected by misidentification of the kaon

and pion in the B0 → J/ψK∗0 decay. The observed number of J/ψK̄∗0

events, N(J/ψK̄∗0), includes genuine B̄0 → J/ψK̄∗0 and someB0 → J/ψK∗0
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decays. The latter decay contributes because of a wrong assignment of the

kaon and pion masses to the two reconstructed charged particles, so that the

decay K∗0 → K+π− is identified as a K̄∗0 → K−π+. The mistag fraction

W quantifies this wrong contribution to the J/ψK̄∗0 sample. It is defined as

the fraction of true B0 → J/ψK∗0 decays in N(J/ψK̄∗0):

W =
N(B0 → J/ψK∗0)

N(J/ψK̄∗0)
. (8.3)

Similarly, the quantity W̄ quantifies the fraction of true B0 → J/ψK̄∗0 decays

in the observed number of J/ψK∗0 events, N(J/ψK∗0):

W̄ =
N(B̄0 → J/ψK̄∗0)

N(J/ψK∗0)
. (8.4)

The mistag fractions are determined in simulation. The obtained values are:

W = W̄ = 0.12± 0.02. (8.5)

The simulation confirms that the mistag fraction is the same for B0 →
J/ψK∗0 and B̄0 → J/ψK̄∗0 decays within the statistical uncertainty of 0.4%

determined by the number of MC events. Figure 8.1 shows the values of W

and W̄ computed in the bins of LBprop defined in Table 7.2. The distribution

is fitted by a constant and have χ2/n.d.f. = 2.30/8 and χ2/n.d.f. = 12.18/8

respectively, which demonstrates that the mistag fraction does not depend on

the B0 decay time. The systematic uncertainty in the difference of the mistag

fraction for B0 → J/ψK∗0 and B̄0 → J/ψK̄∗0 decays cancels to large extent.

Therefore, the same value of the mistag fraction applies for N(J/ψK̄∗0) and

N(J/ψK∗0) and W will be used for both.

The systematic uncertainty of W is much larger than the statistical un-

certainty. Therefore, the given uncertainty of W is systematic only. It takes

into account possible variations of the MC simulation which describe B0 pro-

duction and decay. The impact of the systematic uncertainty in the value of

W on the measurement of ∆Γd is very small and is discussed in Section 9.3.

Using the above information, the expected charge asymmetry in bin i of
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(a) (b)

Figure 8.1: Mistag fractions W and W̄ in bins of LBprop. The solid line shows
the fit to the distributions by a constant.

LBprop, Ai,exp, can be expressed as:

Ai,exp = (Adet + Ai,osc) (1− 2W ). (8.6)

Here the factor 1−2W takes into account the contribution of wrongly identi-

fied B0 decays, which is the same for both Adet and Ai,osc. The second-order

terms proportional to AdetAP are of the order of 10−4 and are neglected in

this expression.

The observed charge asymmetry, Ai,obs, is defined as:

Ai,obs ≡
Ni(J/ψK

∗0)−Ni(J/ψK̄
∗0)

Ni(J/ψK∗0) +Ni(J/ψK̄∗0)
. (8.7)

Figure 8.2 shows the asymmetry Aobs as a function of LBprop for the 2011

and 2012 samples combined together. The result of the fit to Eq. (8.6) is

superimposed. The asymmetry AP is obtained from a χ2 minimisation:

χ2[Adet, AP] =
10∑
i=2

(Ai,obs − Ai,exp)2

σ2
i

. (8.8)

The free parameters in the fit are Adet and AP. The values σi are the sta-

tistical uncertainties of Ai,obs. The fit has a χ2 of 6.50 per seven degrees of

freedom. The first bin of LBprop corresponds to a negative decay length due
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to the detector resolution. It is not included in this sum as it is affected

more than the other data points by systematic uncertainties. Ignoring it has

a negligible impact on the uncertainty of this measurement. The fit yields

the following values for the asymmetries:

Adet = (+1.33± 0.24± 0.30)× 10−2. (8.9)

AP = (+0.25± 0.48± 0.05)× 10−2. (8.10)

The first uncertainty of AP and Adet is statistical and the second is due

to the uncertainties in the mistag fraction and in the deviations of |q/p|
from unity (see Eq. (2.17)). If |q/p| is not unity then Eqs. 2.50 and 2.53

both contain two additional terms dependent on a/2 = 1
2
(1 − |q/p|2) =

(−0.05 ± 0.11) × 10−2 [6]. The large relative uncertainty of a/2 thus has

a non-trivial effect on the measurement of AP and Adet and is therefore

included in the uncertainty. It is important to note that the uncertainty of

a/2 does not affect the measurement of ∆Γd/Γd because the term of Eq. 2.48

from which ∆Γd/Γd is determined is proportional to 1 + a/2 and a � 1.

The systematic uncertainty of Adet also contains a contribution from the

possible difference between the mistag fractions of the B0 → J/ψK∗0 and

B̄0 → J/ψK̄∗0 decays. This measurement of the B0 production asymmetry

AP for pT(B0) > 10 GeV and |η(B0)| < 2.5 is consistent with zero. It is

also consistent with the LHCb result AP = (−0.36± 0.76± 0.28)× 10−2 [59]

obtained for 4 < pT(B0) < 30 GeV and 2.5 < η(B0) < 4.0. The measured

value of AP given in Eq. (8.10) is used for the extraction of the width

difference ∆Γd.

As a cross-check, a separate evaluation of the detector asymmetry is made

from the difference between the reconstruction efficiencies of B0 → J/ψK̄∗0

and B̄0 → J/ψK̄∗0 in simulation, denoted by ε(B0) and ε(B̄0) respectively.

For this determination, the detector asymmetry is given by:

Adet(MC) =
ε(B0)− ε(B̄0)

ε(B0) + ε(B̄0)
(8.11)

The obtained value is Adet(MC) = (+1.74± 0.03)× 10−2, which is consistent

with the value obtained in data (Eq. (8.9)).
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Figure 8.2: Observed charge asymmetry Aobs in B0 → J/ψK∗0 decays mea-
sured as a function of the proper decay length of the B0 meson (LBprop). The
line shows the asymmetry Aexp obtained from fitting Eq. (8.6) to the data.
The first point corresponding to negative proper decay length is not used
in the fit. The error bands correspond to the combination of uncertainties
obtained by the fit for the production asymmetry AP and the detector asym-
metry Adet.



Chapter 9

The measurement of ∆Γd/Γd

This chapter describes the method by which the value of ∆Γd/Γd is measured.

The examination of the systematic uncertainties is also included, as well as

the final results of the analysis.

9.1 Ratio of efficiencies

As explained in Section 6.5, the ratio Ri,exp(LBprop) should be corrected by the

lifetime-dependent ratio of efficiencies Ri,eff(LBprop) defined in Eq. (6.8). This

ratio is measured using data from MC simulation. To obtain reliable values

for this efficiency ratio, the kinematic properties of the simulated B0 meson

and its production environment need to be consistent with that observed in

data. The comparison of several such properties, which can produce a sizable

impact on Ri,eff(LBprop), reveal some differences between data and simulation.

These differences are corrected for by an appropriate re-weighting of the sim-

ulated events using the procedure described in Section 9.1.1. The properties

considered include the transverse momentum and pseudorapidity of the B0

meson and the average number of pile-up events.

9.1.1 Monte Carlo re-weighting

The first property considered is the transverse momentum pT (B0) of the B0

meson and the distribution of pT (B0) is found to be different in data and

MC simulation. Figure 9.1 shows the pT (B0) distributions for the 2011 and

95
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2012 data sets for B0 → J/ψKS and B0 → J/ψK∗0 candidates. To build the

distributions, a background subtraction procedure is applied to the data and

the Monte-Carlo simulation. For each pT (B0) bin, a signal band containing

all candidates with 5230 < M(J/ψK∗0) < 5330 GeV and two background

bands with 5150 < M(J/ψK∗0) < 5200 GeV and 5360 < M(J/ψK∗0) <

5410 GeV are defined. The signal and background bands are the same for

both the B0 → J/ψKS and B0 → J/ψK∗0 channels. The number of signal

candidates is obtained by subtracting the number of candidates in the two

background bands from the number of candidates in the signal band. For

simulation, all of the reconstructed particles in the corresponding B0 decay

are required to match the true generated decay products of the B0 meson.

The same background subtraction procedure is then applied to the selected

simulated events.

The observed difference between data and MC is accounted for by ap-

plying a weight to the MC events according to the reconstructed value of

pT (B0). To obtain this weight, the ratio of the number of B0 candidates

in data and MC is parametrised by a continuous function. This function is

different for the B0 → J/ψKS and B0 → J/ψK∗0 channels and it also differs

for the 2011 and 2012 data samples. The applied weight is equal to the value

of this function for a given value of pT (B0). The ratio of the number of B0

candidates in data and MC and its parametrisation are shown in Fig. 9.2.
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(a) (b)

(c) (d)

Figure 9.1: Number of B0 candidates in data and in MC as a function of
pT (B0) for (a,b) B0 → J/ψKS and (c,d) B0 → J/ψK∗0 decays.
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(a) (b)

(c) (d)

Figure 9.2: The ratio of the number of B0 candidates in data and MC as a
function of pT (B0) for (a,b) B0 → J/ψKS and (c,d) B0 → J/ψK∗0 decays.
The normalisation is arbitrary. The full line shows the parametrisation by a
continuous function.
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The second variable considered is the pseudorapidity η(B0) of the B0

meson. Figure 9.3 shows the distributions of η(B0) for B0 candidates in

data and MC. These distributions are obtained using the same background

subtraction procedure as the distributions of pT (B0). The ratio of data to

MC distributions is shown in Fig. 9.4. To account for the observed difference

in η(B0), a weight is applied to the MC events. It is defined as the ratio of

data to MC number of the B0 candidates in a given η(B0) bin. Different

η(B0) weights are applied to the J/ψKS and J/ψK∗0 channels and to the

2011 and 2012 data samples.

(a) (b)

(c) (d)

Figure 9.3: Number of B0 candidates in data and in MC as a function of
η(B0) for (a,b) B0 → J/ψKS and (c,d) B0 → J/ψK∗0 decays.
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(a) (b)

(c) (d)

Figure 9.4: The ratio of the number of B0 candidates in data and MC as a
function of η(B0) for (a,b) B0 → J/ψKS and (c,d) B0 → J/ψK∗0 decays.
The normalisation is arbitrary.

The third quantity considered is the number of background pile-up in-

teractions registered simultaneously with the B0 production. The charged

tracks produced in the pile-up interactions make the detection of the B0 de-

cay more difficult and reduce its reconstruction efficiency. Therefore, it is

important that the description of the pile-up interactions is consistent be-

tween data and simulation. Figure 9.5 shows the distributions of the average

number of pile-up interactions µ(B0) accompanying the detected B0 can-

didates in data and MC. These distributions are obtained using the same

background subtraction procedure as the distributions of pT (B0). The ob-

served difference between data and MC is due to the way in which pile-up

events are simulated, which is described in Section 5.3.5. This difference is

corrected by applying an additional weight to the MC events. The weight
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is defined as the ratio of data to MC of the number of B0 candidates in a

given µ(B0) bin. This ratio is shown in Fig. 9.6. Different µ(B0) weights are

applied to the J/ψKS and J/ψK∗0 channels and to the 2011 and 2012 data

samples.

(a) (b)

(c) (d)

Figure 9.5: Number of B0 candidates in data and in MC as a function of
µ(B0) for (a,b) B0 → J/ψKS and (c,d) B0 → J/ψK∗0 decays.
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(a) (b)

(c) (d)

Figure 9.6: The ratio of the number of B0 candidates in data and MC as a
function of µ(B0) for (a,b) B0 → J/ψKS and (c,d) B0 → J/ψK∗0 decays.
The normalisation is arbitrary.

9.1.2 Resulting Ri,eff(LBprop) distribution

The resulting weight applied to the MC events is defined as the product of the

three weights (pT (B0), η(B0) and µ(B0)) described above. The distribution

of Ri,eff(LBprop) obtained after re-weighting is shown in Fig. 9.7. The normali-

sation of this ratio is arbitrary; only its deviation from a constant can impact

the measurement of ∆Γd. This deviation is found to be very small and does

not exceed 5% for proper decay lengths up to 2 mm. The achieved stability of

the Ri,eff(LBprop) distribution is an important consequence of the chosen mea-

surement procedure. Figure 9.8 shows the ratio of weighted to unweighted

distributions of Ri,eff(LBprop) fitted to a first order polynomial. The fit has a

slope of (1.25± 1.63)× 10−2 for the 2011 dataset and (−0.60± 4.90)× 10−3
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for the 2012 dataset. This demonstrates that the re-weighting procedure

does not substantially change the measurement of ∆Γd because the slopes

are consistent with zero.

(a) (b)

Figure 9.7: The ratio of reconstruction efficiencies of B0 → J/ψKS and
B0 → J/ψK∗0 decays (Reff) determined as a function of the proper decay
length of the B0 meson (LBprop) for (a)

√
s = 7 TeV and (b)

√
s = 8 TeV

simulated events. The normalisation is arbitrary.

(a) (b)

Figure 9.8: Ratio of corrected to non-corrected values of Reff as a function
of LBprop. The full line shows the result of the fit by a straight line.

To check that the measurement method is consistent between the 2011

and 2012 datasets, the ratios of reconstruction efficiencies for the two years

are compared. Figure 9.9 shows the ratio Ri,eff(2012)/Ri,eff(2011). This ratio

is fitted with a first order polynomial. The fit gives χ2/n.d.f. = 5.29/7 and
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a slope of (−2.42 ± 1.19) × 10−2. The slope is due to the difference in the

experimental conditions between the 2011 and 2012, such as the transverse

momentum and pseudorapidity of the B0, and the average number of pile-up

interactions per event.

Figure 9.9: Ratio of the efficiency ratios Reff(2012)/Reff(2011). The full line
shows the result of the fit by a straight line.

9.2 Fit of ∆Γd/Γd

The obtained values of Ri,eff are used to correct the observed ratio Ri,uncor

given by Eq. (7.3). The resulting ratio Ri,cor is defined as:

Ri,cor =
Ri,uncor

Ri,eff

. (9.1)

This ratio is shown in Figure 9.10. It is used to obtain ∆Γd/Γd by the

following procedure. For each LBprop bin i defined in Table 7.2, the expected
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numbers of events in the J/ψKS and J/ψK∗0 channels are computed as:

Ni[∆Γd/Γd, J/ψKS] = C1

∫ Lmax
i

Lmin
i

Γ[LBprop, J/ψKS]dLBprop, (9.2)

Ni[∆Γd/Γd, J/ψK
∗0] = C2

∫ Lmax
i

Lmin
i

Γ[LBprop, J/ψK
∗0]dLBprop. (9.3)

The integration limits Lmin
i and Lmax

i for each bin i are given by the lower

and upper bin edges in Table 7.2. C1 and C2 are arbitrary normalisation

coefficients. The expressions for Γ[LBprop, J/ψKS] and Γ[LBprop, J/ψK
∗0] are

given by Eqs. (6.6) and (6.7), respectively. As explained in Sec. 2.7, the sen-

sitivity to ∆Γd comes from Γ[LBprop, J/ψKS] while Γ[LBprop, J/ψK
∗0] provides

the normalisation, which helps to reduce the systematic uncertainties. The

expected ratio of the decay rates in the two channels in each LBprop bin is:

Ri,exp[∆Γd/Γd] =
Ni[∆Γd/Γd, J/ψKS]

Ni[∆Γd/Γd, J/ψK∗0]
. (9.4)

The relative width difference ∆Γd/Γd is obtained from a χ2 minimisation:

χ2[∆Γd/Γd] =
10∑
i=2

(Ri,cor −Ri,exp[∆Γd/Γd])
2

σ2
i

. (9.5)

The values σi are the statistical uncertainties of Ri,cor. In the sum, the first

bin of LBprop is not included as it corresponds to a negative decay length.

The free parameters in this minimisation are the overall normalisation

and ∆Γd/Γd. All other parameters describing the B0 meson are fixed to their

world average values [2]. The fit is performed separately for the 2011 and

2012 samples because the systematic uncertainties for the two data samples

are different. The result of the fit is shown in Figure 9.10. The χ2 of the fit

is 4.34 (n.d.f. = 7) in the 2011 data set and 2.81 (n.d.f. = 7) in the 2012

data set.

The fit yields:

∆Γd/Γd = (−2.8± 2.2 (stat.)± 1.5 (MC stat.))× 10−2 (2011), (9.6)

∆Γd/Γd = (+0.8± 1.3 (stat.)± 0.5 (MC stat.))× 10−2 (2012). (9.7)
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Here the uncertainties due to the data and MC statistics are given separately.

The MC statistical uncertainty is treated as systematic. All other systematic

uncertainties are discussed in Section 9.3.

(a) (b)

Figure 9.10: Efficiency-corrected ratio of the observed decay length distribu-
tions, Rcor(L

B
prop) for (a)

√
s = 7 TeV and (b)

√
s = 8 TeV data sets. The

normalisation of the two data sets is arbitrary. The full line shows the fit
of Rcor(L

B
prop) to Rexp given by Eq. (9.4). The error bands correspond to

uncertainties in ∆Γd/Γd determined by the fit.

To check that the uncertainties in the obtained values of ∆Γd/Γd are

symmetric and therefore can be treated as such, the variation of χ2[∆Γd/Γd]

around its minimum is examined. Figure 9.11 shows the distribution of

χ2[∆Γd/Γd] near the minimum. The distribution is fitted with a second

order polynomial, shown as a solid line. The constant defining the dashed

line is equal to the minimum χ2 value of the parabola plus one. The points

where this line intersects the χ2 parabola give estimates of the asymmetric

statistical uncertainties, σ− and σ+, of the measurement of ∆Γd/Γd. Since

the χ2 parabola is approximately symmetric, σ− ≈ σ+, which demonstrates

that the uncertainties are indeed symmetric.

9.3 Systematic uncertainties

The relative B0 width difference is extracted from the ratio of the LBprop dis-

tributions in the two B0 decay modes, which are obtained using a similar

procedure, the same type of information and in the same production en-
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(a) (b)

Figure 9.11: The χ2 minimum distribution for the fit of Rcor(L
B
prop) for (a)

the 2011 data sample and (b) the 2012 data sample. The solid red line shows
the fit to the distribution by a second order polynomial. The dashed blue line
shows minimum χ2 value of the parabola plus one. The points where the two
lines intersect indicate the values of the asymmetric statistical uncertainties
of the measurement of ∆Γd/Γd.

vironment. Therefore, the impact of many systematic uncertainties, such

as the trigger selection, decay-time resolution or B0 production properties,

is negligible. However, some differences between the B0 → J/ψKS and

B0 → J/ψK∗0 channels cannot be eliminated and the inaccuracy of their

simulation results in systematic uncertainties, which are estimated in this

section.

The mean proper decay length of the KS meson is 26.8 mm. Since the

transverse momentum of the KS meson can be high, some Ks mesons decay

outside the inner detector and are lost. The probability of losing a KS meson

is higher for large B0 decay length due to the reduction of the fiducial volume

of the KS decay. Thus, the displaced vertex of the KS decay and the absence

of such a vertex in the K∗0 → K+π− decay results in an LBprop dependence of

the distribution of Ri,eff defined in Eq. (6.8). Applying the correction given

by Eq. (9.1) to Ri,uncor takes into account this dependence.

The simulated KS reconstruction is tested by comparing the distribu-

tion of the KS decay length in data and simulation. This dedicated study

shows that there is a residual difference between data and MC simulation in

the distribution of the laboratory decay length of reconstructed KS mesons
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projected along the KS momentum in the transverse plane, Lxy(KS). The

distributions of Lxy(KS) in data and MC are shown in Fig. 9.12(a). Fig-

ure 9.12(b) shows the measured values of ∆Γd/Γd in four non-overlapping

samples of Lxy(KS), fitted by a constant. The χ2/n.d.f. of this fit is 5.63/3,

which demonstrates that the difference in Lxy(KS) between data and simula-

tion does not introduce any bias in the measurement of ∆Γd/Γd. To correct

for this difference, an additional weight is applied to the MC events to make

the distribution of Lxy(KS) in Monte Carlo the same as in data. This results

in a change in the value of ∆Γd/Γd of δ(∆Γd/Γd) = −0.21 × 10−2 for the

2011 data sample and δ(∆Γd/Γd) = −0.16× 10−2 for the 2012 data sample.

This difference is taken as the systematic uncertainty due to modelling of the

Lxy(KS) dependence of the KS reconstruction.

(a) (b)

Figure 9.12: (a) Comparison of the Lxy(KS) distribution in data and MC and
(b) Measurement of ∆Γd/Γd in four non-overlapping samples of B0 → J/ψKS

candidates defined according to Lxy(KS) at
√
s = 8 TeV.

A further test of the KS reconstruction in MC is conducted by apply-

ing the procedure used for Lxy(KS) to the pseudorapidity distribution of

the KS meson, η(KS). Figure 9.13(a) shows the distributions of η(KS) in

data and MC. Measurements of ∆Γd/Γd in four non-overlapping samples

of η(KS), fitted by a constant, are shown in Fig. 9.13(b). The fit has

χ2/n.d.f. = 4.86/3 which indicates that the residual discrepancy in η(KS)

between data and MC does not cause any bias in the measured value of

∆Γd/Γd. The systematic uncertainty due to modelling of the |η(KS)| de-

pendence of the KS reconstruction is estimated by re-weighting the MC
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events to make the |η(KS)| distribution the same as in data. The ob-

served changes are δ(∆Γd/Γd) = +0.14 × 10−2 for the 2011 data set and

δ(∆Γd/Γd) = −0.01× 10−2 for the 2012 data set.

(a) (b)

Figure 9.13: (a) Comparison of the |η(KS)| distribution in data and MC and
(b) Measurement of ∆Γd/Γd in four non-overlapping samples B0 → J/ψKS

candidates defined according to |η(KS)| at
√
s = 8 TeV.

The systematic uncertainty due to the choices made in the model used to

fit the mass distributions can be estimated by considering different variations

of the fit model. The range over which the B0 → J/ψKS and B0 → J/ψK∗0

mass fits are applied is varied and the measurement of ∆Γd/Γd is repeated

for each variation. The systematic uncertainty is estimated by taking the

difference between the values of ∆Γd/Γd obtained from the default fit and

each of the varied fits. Variations δ(∆Γd/Γd) = −0.47×10−2 and−0.30×10−2

are obtained for the 2011 data set in the J/ψKS and J/ψK∗0 channels,

respectively. The changes for the 2012 data set are δ(∆Γd/Γd) = −0.59×10−2

and −0.15 × 10−2 in the J/ψKS and J/ψK∗0 channels, respectively. These

values are included as the systematic uncertainty from this source.

Additionally, the background function is changed from an exponential to

a fourth-order polynomial and the systematic uncertainty due to the choice

of background function is estimated from the difference between the value of

∆Γd/Γd from the default fit and the value from the fit using the polynomial

background function. A change δ(∆Γd/Γd) = −0.16×10−2 is obtained for the

2011 data set. The change for the 2012 data set is δ(∆Γd/Γd) = +0.09×10−2.

In the fit of the number of B0 → J/ψKS decays the contribution from
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the B0
s → J/ψKS is a free parameter of the fit. As a systematic uncertainty

cross-check, the ratio of the yields of these two decays is fixed to be the same

as that measured by the LHCb Collaboration [60]. The resulting change

in the ∆Γd/Γd value is δ(∆Γd/Γd) = −0.11 × 10−2 for the 2011 data set

and δ(∆Γd/Γd) = +0.08 × 10−2 for the 2012 data set and is included as an

additional source of systematic uncertainty.

The systematic uncertainty due to the resolution of LBprop is also consid-

ered. The function that describes the resolution for the B0 → J/ψKS and

B0 → J/ψK∗0 decay modes is given in Eq. (7.2). The values of f , σ1 and

σ2 for the two channels in 2011 and 2012 are given in Table 7.1. To test

the sensitivity to the resolution, the measurement of ∆Γd/Γd is repeated by

using the resolution of J/ψK∗0 for both channels. A change in the value of

∆Γd/Γd of δ(∆Γd/Γd) = −0.29× 10−2 is obtained and is used as the system-

atic uncertainty from this source. It is found to be the same for the 2011

and 2012 data samples.

A toy MC sample is employed to identify any possible bias in the fitting

procedure. In this toy MC sample, the expected number of J/ψKS candi-

dates is determined according to the analytic function given by Eq. (2.48).

The expected number of J/ψK∗0 candidates is determined from the sum of

Eqs. 2.50 and 2.53. A value of ∆Γd/Γd = 0.42 × 10−2 corresponding to the

SM expectation given in Eq. (6.4) is used. Using the expected numbers of

candidates as the mean values, the number of candidates in both channels is

randomly generated in each LBprop bin with an uncertainty corresponding to

that obtained in data. The ratio of the obtained distributions is then fitted

using the method described in Section 9.2. This procedure is repeated 10 000

times and the pull value from each fit is obtained. The pull value is defined

as (V − VSM)/σ where V is the value of ∆Γd/Γd obtained from the fit, σ is

its uncertainty and VSM is the SM expectation value. The distribution of the

pull values is shown in Fig. 9.14. The fit to this distribution using a Gaussian

gives a mean of −0.049 ± 0.010 and a standard deviation of 1.007 ± 0.008.

The residual bias is due to the non-symmetric uncertainties of the ratio of

the two decay rates used in the analysis. The resulting bias in the mean

fitted value of ∆Γd/Γd is δ(∆Γd/Γd) = +0.07 × 10−2. This value is used as

the systematic uncertainty due to the fitting procedure and it is taken to be
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the same for the 2011 and 2012 data sets.

Figure 9.14: Distribution of pull values from the toy MC. The line shows the
fit to the distribution by a Gaussian.

The uncertainty of the production asymmetry of B0 mesons is propagated

through the analysis. The impact of this uncertainty is δ(∆Γd/Γd) = 0.01×
10−2 for both the 2011 and 2012 data samples.

The systematic uncertainty from the number of events in the MC samples

corresponds to an uncertainty of δ(∆Γd/Γd) = 1.54× 10−2 for the 2011 data

set and δ(∆Γd/Γd) = 0.45× 10−2 for the 2012 data set.

Table 9.1 gives a summary of the estimated systematic uncertainties. All

of the quantified systematic uncertainties are symmetrized.

9.3.1 Consistency cross-checks

In addition to the estimate of the systematic uncertainty, several cross-checks

are performed. Some of the selection cuts described in Section 6 are modified

and the corresponding changes in the ∆Γd/Γd value are assessed. In particu-

lar, the transverse momenta of the charged pions from the KS decay and the

charged pion from the K∗0 decay are required to be greater than 500 MeV,
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Source δ(∆Γd/Γd), 2011 δ(∆Γd/Γd), 2012
KS decay length 0.21× 10−2 0.16× 10−2

KS pseudorapidity 0.14× 10−2 0.01× 10−2

B0 → J/ψKS mass range 0.47× 10−2 0.59× 10−2

B0 → J/ψK∗0 mass range 0.30× 10−2 0.15× 10−2

Background description 0.16× 10−2 0.09× 10−2

B0
s → J/ψKS contribution 0.11× 10−2 0.08× 10−2

LBprop resolution 0.29× 10−2 0.29× 10−2

Fit bias (Toy MC) 0.07× 10−2 0.07× 10−2

B0 production asymmetry 0.01× 10−2 0.01× 10−2

MC sample 1.54× 10−2 0.45× 10−2

Total uncertainty 1.69× 10−2 0.84× 10−2

Table 9.1: Sources of systematic uncertainty in the ∆Γd/Γd measurement
and their values for the 2011 and 2012 data sets.

rather than 400 MeV. Also, the transverse momentum of the charged kaon

from the K∗0 is required to be greater than 1 GeV, rather than 800 MeV.

Additionally, the transverse momentum of the B0 meson is required to be

less than 60 GeV. In all cases, the change of the measured value of ∆Γd is

consistent with fluctuations due to the reduced number of events.

Furthermore, a number of consistency checks related to the description of

the experimental conditions in simulation are performed. Figure 9.15 shows

the distribution of the primary vertex z position in data and Monte Carlo.

The Monte Carlo events are re-weighted by the ratio of the distributions and

the corresponding change in the value of ∆Γd/Γd is δ(∆Γd/Γd) = 0.62×10−2

for the 2011 data sample and δ(∆Γd/Γd) = 0.02 × 10−2 for the 2012 data

sample. This change is much smaller than the statistical uncertainty and

therefore does not impact the measured value of ∆Γd/Γd.

Most of the Monte Carlo samples used in this analysis were produced

with flat angular distributions for the B0 → J/ψKS and B0 → J/ψK∗0

decays. To assess the effect of this, two 7 TeV B0 → J/ψK∗0 MC samples

are compared, of which one was generated with a flat angular distribution

and the other with angular distribution taken from the CDF angular analysis

of the B0 → J/ψK∗0 decay [61]. The angular analysis performed by CDF

has now been superseded by a more precise analysis performed by LHCb

[62], but this study was not available at the time that the MC samples were
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(a) (b)

(c) (d)

Figure 9.15: Number of B0 candidates in data and in MC as a function
of the z position of the primary vertex for (a,b) B0 → J/ψKS and (c,d)
B0 → J/ψK∗0 decays.

generated. The distributions of Ri,eff obtained from these two samples and

their ratio are shown in Fig. 9.16. The fit to the ratio by a first order

polynomial has χ2/n.d.f. = 2.50/7 and a slope of (−1.10±1.90)×10−2. The

difference between the angular distributions in the MC samples is therefore

negligible and does not affect the measurement of ∆Γd/Γd.

The final cross-check involved re-weighting the Monte Carlo events se-

lected with the trigger that shows the largest discrepancy between data and

MC, EF 2mu4T Jpsimumu L2StarB, to make the selection rate correspond

to that in data. No impact on the measured value of ∆Γd/Γd was found.
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(a) (b)

(c)

Figure 9.16: Distributions of Ri,eff obtained from MC with (a) a flat angular
distribution and (b) an angular distribution corresponding to the CDF mea-
surement of the B0 → J/ψK∗0 decay. [61]. The ratio of the two distributions
is shown in (c).

9.4 Results

Using the measurements of ∆Γd/Γd given in Eqs. (9.6) and (9.7) and the

study of systematic uncertainties presented in Section 9.3, the following mea-

surements are obtained:

∆Γd/Γd = (−2.8± 2.2 (stat.)± 1.7 (syst.))× 10−2 (2011),

∆Γd/Γd = (+0.8± 1.3 (stat.)± 0.8 (syst.))× 10−2 (2012).

These measurements are consistent and are combined, taking into account

the correlations of different sources of systematic uncertainty between the two
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years. The combination is done by averaging the correlated measurements

using the following method. The covariance matrix Vij is constructed as:

Vij =
10∑
k=0

σki σ
k
j ρ

k
ij; i, j = 1, 2 (9.8)

The indices i, j = 1 correspond to the 2011 measurement and i, j = 2 corre-

spond the 2012 measurement. The value σ0
i is the statistical uncertainty of

measurement i and σki for k > 0 corresponds to the systematic uncertainty

from source k, given in Table 9.1. The quantity ρkij is the correlation coeffi-

cient of the source k between the 2011 and 2012 data samples. The statistical

uncertainties are not correlated (ρ0
12 = 0). The systematic uncertainties due

to the background description, the B0
s → J/ψKS contribution, and the lim-

ited MC statistics are assumed to be uncorrelated (ρ5
12 = ρ6

12 = ρ10
12 = 0).

All other sources of systematic uncertainty are taken to be fully correlated

(ρk12 = 1 for k 6= 5, 6, 10). Additionally, ρk11 = ρk22 = 1 for all k. The com-

bined value of ∆Γd/Γd is obtained from the minimization of the following

expression:

χ2[x̄] =
2∑

i,j=1

(xi − x̄)(xj − x̄)V −1
ij . (9.9)

Here xi represent the individual measurements given by Eqs. (9.8) and (9.8)

and x̄ is the mean value of ∆Γd/Γd.

The combined measurement of ∆Γd/Γd using the data collected by the

ATLAS experiment in Run 1 of the LHC is:

∆Γd/Γd = (−0.1± 1.1 (stat.)± 0.9 (syst.))× 10−2.

This is currently the most precise single measurement of this quantity. It

agrees well with the SM prediction [49] and is consistent with other measure-

ments of this quantity [7, 8, 55]. It also agrees with the indirect measurement

by the D0 Collaboration [63].



Chapter 10

Flavour tagging

10.1 Introduction

This chapter describes the development of the flavour tagging methods used

for the study of CP violation in the B0
s → J/ψφ decay. The description

is based on the analyses of the B0
s → J/ψφ decay made by the ATLAS

collaboration using data collected during Run 1 of the LHC [64, 65], to

which the author of this thesis made a significant contribution.

The physics of a neutral B meson decaying to CP eigenstate are explained

in Section 2.5. Since the final state f is the same for both B0
(s) and B̄0

(s), CP

violation can occur due to interference between direct decays and decays with

B0
(s) − B̄0

(s) mixing. The CP asymmetry is represented by the weak phase

difference φ(s) = φM −2φf between the B0
(s)− B̄0

(s) mixing amplitude and the

b→ cc̄s decay amplitude as given in Eq. (2.44).

One channel for which there has been keen interest, due to possible new

physics contributions in CP violation, is B0
s → J/ψφ. The Standard Model

prediction of the weak phase difference in the B0
s system is [66]:

φs ≈ −2βs = 2arg

(
− VtsV

∗
tb

VcsV ∗cb

)
= −0.0363+0.0016

−0.0015 rad. (10.1)

Precise measurements of φs performed by LHC experiments [64, 65, 67, 68]

have constrained the potential new physics contribution, but more precision

is still needed.
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Since the measured CP violating effect is due to B0
s − B̄0

s mixing, it

is important to measure the initial flavour of the B0
s or B̄0

s meson. Flavour

tagging is the name of the method by which the flavour of B0 and B0
s mesons

is determined at the time of their production. In ATLAS, opposite side

flavour tagging is used. This approach takes advantage of the fact that

bottom quarks are produced in bb̄ pairs, which allows the initial flavour of

the B0 or B0
s being studied to be determined from the flavour of the other

B hadron in the event.

10.2 Data sample

The opposite side tagging methods are analysed using B± → J/ψK± events.

The charge of the kaon indicates the charge of the produced B meson. This

decay channel is therefore ideal for studying flavour tagging because the

known flavour of the B± meson provides a tag of the flavour of opposite side

B hadron, which allows the flavour tagging algorithms to be calibrated.

10.2.1 2011 data sample

The first flavour tagging study in ATLAS [64] was made with 4.9 fb−1 of

integrated luminosity taken in 2011 at
√
s = 7 TeV. The B± → J/ψK±

events used for the flavour tagging calibration are required to pass the

EF 2mu4(T) Jpsimumu trigger, demanding two oppositely charged muons

forming a J/ψ candidate. Each muon must have a transverse momentum

greater than 4 GeV and a pseudorapidity less than 2.5. The invariant mass

of the dimuon candidate must be between 2.8 and 3.4 GeV. A B± candidate

is formed by combining the dimuon candidate with an additional charged

track from the event, which is required to have pT > 1 GeV and |η| < 2.5.

The combination is made using a vertex fit in which the dimuon mass is

constrained to be between 3.1 and 3.2 GeV. The χ2 of the vertex fit must

be less than 10 for the one degree of freedom. The resulting B± candidate

must have η < 2.5 and 5.0 < m(B±) < 5.6 GeV. Additionally, the laboratory

transverse decay length (Lxy) of the B± candidate is required to be greater

than 0.1 mm. This lifetime cut is designed to reduce the prompt component

of the combinatorial background and does not introduce any bias because this
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study is concerned only with determining the initial flavour of the opposite

B meson. The invariant mass distribution of the selected B± → J/ψK±

candidates is shown in Fig. 10.1.

The function used to fit the invariant mass distribution is defined in the

following way. The B± → J/ψK± signal peak is represented by a Gaussian

function. The combinatorial background is modelled by an exponential. The

contribution in the low mass region due to partially reconstructed B decays

is represented by a hyperbolic tangent function. The B± → J/ψπ± contribu-

tion is given by a Gaussian function. From this fit, a total of 194 000± 1 000

signal B± candidates are reconstructed, of which 98 000± 1 000 are B+ and

96 000 ± 1 000 are B−. The uncertainties are the statistical only, from the

fit. The number of significant figures given in these values is consistent with

the ATLAS internal analysis note.

10.2.2 2012 data sample

The flavour tagging study made with the 2012 data sample used 19.5 fb−1

of integrated luminosity taken at
√
s = 8 TeV. The B± → J/ψK± events

are required to pass any trigger from the suite of single and dimuon triggers

defined in Table 10.1. The fraction of events in the final sample selected by

each trigger is also given. All other selection criteria were the same as those

for the 2011 data sample.

Figure 10.1 shows the invariant mass distribution of the selected B± →
J/ψK± candidates. The function used to fit the invariant mass distribution

is the same as that used for the 2011 data sample. From the fit, a total of

1 116 000± 3 000 signal B± candidates are reconstructed, of which 563 000±
2 000 are B+ and 553 000±2 000 are B−. The uncertainties are the statistical

only, from the fit. The number of significant figures given in these values is

consistent with the ATLAS internal analysis note.
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Trigger Fraction (%)
EF 2mu4T Bmumux 71.08
EF 2mu4T Jpsimumu 69.57
EF mu4Tmu6 Bmumux 65.64
EF mu4Tmu6 Jpsimumu 63.35
EF 2mu4T Jpsimumu L2StarB 57.62
EF 2mu4T Bmumux v2 51.34
EF 2mu4T Bmumux Barrel 50.05
EF mu4Tmu6 Jpsimumu L2StarB 49.60
EF 2mu4T Jpsimumu Barrel 48.91
EF 2mu4T Bmumux v2 L2StarB 47.12
EF 2mu4T Bmumux BarrelOnly 46.21
EF mu4Tmu6 Bmumux v2 45.91
EF 2mu4T Jpsimumu BarrelOnly 45.01
EF mu4Tmu6 Bmumux v2 L2StarB 41.33
EF 2mu4T Jpsimumu Barrel L2StarB 38.92
EF mu4Tmu6 Bmumux Barrel 37.73
EF 2mu4T Jpsimumu BarrelOnly L2StarB 36.70
EF mu4Tmu6 Jpsimumu Barrel 36.35
EF 2mu4T Bmumux Barrel v2 L2StarB 33.69
EF 2mu4T Bmumux BarrelOnly v2 L2StarB 31.68
EF mu4Tmu6 Jpsimumu Barrel L2StarB 28.14
EF 2mu6 Bmumux 26.77
EF 2mu6 Jpsimumu 24.86
EF mu4Tmu6 Bmumux Barrel v2 L2StarB 23.67
EF 2mu6 Jpsimumu L2StarB 18.58
EF 2mu6 Bmumux v2 18.29
EF 2mu6 Bmumux v2 L2StarB 16.19

Table 10.1: Triggers and respective fractions for B± → J/ψK± events in
2012.
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(a) (b)

Figure 10.1: The invariant mass distribution of B± → J/ψK± candidates
for (a) the 2011 data sample [64] and (b) the 2012 data sample [65]. The
full line shows the fit by the function described in the text. The dotted line
shows the combinatorial background contribution. The shaded area is the
contribution from partially reconstructed B decays. The dashed line shows
the background from B± → J/ψπ± decays, due to the misassignment of the
kaon mass to a pion.

10.2.3 Pseudorapidity regions

To take into account the variation of the inner detector momentum resolution

with |η|, the selected B± candidates are separated into five regions of absolute

rapidity, where rapidity is defined as:

y =
1

2
ln
E + pz
E − pz

(10.2)

where E is the energy of the B± and pz is the component of its momentum

in the direction of the beam axis. Table 10.2 defines the rapidity regions

and gives the number of B± candidates obtained from separate fits to the

invariant mass distribution in each region.
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|y(B±| region Number of B± candidates (×103)
2011 2012

0− 0.5 56.9± 0.4 332± 1
0.5− 1.0 52.7± 0.5 308± 1
1.0− 1.5 39.6± 0.5 234± 1
1.5− 2.0 42.1± 0.7 223± 1
2.0− 2.5 11.0± 0.5 58± 2

Table 10.2: Number of signal B± candidates in the rapidity regions.

10.2.4 Sideband subtraction

Since the flavour tagging study requires only signal B± → J/ψK± candi-

dates, the background contribution must be removed. This is done by apply-

ing sideband subtraction. This method uses the assumption that the back-

ground under the signal peak can be approximated by the background con-

tributions away from the peak region, known as sidebands. The background

in the signal region can therefore be removed by subtracting an equivalent

number of sideband events from the events under the signal peak.

The signal region is defined as ±2 standard deviations (σ) from the mean

(µ) of the signal Gaussian. Two sidebands are defined: the low-mass sideband

and the high-mass sideband. The low-mass sideband begins 1σ below the

lower edge of the signal region and is 2σ wide. The high-mass sideband

begins 1σ above the upper edge of the signal region and is also 2σ wide. The

background contributions in the two sidebands are summed and normalized

to the background in the signal region. It is important to note that the

low-mass sideband contains non-combinatorial background and is therefore

somewhat different from the background under the peak, but this is found

to have a negligible effect on the flavour tagging results. Based on Monte

Carlo simulation, approximately 90% of the signal events are retained after

the sideband subtraction is applied.
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10.3 Tagging methods

10.3.1 Opposite side muon tagging

The flavour of the opposite side b quark can be determined using several

different methods. The most prominent method used in ATLAS involves

measuring the charge of a muon from the semileptonic decay of the opposite

side B hadron. This approach provides considerable tagging power through

the use of the muon detection system, which is already used in the identifica-

tion of J/ψ → µ+µ− decays. One disadvantage of this method is that b→ µ

transitions are diluted by transitions involving neutral B meson oscillations

and cascade decays of the form b → c → µ. These undesirable transitions

produce muons with a charge opposite to those from direct b→ µ transitions,

potentially contaminating the flavour measurement.

The tagging power of muon based tagging can be improved by considering

additional tracks in a cone around the muon. These tracks are very likely to

have come from the b quark jet and therefore provide additional information

regarding the flavour of the b quark. A weighted sum of the charges of these

tracks is made in the following way:

Qµ =

∑
i q
i(piT )k∑
i(p

i
T )k

. (10.3)

where qi and piT are, respectively, the charge and transverse momentum of

track i and the parameter k = 1.1. This value was chosen to optimize

the tagging power of the algorithm. The sum is over all reconstructed tracks

within a cone of ∆R =
√

∆φ2 + ∆η2 < 0.5 around the muon track, including

the muon track itself. The signal decay products are explicitly excluded from

the sum. The muon, which must be exclusive from the muons from the J/ψ

decay, is required to have a transverse momentum greater than 2.5 GeV

and a pseudorapidity less than 2.5. The distance δz of the point of closest

approach of the muon trajectory to the primary vertex in the xy plane must

be less than 5 mm. The muons are categorized based on their reconstruction

classification. If the hits in the inner detector and muon spectrometer can

be combined to form the muon track, the muon is classified as a ”combined”

muon. If the inner detector and muon spectrometer hits cannot be combined
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but are matched, the muon is classified as a ”segment tagged” muon. The two

different muon categories are treated as separate flavour tagging methods.

In the case where multiple muons are available for tagging, the one with

the highest transverse momentum is used. Figures 10.2 and 10.3 shows the

distribution of the opposite side muon cone charge for combined and segment

tagged muons respectively in the 2011 and 2012 data samples for B± signal

decays.

(a) (b)

Figure 10.2: Opposite side muon cone charge for segment tagged muons in
(a) the 2011 data sample [64] and (b) the 2012 data sample [65].

(a) (b)

Figure 10.3: Opposite side muon cone charge for combined muons in (a) the
2011 data sample [64] and (b) the 2012 data sample [65].
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10.3.2 Opposite side electron tagging

In a similar way to the opposite side muon approach, the charge of an electron

from the semileptonic decay of the opposite side B hadron (b → e) can be

utilized to identify the flavour of the signal B meson. The opposite side

electron method also has the disadvantage of neutral B meson oscillations

and b→ c→ e cascade decays contaminating the flavour measurement with

electrons of opposite charge to those from direct b→ e transitions.

The variable used for opposite side electron tagging is again a weighted

sum of the charges of the tracks in a cone of ∆R < 0.5 around the electron,

including the electron track itself:

Qe =

∑
i q
i(piT )k∑
i(p

i
T )k

. (10.4)

In this case, the value of the parameter k that maximizes the tagging power

is 1.0. As for muon tagging, the decay products of the signal B meson are

explicitly excluded from the sum.

To be used for tagging, the electron must have hits in both the inner

detector and the EM calorimeter. It must pass the tight electron selection

criteria defined in Ref. [69]. The electron track is required to have a trans-

verse momentum greater than 0.5 GeV and a pseudorapidity less than 2.5.

The distance δz of the point of closest approach of the electron trajectory to

the primary vertex in the xy plane must be less than 5 mm. The electron

trajectory must not be near the trajectory of the signal B meson. To this

end, a requirement of cos ηb > 0.98 is imposed, where ηb is the angle between

the signal B meson and the electron in the laboratory frame. Additionally,

the electron must be outside of a cone of ∆R = 0.4 around the signal B

meson. If more than one electron is available for tagging, the electron with

the highest transverse momentum is used.

The distribution of the opposite side electron cone charge in the 2012

data sample for B± signal decays is shown in Fig. 10.4. The opposite side

electron tagging method was developed for the analysis of the data taken in

2012 and was not available for the 2011 data sample.
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(a)

Figure 10.4: Opposite side electron cone charge in the 2012 data sample [65].

10.3.3 Jet charge tagging

In the case where no muon or electron is available for tagging, a jet produced

by the opposite side b quark can be used. This type of jet is identified using

several multivariate algorithms [70], and is then known as a “b-tagged jet”.

Each algorithm uses a likelihood ratio method for identifying b jets. For each

track in the jet, a track weight Wt is produced:

Wt =
b(Si)

u(Si)
. (10.5)

Here, b(Si) and u(Si) are probability density functions produced using hy-

potheses that the jet originated from, respectively, a b quark or a light quark

(u, d or s). A separate function c(Si) exists for jets originating from c quarks.

The b-tagged jet weight WJet is then computed by summing the logarithms

of the track weights:

WJet =
N∑
t=1

lnWt (10.6)

where N is the number of tracks in the jet. The value of WJet therefore

quantifies the probability that a given jet originated from a b quark. In the

analysis of the 2011 data sample, the b-tagged jet weight is required to be

greater than −0.5. The requirement in the 2012 analysis is WJet > 0.7. These

values are chosen to maximize the tagging power of the jet charge tagging
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algorithm in the B± calibration sample.

The jets are reconstructed using the anti-kT algorithm [71]. To be used

for tagging, a jet must have pT > 500 MeV and a cone size of ∆R < 0.8.

Additionally, the jet must be outside of a cone of ∆R = 0.5 around the signal

B meson. The jet must also be associated with the primary vertex of the

signal B meson. If more than one jet passes the selection criteria, the jet

with the highest value of w is used.

As for the opposite side lepton tagging methods, the variable used for jet

charge tagging is a momentum weighted charge:

QJ =

∑
i q
i(piT )k∑
i(p

i
T )k

. (10.7)

where qi is the charge of track i in the jet and piT is its transverse momentum.

For jet charge tagging, the total momentum pior the longitudinal momentum

piL could be used in place of piT . The transverse momentum is used simply

because it provides the greatest tagging power. The parameter k = 1.1

and this value is chosen to maximize the tagging power of the jet charge

algorithm. The sum is over the tracks associated with the jet and explicitly

excludes the decay products of the B± meson. This distribution of QJ for

B± signal candidates in the 2011 and 2012 data samples is shown in Fig.

10.5.

(a) (b)

Figure 10.5: Opposite side jet charge in (a) the 2011 data sample [64] and
(b) the 2012 data sample [65].
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10.4 Tagging performance

The performance of a given flavour tagging algorithm is quantified by the

tagging power T = εD2, defining the effective statistical fraction of the se-

lected data sample for which the initial flavour of the signal B meson is

correctly determined. The quantity ε represents the efficiency, which is the

fraction of the sample that has been tagged by the given algorithm. The

variable D represents the dilution, which is the difference between the frac-

tion of events that have been tagged correctly and the fraction that have

been tagged incorrectly.

This study of the calibration sample allows the probability that the dis-

criminating variable Q has a given value for a B+ event or a B− event to be

determined. These probabilities are represented by P (Q|B+) and P (Q|B−)

respectively. The probability that a given signal decay is tagged as containing

a b̄ quark for a specifiec value of Q is then:

P (B|Q) =
P (Q|B+)

P (Q|B+) + P (Q|B−)
. (10.8)

The probability that a given event is tagged as containing a B quark is:

P (B̄|Q) =
P (Q|B−)

P (Q|B+) + P (Q|B−)
= 1− P (B|Q). (10.9)

Using these probabilities, the tagging power of a tagging algorithm can be

determined as:

T = εD2 =
∑
i

εi(Pi(B|Qi)− Pi(B̄|Qi))
2 =

∑
i

εi(2Pi(B|Qi)− 1)2. (10.10)

where the sum is over the bins of the probability distribution as a function

of Q. The quantity εi is the number of events in bin i divided by the total

number of events in the data sample. An effective value of the dilution D is

determined from the measured efficiency and tagging power. The efficiency,

dilution and tagging power of each tagging method in the 2011 and 2012

data samples are given in Tables 10.3 and 10.3 respectively.

The flavour tagging method used for a given signal B meson is chosen

based on the information available in the event. The jet charge method
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is defined in such a way that jet charge tagged events and events tagged

leptonically do not overlap. Approximately 0.4% of events in the 2012 data

sample have both muon and electron tagging available. In these events,

where more than one tagging method is possible, the method with the highest

tagging power is used. Events where none of the flavour tagging methods are

available are assigned a probability of 0.5.
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Tagging method Efficiency [%] Dilution [%] Tagging power [%]
Combined muon 3.37± 0.04 50.6± 0.5 0.86± 0.04
Segment tagged muon 1.08± 0.02 36.7± 0.7 0.15± 0.02
Jet charge 27.7± 0.1 12.68± 0.06 0.45± 0.03
Total 32.1± 0.1 21, 3± 0.08 1.45± 0.05

Table 10.3: Tagging performance of the tagging methods used for the 2011
data sample [64]. The uncertainties are statistical only.

Tagging method Efficiency [%] Dilution [%] Tagging power [%]
Combined muon 4.12± 0.02 47.4± 0.2 0.92± 0.02
Electron 1.19± 0.01 49.2± 0.3 0.29± 0.01
Segment tagged muon 1.20± 0.01 28.6± 0.2 0.10± 0.01
Jet charge 13.15± 0.03 11.85± 0.3 0.19± 0.01
Total 19.66± 0.04 27.56± 0.06 1.49± 0.02

Table 10.4: Tagging performance of the tagging methods used for the 2012
data sample [65]. The uncertainties are statistical only.
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Conclusions

The measurement of the relative width difference ∆Γd/Γd of the B0 − B̄0

system is performed using data from p− p collisions collected by the ATLAS

experiment at
√
s = 7 TeV and

√
s = 8 TeV during Run 1 of the LHC,

corresponding to an integrated luminosity of 25.2 fb−1. The result is:

∆Γd/Γd = (−0.1± 1.1 (stat.)± 0.9 (syst.))× 10−2.

This is currently the world’s most precise measurement of ∆Γd/Γd. It is

in good agreement with the SM prediction [49] and measurements by other

experiments [7, 8, 55] It is also consistent with the indirect measurement

made by the D0 Collaboration [63].

The impact of the B0 production asymmetry AP on the measurement of

∆Γd/Γd is found to be negligible. This conclusion is influenced mainly by

the smallness of AP and the good precision of its determination, which was

not necessarily evident before the measurement. The obtained value of the

production asymmetry of the B0 meson in the range |η(B0)| < 2.5 is:

AP(B0) = (+0.25± 0.48± 0.05)% (11.1)

This measurement is an important by-product of this analysis. The measured

value is consistent with the measurement of the LHCb collaboration [59]

performed in the 2.5 < η(B0) < 4.0 range.

The technique used to measure ∆Γd/Γd developed during LHC Run 1 will

form the foundation for a subsequent measurement by the ATLAS collabora-
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tion using the much larger data sample expected in Run 2. This prospective

measurement is anticipated to be more precise than the current world aver-

age [6] and should place constraints on possible new physics in ∆Γd, such as

current-current and (d̄b)(τ̄ τ) operators [3].

In addition to the measurement of ∆Γd/Γd, the opposite side tagging

methods developed primarily for use in the measurement of CP violation

in B0
s → J/ψφ decays are presented. The flavour tagging algorithms were

designed and calibrated using B± → J/ψK± events collected by the ATLAS

experiment from p−p collisions during Run 1 of the LHC at
√
s = 7 TeV and

√
s = 8 TeV, which provided integrated luminosities of 4.9 fb−1 and 19.5 fb−1,

respectively. The total tagging power is measured to be T = (1.45 ± 0.5)%

at
√
s = 7 TeV and T = (1.49± 0.2)% at

√
s = 8 TeV.

The B0
s → J/ψφ analysis will be continued using the data in LHC Run

2 and flavour tagging will again be required. The algorithms developed in

Run 1 will provide the basis for flavour tagging in Run 2, with possible

improvements coming from multi-variate analysis, which could potentially

yield a significant tagging power increase.

The measurements presented in this thesis further the understanding of

the properties of neutral B mesons and provide the possibility of discovering

new physics phenomena involving b quarks. Although the results do not

currently constrain any potential new physics, the additional data collected in

future running of the LHC should provide the precision necessary to confirm

of refute the Standard Model predictions.
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Appendix A

Data sets used for the

measurement of ∆Γd/Γd

The data sets used in the analysis are

data11_7TeV.period%.physics_Muons.PhysCont.DAOD_ONIAMUMU.pro10_v01

data12_8TeV.periodB.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodC.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425

data12_8TeV.periodD.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425

data12_8TeV.periodE.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodG.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodH.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425

data12_8TeV.periodI.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodJ.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodL.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

The Good Run Lists for the two data periods are

data11_7TeV.periodAllYear_DetStatus-v60-pro10-02_DQDefects-00-01-00_PHYS_CombinedPerf_Muon_Muon.xml

data12_8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-00-01-00_PHYS_StandardGRL_All_Good.xml

The Good Run Lists define the luminosity blocks, which typically corre-

spond to about two minutes of data taking, that are considered “good” for

physics analysis. There are a number of reasons why a particular luminosity

block may considered not to be “good” such as:

• The LHC not being in stable-beam mode.

• The ATLAS magnet system being off or ramping up.

• One or more of the sub-detectors being off.

• Too many noisy cells in the detector.
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The Monte Carlo samples used in this analysis are summarised in Table

A.1.

MC campaign Sample Dataset number Tag No. of events

MC11 B0 → J/ψK∗0 108524 e1039 a131 s1353 a178 r2993 500 k
B0 → J/ψK∗0 108570 e1131 a131 s1353 a178 r2993 500 k
B0 → J/ψKS 108508 e1108 a131 s1353 a178 r2993 1 M
B0 → J/ψKS 108509 e995 a131 s1353 a178 r2993 500 k

MC12 B0 → J/ψK∗0 208417 e2376 a159 a180 r3549 12 M

B̄0 → J/ψK̄∗0 208444 e3793 a188 a272 r4516 12 M
B0 → J/ψKS 208412 e2324 a159 a180 r3549 20 M

Table A.1: MC samples used in the analysis.



Appendix B

Data sets used for flavour

tagging

The data sets used in the 2011 analysis are:

data11_7TeV.periodB2.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodD.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodE.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodF2.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodF3.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodG.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodH.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodI.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodJ.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodK1.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodK2.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodK3.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodK4.physics_Muons.PhysCont.DAOD_ONIAMUMU.repro09_v01

data11_7TeV.periodL.physics_Muons.PhysCont.DAOD_ONIAMUMU.t0pro09_v01

data11_7TeV.periodM2.physics_Muons.PhysCont.DAOD_ONIAMUMU.t0pro09_v01

data11_7TeV.periodM4.physics_Muons.PhysCont.DAOD_ONIAMUMU.t0pro09_v01

data11_7TeV.periodM5.physics_Muons.PhysCont.AOD.t0pro09_v01

data11_7TeV.periodM6.physics_Muons.PhysCont.DAOD_ONIAMUMU.t0pro09_v01

data11_7TeV.periodM8.physics_Muons.PhysCont.AOD.t0pro09_v01

data11_7TeV.periodM10.physics_Muons.PhysCont.AOD.t0pro09_v01

The data sets used in the 2012 analysis are:

data12_8TeV.periodB.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodC.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425

data12_8TeV.periodE.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodF.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodG.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodH.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425

data12_8TeV.periodI.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodJ.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425

data12_8TeV.periodL.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425
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The Good Run List applied to this data sample was:

data12_8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-503-00-01-00_PHYS_StandardGRL_All_Good.xml
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